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Indecomposable PD3–complexes

JONATHAN A HILLMAN

We show that if X is an indecomposable PD3 –complex and �1.X / is the fundamen-
tal group of a reduced finite graph of finite groups but is neither Z nor Z˚Z=2Z then
X is orientable, the underlying graph is a tree, the vertex groups have cohomological
period dividing 4 and all but at most one of the edge groups is Z=2Z . If there are no
exceptions then all but at most one of the vertex groups is dihedral of order 2m with
m odd. Every such group is realized by some PD3 –complex. Otherwise, one edge
group may be Z=6Z . We do not know of any such examples.

We also ask whether every PD3 –complex has a finite covering space which is ho-
motopy equivalent to a closed orientable 3-manifold, and we propose a strategy for
tackling this question.

57M05, 57M99; 57P10

1 Introduction

It is a well known consequence of the Sphere Theorem that every closed 3–manifold
is a connected sum of indecomposable factors, which are either aspherical or have
fundamental group infinite cyclic or finite. There is a partial analogue for PD3 –
complexes: Turaev showed that a PD3 –complex X whose fundamental group is a
free product is a connected sum, while Crisp showed that every indecomposable PD3 –
complex is either aspherical or its fundamental group is the fundamental group of
a finite graph of finite groups. However the group may have infinitely many ends,
in contrast to the situation for 3–manifolds. Two orientable examples with group
S3 �Z=2Z S3 were given by the author in [21; 22].

We shall show that, excepting only the cases S1 �RP2 and S1 z� S2 , every inde-
composable PD3 –complex with virtually free fundamental group is orientable, the
underlying graph is a tree, the vertex groups have cohomological period dividing 4 and
all but at most one of the edge groups is Z=2Z. (We may in fact assume that the graph
is linear.) If all the edge groups have order 2 then all but one of the vertex groups is
dihedral of order 2m with m odd, and every group with such a graph of groups structure
is realized by some PD3 –complex. Otherwise, there may be one edge group of order 6,
with one adjacent vertex group B �Z=dZ, where B is binary tetrahedral or binary
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icosahedral, the other the product of a dihedral group with Z=3Z, and all remaining
vertex groups are dihedral. We have not been able to construct any examples of this
form. (It also remains unclear whether the existence of indecomposable examples with
infinitely-ended group is merely an accident of nature or has some deeper explanation.)

Our argument relies on Turaev’s criterion for a group to be the fundamental group of a
PD3 –complex, and on one of Crisp’s results, in which he showed that if the centralizer
of an element of � D �1.X / of prime order p > 1 is infinite then p D 2 and the
element is orientation-reversing. In conjunction with Turaev’s Splitting Theorem it
follows quickly that (in the orientable case) the Sylow subgroups of the vertex groups
in a graph of groups structure for the fundamental group are cyclic or quaternionic.
Hence the vertex groups have periodic cohomology. The main result (Theorem 5.2)
uses knowledge of such groups with Crisp’s Theorem to restrict the possible vertex
and edge groups. The constructive aspect extends the idea in [21], which showed that
the augmentation ideal for S3 �Z=2Z S3 had a self-conjugate, diagonal presentation
matrix. Crisp’s Theorem is used again to eliminate exotic nonorientable examples. In
Section 8 we consider briefly the possible homotopy types.

In the final part of this paper we turn to the aspherical case. Here the main question is
whether every aspherical PD3 –complex is homotopy equivalent to a closed 3–manifold.
An equivalent question is whether every PD3 –complex has a finite covering space which
is homotopy equivalent to a closed orientable 3–manifold. We suggest a reduction of
this question to a question about Dehn surgery on links.

2 Group theoretic preliminaries

If G is a group jGj, G0 and �G shall denote the order, commutator subgroup and
centre of G , while if H � G is a subgroup CG.H / and NG.H / shall denote the
centralizer and normalizer, respectively. Let IG denote the augmentation ideal of ZŒG�.
A homomorphism wW G!f˙1g defines an anti-involution of ZŒG� by xgDw.g/g�1 ,
for all g 2G .

If R is a ring two finitely presentable left R–modules M and N are stably isomorphic
if M1˚Ra Š N ˚Rb for some a; b � 0. Let ŒM � denote the stable isomorphism
class of M . If IG has a finite presentation matrix A over ZŒG� let JG be the left
ZŒG�–module with presentation matrix the conjugate transpose xA tr . Tietze move
considerations show that the stable isomorphism class of J.G/ is well-defined by
Turaev [29].

If all the Sylow subgroups of a finite group M are cyclic then M is metacyclic, with
a presentation

ha; b j an
D bm

D 1; aba�1
D br
i;

Algebraic & Geometric Topology, Volume 12 (2012)



Indecomposable PD3 –complexes 133

where rn � 1 mod m and .m; n.r � 1// D 1, so m is odd. (See Robinson [27,
Proposition 10.1.10].) Let u D minfk j rk � 1 mod mg. Then M 0 and �M are
generated by the images of b and au , respectively. When nD 2 and r D�1 we have
the dihedral group D2m . If we set mD 2sC 1 then D2m has the presentation

ha; b j a2
D 1; absaD bsC1

i:

There are six families of finite groups with periodic cohomology:

(1) Z=mZ Ì Z=nZ;

(2) Z=mZ Ì .Z=nZ�Q.2i//, i � 3;

(3) Z=mZ Ì .Z=nZ�T �
k
/, k � 1;

(4) Z=mZ Ì .Z=nZ�O�
k
/, k � 1;

(5) .Z=mZ Ì Z=nZ/�SL.2;p/, p � 5 prime;

(6) Z=mZ Ì .Z=nZ�TL.2;p//, p � 5 prime.

Here m, n and the order of the quotient by the metacyclic subgroup Z=mZÌZ=nZ are
relatively prime. (See Davis and Milgram [7].) The groups TL.2;p/ of the final family
may be defined as follows. Choose a nonsquare ! 2 F�p , and let TL.2;p/�GL.2;p/
be the subset of matrices with determinant 1 or ! . The multiplication ? is given
by A ? B D AB if A or B has determinant 1, and A ? B D !�1AB otherwise.
Then SL.2;p/ D TL.2;p/0 and has index 2. (Note also that SL.2; 3/ Š T �

1
and

TL.2; 3/ŠO�
1

.)

