Volume 11, issue 5 (2011)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 19
Issue 7, 3217–3753
Issue 6, 2677–3215
Issue 5, 2151–2676
Issue 4, 1619–2150
Issue 3, 1079–1618
Issue 2, 533–1078
Issue 1, 1–532

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

Author Index
The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
To Appear
 
Other MSP Journals
The Fox property for codimension one embeddings of products of three spheres into spheres

Laércio Aparecido Lucas and Osamu Saeki

Algebraic & Geometric Topology 11 (2011) 3043–3064
Bibliography
1 J W Alexander, On the subdivision of a $3$–space by a polyhedron, Proc. Nat. Acad. Sci. USA 10 (1924) 6
2 M Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960) 74 MR0117695
3 R H Fox, On the imbedding of polyhedra in $3$-space, Ann. of Math. $(2)$ 49 (1948) 462 MR0026326
4 R Z Goldstein, Piecewise linear unknotting of $S^{p}\times S^{q}$ in $S^{p+q+1}$, Michigan Math. J. 14 (1967) 405 MR0220299
5 A Katanaga, O Saeki, Embeddings of quaternion space in $S^4$, J. Austral. Math. Soc. Ser. A 65 (1998) 313 MR1660419
6 M A Kervaire, J W Milnor, Groups of homotopy spheres. I, Ann. of Math. $(2)$ 77 (1963) 504 MR0148075
7 S Kinoshita, On Fox's property of a surface in a $3$-manifold, Duke Math. J. 33 (1966) 791 MR0203720
8 A Kosiński, On Alexander's theorem and knotted spheres, from: "Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961)", Prentice-Hall (1962) 55 MR0158369
9 L A Lucas, O M Neto, O Saeki, A generalization of Alexander's torus theorem to higher dimensions and an unknotting theorem for $S^p\times S^q$ embedded in $S^{p+q+2}$, Kobe J. Math. 13 (1996) 145 MR1442202
10 L A Lucas, O Saeki, Diffeomorphisms of a product of spheres and embedded spheres, Topology Appl. 123 (2002) 471 MR1924046
11 L A Lucas, O Saeki, Embeddings of $S^p\times S^q\times S^r$ in $S^{p+q+r+1}$, Pacific J. Math. 207 (2002) 447 MR1972255
12 L A Lucas, O Saeki, Codimension one embeddings of product of three spheres, Topology Appl. 146/147 (2005) 409 MR2107160
13 J H Rubinstein, Dehn's lemma and handle decompositions of some $4$-manifolds, Pacific J. Math. 86 (1980) 565 MR590570
14 S Smale, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. $(2)$ 74 (1961) 391 MR0137124
15 S Suzuki, On a complexity of a surface in $3$-sphere, Osaka J. Math. 11 (1974) 113 MR0346791
16 C T C Wall, Killing the middle homotopy groups of odd dimensional manifolds, Trans. Amer. Math. Soc. 103 (1962) 421 MR0139185
17 C T C Wall, Unknotting tori in codimension one and spheres in codimension two, Proc. Cambridge Philos. Soc. 61 (1965) 659 MR0184249