In particular, a finite group has cohomological period 2 if and only if it is cyclic, and
has cohomological period 4 if and only if it is a product B � Z=dZ, where B is
a generalized quaternionic group Q.8a; b; c/, an extended binary polyhedral group
T �

k
, O�

k
or I� D SL.2; 5/ or a metacyclic group (with n D 2e and r D �1), and

.d; jBj/D 1 [7].

Lemma 2.1 Let G be a finite group with periodic cohomology. If G is not cyclic or
metacyclic then it has an unique central involution which is a square, and 4 divides jGj.

Proof This follows on examining the above list of finite groups with periodic coho-
mology. Since all subgroups of order p2 in a finite group G with periodic cohomology
are cyclic, an involution g 2G is central if and only if it is the unique involution.

In particular, if G has cohomological period 4 and does not have a central involution
then G ŠD2m �Z=dZ, for some odd m� 3 and d � 1.
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Lemma 2.2 Let G be a finite group with periodic cohomology of period greater
than 4. Then G has a subgroup H Š Z=pZ Ì Z=qZ, where p is an odd prime, q is
an odd prime or 4, q divides p� 1 and �H D 1.

Proof This follows on examining the above list of finite groups with periodic coho-
mology.

Such groups H have presentations ha; b j aq D bp D 1; aba�1 D br i; where r is a
primitive q–th root mod p .

A graph of groups .G; �/ consists of a graph � with origin and target functions o and t

from the set of edges E.�/ to the set of vertices V .�/, and a family G of groups Gv
for each vertex v and subgroups Ge �Go.e/ for each edge e , with monomorphisms
�eW Ge ! Gt.e/ . (We shall usually suppress the maps �e from our notation.) In
considering paths or circuits in � we shall not require that the edges be compatibly
oriented.

The fundamental group of .G; �/ is the group �G with presentation

hGv; te j tegt�1
e D �e.g/ 8g 2Ge; te D 1 8e 2E.T /i;

where T is some maximal tree for � . Different choices of maximal tree give isomorphic
groups. We may (and shall) always assume that the graph of groups is reduced, ie, that
if o.e/ 6D t.e/ then Ge is properly contained in each of Go.e/ and Gt.e/ . (See Dicks
and Dunwoody [9].) If there is an edge with Ge DGo.e/ and �eW Ge ŠGt.e/ we shall
say that the graph of groups has a loop isomorphism.

Lemma 2.3 Let � D �G , where .G; �/ is a nontrivial reduced finite graph of groups.
If there is an edge e with Ge D 1 then either � is a nontrivial free product or � Š Z.

Proof If � n feg has two components then � is a nontrivial free product. Otherwise a
maximal tree for � nfeg is also a maximal tree for � , and the stable letter te generates
a free factor of � .

The argument for the following converse is due to Daniel Groves.

Lemma 2.4 Let � D �G , where .G; �/ is a finite graph of finite groups and � is a
tree. If all the edge groups are nontrivial then � is indecomposable.

Proof If � ŠA�B then � acts without global fixed points on the Bass–Serre tree ‡
associated to the splitting. Each finite subgroup of � fixes a point in this tree. If xo

and xt 2 ‡ are fixed by adjacent vertex groups Go.e/ and Gt.e/ then Ge fixes the
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Indecomposable PD3 –complexes 135

interval Œxo;xt � joining these points. Hence xo D xt , since edge-stabilizers in ‡ are
trivial. Induction on the size of � now shows that xo is fixed by � , contradicting the
first sentence of the proof.

This argument extends easily to all finite graphs of finite groups with nontrivial edge
groups according to Groves [14], but we need only the above case.

Lemma 2.5 Let � D �G , where .G; �/ is a finite graph of groups. If C is a subgroup
of an edge group Ge with NGe

.C / properly contained in each of NGo.e/
and NGt.e/

then N�.C / is infinite.

Proof If go 2Go.e/ nGe and gt 2Gt.e/ nGe each normalize C then gogt normal-
izes C and has infinite order in � .

3 The results of Turaev and Crisp

If K is an n–dimensional complex and wW � D �1.K/! f˙1g is a homomorphism
let C� D C�. zK/ be the cellular chain complex of the universal cover and let DC�
be the dual chain complex with DCq D HomZŒ��.Cn�q;ZŒ��/ given by dualizing,
defining a left module structure by .gı/.c/D w.g/ı.c/g�1 for all g 2 � , ı 2DCq

and c 2Cn�q , and reindexing. Then K satisfies Poincaré duality with local coefficients
and orientation character w if and only if Hn.Zw ˝ZŒ�� C�/ Š Z and there is a
chain homotopy equivalence DC�'C� given by slant product with an n–cycle which
generates this group by Wall [30]. We shall call such a complex a PDn –space; it
is a PDn –complex if and only if � is finitely presentable by Browder [2]. Closed
n–manifolds are finite PDn –complexes. Although our main concern in this paper
is with PD3 –complexes, we have given the broader definition as PDn –spaces arise
naturally in connection with Poincaré duality groups (see Davis [8] and Section 9
below), and as covering spaces of manifolds by Hillmann and Kochloukova [23].

In dimensions n� 3 it suffices to know that there is some chain homotopy equivalence
DC�'C� . The next result is substantially based on ideas of Turaev [29], but has some-
what different hypotheses. If M is a left ZŒ��–module let ej M D ExtjZŒ��.M;ZŒ��/.

Theorem 3.1 Let K be a connected 3–complex and wW � D �1.K/! f˙1g be a
homomorphism. If C�. zK/ is chain homotopy equivalent to a finite projective ZŒ��–
complex C� such that C� and DC� are chain homotopy equivalent then K is a
PD3 –space.
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Proof Let C�˝Z C� have the diagonal left � –action, and let �.x˝y/D .�1/pqy˝x

for all x 2 Cp and y 2 Cq . Let �W C� ! C�˝Z C� be an equivariant diago-
nal. Then �� is also a diagonal homomorphism, and so is chain homotopic to �.
Let � 2 C3 be a 3–chain such that 1˝ � is a cycle representing a generator ŒK�
of H3.Z

w˝ZŒ�� C�/ Š H3.Z
w˝ZŒ��DC�/ D H 0.C �IZ/ Š Z, and let �.�/ DP

xi ˝ y3�i . Slant product with 1 ˝ � defines a chain map ��W DC� ! C� by
�.�/D

P
�.x3�j /yj for all � 2DCj . The double dual DDC� is naturally isomorphic

to C� , and the “symmetry” of � with respect to the transposition � implies that D��
and �� are chain homotopic, as in [29].

Suppose first that � is finite. Then H 0.C �/ Š Z and H 1.C �/ D 0, so H2.C�/ D

H1.C�/ D 0 and H3.C�/ Š Z. Therefore zK ' S3 and so K is a PD3 –complex
by [30].

If � is infinite H3.DC�/ D H 0.C �/ D 0. Since H1.DC �/ D H1.C�/ D 0 and
H0.DC�/ D H 3.C �/ Š H0.C�/ Š Z, Hi.��/ is an isomorphism for all i 6D 2. In
particular, since H0.��/ is an isomorphism the dual ��W C �!DC � also induces an
isomorphism H 1.C �/Š e1H0.C�/ŠH 1.DC �/Š e1H0.DC�/. Hence H2.��/D

H2.D��/ is also an isomorphism, and so � is a chain homotopy equivalence. Therefore
K is a PD3 –space.

A similar (and easier) result is true for complexes of dimension 1 or 2. On the other
hand, the 1–connected space S2 _S4 is not a PD4 –complex, although it has a cell
structure with just three cells, and its cellular chain complex is obviously isomorphic
to its linear dual.

Turaev’s characterization of the group-pairs .�;w/ which may be realized by finite
PD3 –complexes follows from this theorem.

Theorem 3.2 Let � be a finitely presentable group and wW � ! f˙1g a homomor-
phism. Then there is a finite PD3 –complex K with �1.K/Š � and w1.K/D w if
and only if ŒI� �D ŒJ� �.

Proof Let K be a connected PD3 –complex with �1.K/Š � and w1.K/D w . We
may assume that K has a single 0–cell and finite 2–skeleton, and that C� and DC�
are finitely generated free ZŒ��–complexes. Then C0 ŠZŒ�� and Cok.@C

2
/D Im.@C

1
/

is the augmentation ideal I� . The Fox–Lyndon free differential calculus gives a
matrix M for @C

2
with respect to the bases represented by chosen lifts of the cells of K .

Since H0.C�/ŠH0.DC�/Š Z and I� D Cok.@C
2
/, Schanuel’s Lemma implies that

I� ˚DC0 Š Cok.@D
2
/˚C0 . Since @D

2
has matrix SM tr it follows that ŒI� �D ŒJ� �.
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Conversely, let K be the finite 2–complex associated to a presentation for � , and define
J� by means of the Fox–Lyndon matrix. Suppose that J� ˚ZŒ��m Š I� ˚ZŒ��n .
Let LDK_mD3 be the 3–complex obtained by subdividing the 1–skeleton of K at
n points distinct from the basepoint and giving each of the 3–discs the cell structure
D3 D e0[ e2[ e3 . Then L'K and Cok.@L

2
/Š I� ˚ZŒ��n . Let

DC1 D HomZŒ��.C2. zL/;ZŒ��/

and let ˛W DC1 ! ZŒ�� be the composite of the projection onto J� ˚ZŒ��m , the
isomorphism with I� ˚ZŒ��n , the projection onto I� and the inclusion into ZŒ��.
Then x̨ trW ZŒ��! C2. zL/ has image in �2.L/DH2.C�. zL// and so we may attach
another 3–cell along a map f in the homotopy class of x̨ tr.1/. The resulting 3–
complex X D L[f e3 satisfies the hypothesis of Theorem 3.1, and so X is a finite
PD3 –complex with fundamental group � .

Groups realized by finite PD3 –complexes are often also realizable by PD3 –complexes
which are not homotopy finite; see Thomas [28]. The first paragraph of Theorem 3.2
extends easily to include such complexes.

Addendum 3.3 Let K be a PD3 –complex and let �D�1.K/ and wDw1.K/. Then
there are finitely generated projective ZŒ��–modules P and Q such that I� ˚P Š

J� ˚Q.

In particular, if there is a homomorphism f W ZŒ��!R, where the ring R is torsion-
free as an additive group, and such that the Z–torsion submodules of R f̋ I� and
R f̋ J� are not isomorphic, then .�;w/ is not realizable by any PD3 –complex. (See
Theorems 4.6 and 7.4 below.) On the other hand, the examples that we shall construct
are finite complexes which satisfy the hypotheses of Theorem 3.1.

We should emphasize that this criterion is only part of Turaev’s determination of the
characteristic triples .�;w;�/ (with � 2 H3.� IZ

w/) realized by PD3 –complexes.
(See also Section 8 below.) He used the notion of projective homotopy equivalence to
give necessary and sufficient conditions for such a triple to be realized in the broader
sense (ie, by PD3 –complexes which may not be finite). He also reproved Hendrik’s
result [17] that the homotopy type of a PD3 –complex is determined by its characteristic
triple, and obtained the splitting theorem stated in the first paragraph of the introduction
as a consequence [29].

We shall use repeatedly the following result of Crisp [5], often together with Lemma 2.5.

Theorem 3.4 (Crisp’s Theorem) If X is a PD3 –complex and g 2 � D �1.X / has
prime order p and infinite centralizer C�.g/ then p D 2, g is orientation-reversing
and C�.g/ has two ends.
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Since the automorphism group of a finite group is finite this has the immediate conse-
quence that if X is orientable and G is a nontrivial finite subgroup of � then N�.G/

is finite.

4 Vertex groups have periodic cohomology

In this section we shall consider orientable PD3 –complexes whose fundamental groups
are fundamental groups of finite graphs of finite groups. All such groups are finitely
presentable.

Lemma 4.1 Let X be an orientable PD3 –complex with � D �1.X / Š �G , where
.G; �/ is a reduced finite graph of finite groups. If .G; �/ has a loop isomorphism then
� has a nontrivial free factor.

Proof If .G; �/ has a loop isomorphism at the edge e then te normalizes Ge , and so
N�.Ge/ is infinite. Therefore Ge D 1, by Crisp’s Theorem, and so te generates a free
factor of � .

A finitely generated group is the fundamental group of a finite graph of finite groups
if and only if it is virtually free. (See [9, Corollary IV.1.9].) If � has a free normal
subgroup F of finite index then the canonical surjection sW �!G D �=F is injective
on every finite subgroup of � . In particular, if H is a finite subgroup of � then the
subgroup FH D s�1s.H / generated by F and H is a semidirect product F Ì H .

Lemma 4.2 Let X be an indecomposable orientable PD3 –complex. If � D �1.X /

has a free normal subgroup F such that �=F is a finite nilpotent group then � is cyclic
or � ŠQ.2k/�Z=dZ for some k � 3 and odd d .

Proof If � has a free factor then � Š Z. Otherwise we may assume that � D �G ,
where .G; �/ is a reduced finite graph of finite groups with no loop isomorphisms.
Thus each edge group Ge is a proper subgroup of each of Go.e/ and Gt.e/ . The vertex
groups are nilpotent since they map injectively to �=F . Hence the normalizer of Ge

in each of Go.e/ and Gt.e/ is strictly larger than Ge , since nilpotent groups satisfy the
normalizer condition. (See [27, Chapter 5, Section 2].) Hence N�.Ge/ is infinite, by
Lemma 2.5, and so Ge D 1.

Since X is indecomposable so is � , and since � has no free factor � has one vertex
and no edges. Hence � is finite, and so zX ' S3 . Therefore � has cohomological
period dividing 4. Since it is nilpotent it is cyclic or the direct product of a cyclic group
of odd order with a quaternionic 2–group Q.2k/, for some k � 3.
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Theorem 4.3 Let X be an orientable PD3 –complex with � D �1.X /Š �G , where
.G; �/ is a reduced finite graph of finite groups. Then the vertex groups have periodic
cohomology and the edge groups are metacyclic.

Proof Let F be a maximal free normal subgroup of � . If S is a Sylow p–subgroup
of a vertex group Gv then FS is the fundamental group of a finite graph of p–groups.
The indecomposable factors of FS are either infinite cyclic or are finite and have
periodic cohomology, by Lemma 4.2. Therefore S has periodic cohomology. Since a
finite group has periodic cohomology if and only if this holds for all its Sylow subgroups
(see [3, Proposition VI.9.3]) it follows that Gv has periodic cohomology.

If Ge is not metacyclic it has a central involution, which is a square, by Lemma 2.1.
This involution is orientation preserving, and is also central in each of Go.e/ and Gt.e/ ,
since they cannot be metacyclic. This contradicts Crisp’s Theorem.

Corollary 4.4 For any edge e at least one of the vertex groups Go.e/ or Gt.e/ is
metacyclic. If they are each metacyclic then Ge is cyclic.

Proof If neither Go.e/ nor Gt.e/ is metacyclic then each has a central involution, go

and gt , say. If jGej is even then go and gt are each in �Ge , and hence are equal.
But then N�.go/ contains both vertex groups, and so is infinite. If jGej is odd it is
properly contained in each of its normalizers. In either case this contradicts Crisp’s
Theorem.

If Go.e/ and Gt.e/ are each metacyclic then G0e is normal in each of them, and so must
be trivial, by Crisp’s Theorem.

Corollary 4.5 If the orders of all the edge groups have a common prime factor p then
� is a tree, and there is at most one vertex group V DGv such that Ge <NV .Ge/ for
some edge e with v 2 fo.e/; t.e/g.

Proof Let T be a maximal tree in � . If there is an edge e not in T there is a
cycle 
 in � incorporating e . Each vertex group Gv has an unique conjugacy class
of subgroups Cv of order p , since its Sylow subgroups are cyclic or quaternionic.
Therefore teCo.e/t

�1
e D wCo.e/w

�1 , where w is a word in the union of the vertex
groups along the rest of the cycle. The element tew

�1 has infinite order, and so
N�.Co.e// is infinite. This contradicts Crisp’s Theorem.

If Ge <NV .Ge/ for some V DGv with v 2 fo.e/; t.e/g we may assume that Cv 2Ge .
Then NGe

.Cv/ <NV .Cv/, since Cv is unique up to conjugacy in Ge . Suppose there
are two such vertex groups V DGv and W DGw with v 6Dw , and choose a (minimal)
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path connecting these vertices. As before Cw D aCva
�1 for some a in the subgroup

generated by the intermediate vertex groups along the path. Thus Cw is normalized by
the subgroup generated by NW .Cw/ and aNV .Cv/a

�1 , which is infinite. This again
contradicts Crisp’s Theorem.

The fact that the Sylow subgroups of a group G have cohomological period dividing 4
does not imply that G has cohomological period dividing 4. Nevertheless, this is true
in our situation.

Theorem 4.6 Let X be an orientable PD3 –complex with � D �1.X /Š �G , where
.G; �/ is a reduced finite graph of finite groups. Then the vertex groups have cohomo-
logical period dividing 4.

Proof Let F be a free normal subgroup of finite index in � . Suppose there is
a vertex group with cohomological period greater than 4. Then it has a subgroup
H Š Z=pZ Ì Z=qZ with a presentation

ha; b j aq
D bp

D 1; aba�1
D br
i;

where p is an odd prime, q is an odd prime or 4 and r is a primitive q–th root
mod p . Let f W � ! �=F be the canonical projection, and let FH D f �1f .H /.
Then FH Š F Ì H is the group of an orientable PD3 –complex. Since every finite
subgroup of a free product is conjugate to a subgroup of one of the factors we may
assume that � D FH and is indecomposable.

Assume first that q is an odd prime. Since � is indecomposable and all centralizers of
nonidentity elements are finite we may assume that all edge groups have order q . Since
the Sylow q–subgroups in each vertex group are all conjugate, we may assume also
that � is a tree, by Corollary 4.5, and that f maps each vertex group isomorphically
onto H . It follows that � has a presentation

ha; b1; : : : ; bn j aq
D b

p
i D 1; abia

�1
D br

i i:

Let f W ZŒ��! R D ZŒZ=qZ� be the epimorphism with kernel the two-sided ideal
generated by fb1�1; : : : ; bn�1g. Then R f̋ I� Š IZ=qZ˚ .R=.p; a� r//n . Hence
the Z–torsion of R f̋ I� is .Z=pZ/n , with a acting as multiplication by r .

However R f̋ J�ŠIZ=qZ˚N n , where N ŠR2=R.p; a�1� r/. Let �D
P

i<q air i

in R. Then

.a�1
� r/�D a�1.1� aqrq/D a�1.1� rq/� 0 mod p:

Therefore .a�1 � r/� D p� for some � 2 R. Let Œ�; �� be the image of .�; �/
in N . Then Œ�; �� 6D 0, since p does not divide � in R. On the other hand pŒ�; ��D
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�Œp; a�1�r �D0 and .a�1�r/Œ�; ��D�Œp; a�1�r �D0. Thus a acts as multiplication
by r�1 on this nontrivial p–torsion element of N . Since r�1 6� r mod p it follows that
there are no projective ZŒ��–modules P;Q such that R f̋ .I�˚P /ŠR f̋ .J� ˚Q/.
Thus the conclusion of Addendum 3.3 does not hold.

If qD 4 the edge groups have order 2 or 4, and at least one vertex group has an element
of order 4. We may again assume that � is a tree, and � now has a presentation of the
form

ha; b1; : : : ; bn j a4
D b

p
i D 1; abia

�1
D br

i 8i � k; a2bia
2
D b�1

i 8i > ki;

for some k > 1. We now find that a acts as multiplication by r on a summand
.Z=pZ/k of the Z–torsion of R f̋ I� , whereas it acts by r�1 D �r on part of
the corresponding summand of the Z–torsion of R f̋ J� . We again find that the
conclusion of Addendum 3.3 does not hold.

Hence all vertex groups must have cohomological period dividing 4.

It is of course clear that we cannot have �ŠH , since H has cohomological period >4.

5 The main result

We shall now use the classification of groups of cohomological period 4 to restrict
further the possible fundamental groups.

Lemma 5.1 Let G be a finite group with cohomological period 4, and let C be a
cyclic subgroup of odd prime order p . Then NG.C / is nonabelian unless p D 3 and
G D B �Z=dZ with B D T �

1
or I� .

Proof This follows on examining the list of such groups G . (Note that if p > 5 then
C is central, while if p D 5 and G D I� or p D 3 and G D O�

1
then NG.C / is

nonabelian. If p D 3 and G D T �
k

or O�
k

with k > 1 then C is normal in G .)

Theorem 5.2 Let X be an indecomposable orientable PD3 –complex with � D

�1.X /Š �G , where .G; �/ is a reduced finite graph of finite groups of cohomological
period 4. Then � is a tree and at most one edge group is not Z2Z. If all edge groups
are Z=2Z then at most one vertex group is not dihedral. If there is an edge e with
jGej>2 then GeŠZ=6Z, the adjacent vertex groups are D2m�Z=3Z and B�Z=dZ,
with .m; 6/D 1, B D T �

1
or I� and .d; jBj/D 1, and the remaining vertex groups

are dihedral.
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Proof Let Ge be an edge group. Then Ge is metacyclic, by Theorem 4.3. If Ge has a
central involution then it is also central in V DGo.e/ and W DGt.e/ , by Lemma 2.1.
This contradicts Crisp’s Theorem, and so 4 cannot divide jGej.

At least one of V;W is metacyclic, by Corollary 4.4. Suppose that both are metacyclic.
If C � Ge has odd prime order then NV .C / D V and NW .C / DW , since V and
W are metacyclic with cohomological period dividing 4. As this contradicts Crisp’s
Theorem Ge DZ=2Z .

If V is not metacyclic then it has a central involution, g say, and W ŠD2m �Z=dZ,
for some relatively prime odd m� 3 and d � 1. Therefore if C �Ge has odd prime
order NW .C / D W . Hence NV .C / � Ge and so the central involution is in Ge .
Moreover, CW .g/DGe and so Ge Š Z=2dZ. Since the odd-order subgroup of Ge

is central in W its normalizer in V must be abelian unless d D 3 or 1, by Lemma 5.1.

Since the edge groups all have even order and groups of cohomological period 4 and
order divisible by 4 have central involutions there is at most one such vertex group and
� is a tree, by Corollary 4.5.

If Z=6Z is an edge group then some subgroup � of finite index in � has a reduced
graph of groups structure with a vertex group T �

1
and an edge group Z=6Z. Factoring

out the commutator subgroups of the dihedral vertex groups gives a ring epimorphism
f W ZŒ��! ZŒ� �, where � D .D2m �Z=3Z/�Z=6Z T �

1
. (This group has the presenta-

tion hw;x; z j z2x D xzxz; x2 D z3; wzw D z; wm D 1i.) We may use f to show
that if � satisfies the Turaev criterion then so does � . We know of no such examples,
but think a new idea may be needed to apply the Turaev criterion effectively in this
case.

Since all involutions in � are conjugate we may modify the underlying graph of groups
so that � is linear: all vertices have valence � 2.

Corollary 5.3 If all the vertex groups are dihedral then � Š � 0 Ì Z=2Z and � 0 is a
free product of cyclic groups of odd order.

Theorem 5.2 and Milnor’s theorem on involutions in finite groups acting freely on
mod–2 homology spheres together imply (without using the Sphere Theorem) that
if M is a closed 3–manifold and � D �1.M / is freely indecomposable then � is
finite, Z or Z˚Z=2Z or is a PD3 –group. For otherwise � would have a finite index
subgroup � Š .�i�r Z=miZ/Ì Z=2Z, with mi odd for i � r , by Theorem 5.2. Such
a group � maps onto D2m1

with kernel � a free product of finite cyclic groups of odd
order. Thus D2m1

would act freely on the covering space M� associated to � , which
is a mod–2 homology 3–sphere. This is impossible, by Milnor’s theorem [26].
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6 Construction

The Fox–Lyndon presentation matrix for the augmentation ideal of D2m derived from
the presentation in Section 2 is�

aC 1 0

1C abs a�s � �sC1

�
;

where �k D 1C bC � � �C bk�1 . The off-diagonal element may be removed by right
multiplication by �

1 0

1C abs 1

�
;

since .1C abs/C .a�s � �sC1/.1C abs/ D 0. On multiplying the second column
by bs2

the entries become self-conjugate.

Let fGi j 0 � i � ng be a family of finite groups, with G0 having even order and
cohomological period 2 or 4, and Gi DD2mi

being dihedral, with mi D 2si C 1, for
i � 1. Each of these groups has an unique conjugacy class of involutions, and so there
is a well-defined iterated generalized free product with amalgamation

� DG0 �Z=2Z G1 �Z=2Z �Z=2Z � � � �Z=2Z Gn:

We may choose a presentation for G0 with g generators and g relators, in which
the last generator, a say, is an involution. Taking 2–generator presentations for the
dihedral groups, as above, and identifying the involutions, we obtain a presentation
for � of the form

hG0; b1; : : : ; bn j ab
s1

1
ab
�1�s1

1
D � � � D ab

sn

1
ab
�1�sn

1
D 1i:

(In particular, such a group has a balanced presentation, with equally many generators
and relations.) The Fox–Lyndon presentation matrix for I� derived from this begins
with a g�g block corresponding to the presentation matrix for IG0

and n new rows
and columns. The elements in the g–th column and final n rows may be removed and
the diagonal elements rendered self-conjugate, as before, as the new generators interact
only with a. (Note that if e1; : : : ; egCn are the generators for I� associated to this
presentation then .aC 1/eg D 0 is a consequence of the first g relations.)

It is now clear that ŒI� �D ŒJ� �, and so � is the fundamental group of a PD3 –complex.
If IG0

has a square presentation matrix which is conjugate to its transpose the argument
of [21] extends to give an explicit complex with one 0–cell, gC n 1–cells, gC n

2–cells and one 3–cell realizing this group. That this complex is a PD3 –complex
follows from Theorem 3.1.

Algebraic & Geometric Topology, Volume 12 (2012)



144 Jonathan A Hillman

The first such group considered in this context was S3 �Z=2Z S3 [19; 21; 22], but the
simplest such example is perhaps S3 �Z=2Z Z=4Z, with presentation

ha; b j a4
D 1; a2ba2

D b2
i:

This group is realized by a PD3 –complex with just six cells. (In [22] we erroneously
dismissed this as a possibility.)

7 Indecomposable nonorientable PD3–complexes

Here we shall show that the only indecomposable nonorientable PD3 –complexes with
virtually free fundamental group are the two 3–manifolds S1 z�S2 and S1 �RP2 .

Theorem 7.1 Let X be an indecomposable nonorientable PD3 –complex with � D
�1.X /Š �G , where .G; �/ is a finite graph of finite groups. If all the vertex groups
are orientation preserving then X ' S1 z�S2 .

Proof Since X is nonorientable � is infinite, and is not generated by the vertex
groups. Thus � is not a tree. If there were a nontrivial vertex group it would have
finite cohomological period, and all edge groups would have (orientation preserving)
involutions. But all involutions are conjugate, so � would be a tree, by the argument
of Corollary 4.5. Thus � must be a free group. Since it is infinite and indecomposable
it must be Z. The result now follows from [30].

Lemma 7.2 Let � be a finitely presentable group and let f W ZŒ��!RDZŒZ=2Z�D
ZŒa�=.a2�1/ be the epimorphism induced by an epimorphism wW �!Z=2Z. Suppose
that R f̋ I� ŠR=.aC 1/˚T , where T is a Z–torsion module. Then the conclusion
of Addendum 3.3 does not hold.

Proof Every finitely generated Z–torsion-free R–module is a direct sum of copies
of R, ZDR=.a�1/ and ZwDR=.aC1/, and the number of summands of each type
is uniquely determined. (See [6, Theorem 74.3].) In particular, all finitely generated
projective R–modules are free, and so the numbers of summands of types Z and Zw

are invariant under stabilization.

Let P be a presentation matrix for T . Then

AD

�
aC 1 0

0 P

�
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is a presentation matrix for R f̋ I� . The stable isomorphism class ŒR f̋ J� � contains
the module presented by

xAtr
D

�
1� a 0

0 xP tr

�
:

This has Z as a direct summand, whereas R f̋ I� does not. Therefore the conclusion
of Addendum 3.3 does not hold.

Lemma 7.3 Let X be an indecomposable PD3 –complex such that � D �1.X / Š

F.r/ Ì G . If � has an orientation reversing element g of finite order then G has
order 2m, for some odd m.

Proof If an orientation-reversing element g has order 2kd with d odd then k � 1

and gd is orientation-reversing and of order 2k . Suppose that jGj is a multiple of 4.
We may assume that G is a 2–group, � is indecomposable and the graph of groups is
reduced. Then the edge groups must be generated by orientation reversing involutions
and the vertex groups must have order 4, by the normalizer condition and Crisp’s
Theorem. Since the inclusion of an edge group splits w , the vertex groups must be
V D .Z=2Z/2 . (Thus k D 1 and each vertex group has two conjugacy classes of
orientation reversing involutions.)

All vertices of the graph � must have valency at most 2, for otherwise there would be an
orientation reversing involution with centralizer containing .Z=2Z/�.Z=2Z/�.Z=2Z/.
Thus either � is a tree or ˇ1.�/D 1.

Let wDw1.X / and let f W ZŒ��!RDZŒZ=2Z�DZŒa�=.a2�1/ be the epimorphism
induced by w . Then f induces an epimorphism from I� to IZ=2Z D R=.aC 1/,
which factors through an epimorphism hW R f̋ I�!R=.aC 1/. The inclusion of an
edge group splits h, and so R f̋ I� ŠR=.aC 1/˚N , where N D Ker.h/.

If � is a tree then � has a presentation

ha1; : : : ; an; b1; : : : ; bn j a
2
i D b2

i D aibia
�1
i b�1

i D 1 8 i � n;

ai D aiC1biC1 8 2� i � ni;

where w.ai/D�1 and w.bi/D1 for all i �n. (The amalgamations must be essentially
as in the final set of relations since the edge groups are generated by orientation
reversing involutions and each of the edge group centralizers has two ends.) In this
case consideration of the Fox–Lyndon presentation matrix for R f̋ I� shows that
Q˝Z N D 0. Thus N is a Z–torsion module, and so the conclusion of Addendum 3.3
does not hold, by Lemma 7.2. Therefore � cannot be a tree.
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If ˇ1.�/D 1 then � has a presentation

ha1; b1; : : : ; an; bn; t j a
2
i D b2

i D aibia
�1
i b�1

i D 1 8 i � n;

ai D aiC1biC1 8 2� i � n; tan D a1b1ti;

where w.ai/D�1 and w.bi/D 1 for all i � n. After replacing t by tan , if necessary,
we may assume that w.t/D 1. In this case N D Ker.h/ is not a Z–torsion module.
Instead we find that

R f̋ I� ŠR=.aC 1/˚ .R=.2; a� 1//n�1
˚M ;

where M is an indecomposable R–module with underlying abelian group Z˚Z=2Z
and R–action determined by a:.m; Œn�/D .m; ŒmC n�/ for all .m; Œn�/ 2 Z˚Z=2Z.
In particular, the augmentation module Z is not a summand of R f̋ I� . On the other
hand, R f̋ J� does have Z as a summand. Therefore the conclusion of Addendum 3.3
does not hold.

Thus jGj cannot be divisible by 4, and so jGj D 2m for some odd m.

In particular, if w.Gv/ 6D 1 then Gv Š Z=mZ Ì Z=2Z for some odd m.

Theorem 7.4 Let X be an indecomposable nonorientable PD3 –complex such that
� D �1.X / has an orientation reversing involution. Then X ' S1 �RP2 .

Proof Since � is indecomposable and has nontrivial torsion � D �G , where .G; �/
is a reduced finite graph of finite groups. At least one vertex group has an orien-
tation reversing element, by Theorem 7.1. If there is an edge e such that Go.e/ is
orientable and Gt.e/ is nonorientable then Ge must be cyclic of odd order, since
Gt.e/ ŠZ=mZ Ì Z=2Z with m odd, by Lemma 7.3. But then it is properly contained
in each of its normalizers, contradicting Crisp’s Theorem. Thus we may assume that all
vertex groups are orientation reversing. Hence they are all such semidirect products, and
the edge groups are Z=2Z. In particular, each vertex group has an unique conjugacy
class of involutions.

Suppose that there is a vertex group of order 2m > 2. On passing to a subgroup of
finite index, if necessary, we may assume that � Š F.r/Ì G , where G has order 2p ,
for some odd prime p . Then the vertex groups must all be isomorphic to G , and
G Š Z=2p or D2p .

Let T be a maximal tree in � . Then T omits at most one edge of � , since the
centralizer of an involution is finite or has two ends.

Suppose first that � is a tree. Let f W ZŒ��!RD ZŒa�=.a2� 1/ be the epimorphism
induced by w . Then R f̋ I� ŠR=.aC 1/˚M , where M is a Z–torsion module.
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Therefore the conclusion of Addendum 3.3 does not hold, by Lemma 7.2, and so �
cannot be a tree.

If ˇ1.�/D 1 then � has a presentation

ha; b1; : : : ; bn; t j b
p
i D aibia

�1
i b�"i D a2

D 1 8 i � n; taD ati;

where " D 1 if G is cyclic and " D �1 if G is dihedral. Moreover, w.a/ D �1,
w.bi/D 1 for all i � n and w.t/D 1. Hence

R f̋ I� ŠR=.aC 1/˚R=.a� 1/˚ .R=.p; a� "//n;

and so the Z–torsion of R f̋ I� is .Z=pZ/n , with a acting as multiplication by ".
On the other hand,

R f̋ J� ŠR=.a� 1/˚R=.aC 1/˚N n;

where N ŠR2=R.p;�a�"/ is generated by two elements n; n0 , with pnD .aC"/n0 .
Let � D .a � "/n. Then � 6D 0, but p� D .a � "/.aC "/n0 D 0 and .aC "/� D

.aC "/.a� "/nD 0. Thus a acts as multiplication by �" on this nontrivial p–torsion
element of N . Since �" 6� " mod p it follows that the conclusion of Addendum 3.3
does not hold.

Since � must be infinite, the only remaining possibility is that the graph has one vertex
v and one edge e , with Ge DGv D Z=2Z. Thus � Š Z˚Z=2ZD �1.S

1 �RP2/,
and so X ' S1 �RP2 , by [30].

The following corollary strengthens part of Crisp’s Theorem.

Corollary 7.5 Let X be a PD3 –complex and g 2 � D �1.X / a nontrivial element
of finite order. If C�.g/ is infinite then g is an orientation-reversing involution and
C�.g/D hgi �Z.

8 Homotopy types

Let W be a PD3 –complex with fundamental group � , orientation character w and
fundamental class ŒW � 2 H3.W IZ

w/. If cW W W ! K.�; 1/ is a classifying map
let �.W / D cW �ŒW � 2 H3.� IZ

w/. Two such PD3 –complexes W1 and W2 are
homotopy equivalent if and only if �.W1/ and �.W2/ agree up to sign and the
action of Out.�/ [18]. If � is virtually free then H3.W IZ

w/ is finite. Since every
indecomposable PD3 –complex is either aspherical or has virtually free fundamental
group it follows that there are only finitely many homotopy types with any given group.
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Note also that if � is indecomposable and virtually free then Out.�/ is finite [4], and
so the group of self-homotopy equivalences of W is finite [17].

Suppose that � D G0 �Z=2Z � , where G0 has cohomological period dividing 4 and
a central involution and � is an iterated free product of dihedral groups Gi DD2mi

with amalgamation over copies of Z=2Z, where mi D 2si C 1, for i � n. Then
�0 Š �n

iD1
Z=miZ. Let m0 D jG0j. (We allow the possibility G0 D Z=2Z.) By the

work of Section 7 above, we may assume that W is orientable. Since �Š �0 Ì Z=2Z
we have

H3.�IZ/ŠH3.Z=2ZIZ/˚H3.�
0
IZ/:

A Mayer–Vietoris argument then gives

H3.� IZ/ŠH3.G0IZ/˚H3.�
0
IZ/D

Ln
iD0.Z=miZ/:

Let f W �!G0 be the epimorphism with kernel normally generated by �0 , and let W�

be the covering space corresponding to � D f �1.S/, where S < G0 is a Sylow p–
subgroup of G0 . If p is odd W� is a connected sum of lens spaces, by [29, Theorem 1].
Since �.W� / is the image of �.W / under transfer, it follows that �.W / must project
to a generator of each of the odd cyclic summands of H3.� IZ/. If p D 2 we may
argue instead that the square Sq1W H 1.W� IF2/! H 2.W� IF2/ is nonzero. Hence
the generator of H 3.W� IF2/ is a product of elements in the image of H 1.� IF2/, by
Poincaré duality. It follows that the image of �.W / in the 2–primary summand must
generate also.

For each 1� i�n and u2Z=miZ� there is an automorphism which sends bi to bu
i , for

bi 2G0i , and which fixes the other vertex groups. If Gi ŠGj there is an automorphism
interchanging Gi and Gj . As every automorphism of G0 fixes the central involution
it extends to an automorphism of � which fixes � . These automorphisms act naturally
on H3.� IZ/.

In particular, if G0 D Z=2Z, so � Š � 0 Ì Z=2Z, the double cover W 0 is a connected
sum of lens spaces. Taking into account the actions of these automorphisms and the
homotopy classification of lens spaces, we see that W1 'W2 if and only if W 0

1
'W 0

2
.

Turaev constructed an isomorphism � from H3.� IZ
w/ to a group ŒF2.C /; I� � of pro-

jective homotopy classes of module homomorphisms and showed that � 2H3.� IZ
w/

is the image of the fundamental class of a PD3 –complex if and only if �.�/ is the
class of a homotopy equivalence [29]. Since there is at least one homotopy equivalence
the ring End�.ŒI� �/ is isomorphic as an abelian group to

Ln
iD0.Z=miZ/. Do the

.nC 1/–tuples of the form .u0; : : : ;un/ with .ui ;mi/D 1 for 0� i � n correspond
to the units Aut�.ŒI� �/? (This is so when the mi are all relatively prime, for then
End�.ŒI� �/Š Z=

Q
miZ, and so must act in the obvious way on H3.� IZ/.)
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We may also ask whether such PD3 –complexes can arise in some natural manifold
context. For instance, is W �S1 homotopy equivalent to a closed 4–manifold? (Since
the group of self-homotopy equivalences of such a complex is finite it is equivalent to
ask whether there is a closed 4–manifold M with �.M /D 0 and �1.M /Š � Ì Z,
by [20, Theorem 4.7].) The case when � D D2m may be ruled out by a surgery
semicharacteristic argument [15].

9 Is every PD3–complex virtually a 3–manifold?

It is well known that every PD2 –complex is homotopy equivalent to a closed surface.
The argument of Eckmann and Müller [11] for the cases with ˇ1 6D 0 involves delicate
combinatorial group theory. (The hypothesis ˇ1 6D 0 is removed in [10].) More recently,
Bowditch used geometric group theory to obtain the stronger result that an FP2 group �
with H 2.�IZŒ��/Š Z acts properly discontinuously on E2 or H2 [1].

Higher dimensional considerations suggest another, more topological strategy, which
can be justified a posteriori. The bordism Hurewicz homomorphism from �n.X /

to Hn.X IZ/ is an epimorphism in degrees n � 4. Therefore if X is an orientable
PDn –complex with n� 4 there is a degree–1 map f W M !X with domain a closed
orientable n–manifold. (See Hausmann and Vogel [16] for the corresponding result for
nonorientable PDn –complexes, using w1 –twisted bordism and homology.) Choose
compatible basepoints mo and xo D f .mo/, and let � D �1.X;xo/ and f� D �1.f /.
If X is a finite PD2 –complex then such a map f is a homotopy equivalence if and
only if Ker.f�/ D 1 if and only if �.M / D �.X /. If Ker.f�/ contains the class
of a nonseparating simple closed curve 
 we may reduce �.M / by surgery on 
 .
Combining the results of [10; 11; 12] we see that there is always such a curve 
 . Can
this be shown directly, without appeal to [10; 11]?

We would like to study PD3 –complexes in a similar manner. Let X be a PD3 –complex
and f W M ! X a degree–1 map, where M is a closed 3–manifold. Then f is a
homotopy equivalence if and only if Ker.f�/ D 1. Since �1.M / and �1.X / are
finitely presentable, this kernel is normally generated by finitely many elements of
�1.M /, which may be represented by the components of a link L�M . We would
like to modify M using such a link to render the kernel trivial. This is possible if X

is homotopy equivalent to a closed orientable 3–manifold N , for M may then be
obtained from N by Dehn surgery on a link whose components are null homotopic
in N by Gadgil [13]. Gadgil’s argument appears to use the topology of the target space
in an essential way.

The PD3 –complexes constructed in Section 6 are not homotopy equivalent to 3–
manifolds, so this strategy cannot be carried through in all cases. However, it remains
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possible that every PD3 –complex is virtually a 3–manifold, ie, has a finite covering
space which is homotopy equivalent to a closed orientable 3–manifold. If this is true it
must be possible to kill Ker.f�/ by surgery and passing to finite covering spaces.

Easy reductions show that we may assume that X is aspherical, and then that the
irreducible components of M are aspherical. There is then no need to pass to finite
covers, for if an aspherical PD3 –complex X is virtually a 3–manifold then X is
homotopy equivalent to a 3–manifold, by the Geometrization Theorem of Thurston
and Perelman, and the work of Zimmermann [31].

Let LD
F

i�m Li be a link in a 3–manifold M with an open regular neighbourhood
n.L/D

F
i�m n.Li/. We shall say that L admits a drastic surgery if there is a family

of slopes 
i � @n.Li/ such that the normal closure of fŒ
1�; : : : ; Œ
n�g in �1.M �n.L//

meets the image of each peripheral subgroup �1.@n.Li// in a subgroup of finite index.
If f W M !N is a degree–1 map of closed 3–manifolds Ker.f�/ is represented by a
link which admits a drastic surgery by Gadgil [13] (whose result is somewhat stronger).

Lemma 9.1 If X is an aspherical PD3 –complex and L admits a drastic surgery then
X is homotopy equivalent to a 3–manifold.

Proof After a drastic surgery on L we may assume that Ker.f�/ is normally generated
by finitely many elements of finite order. Let M D #iDk

iD1
Mi be a factorization of M

as a connected sum of irreducible 3–manifolds, with Mi aspherical if i � r and
�1.Mi/ finite, Z or Z˚ Z=2Z if i > r . Since X is aspherical f extends to a
map F W

WiDk
iD1 Mi ! X . If �1.Mi/ is finite then F jMi

is null-homotopic, while
if �1.Mi/ Š Z or Z˚ Z=2Z then F jMi

factors through S1 . In either case the
restriction to such terms has degree 0. Hence F induces a degree–1 map from
gW N D #iDr

iD1
Mi ! X . This map is clearly �1 –injective, and so it is a homotopy

equivalence.

There are knots which admit no drastic surgery. The following example was suggested
by Cameron Gordon. Let M be an orientable 3–manifold which is Seifert fibred
over S2.p; q; r/, where 1

p
C

1
q
C

1
r
� 1, and let K � M be a regular fibre. Let

�;� � @n.K/ be a regular fibre and a meridian, respectively. Then surgery on the
slope s�C t� gives a 3–manifold which is Seifert fibred over S2.p; q; r; s/, if s 6D 0,
or is a connected sum of lens spaces, if s D 0. If s 6D 0 the image of � has infinite
order in �1.N /; otherwise the image of � has infinite order there. Thus no surgery on
a regular fibre of M is drastic. (We may modify this example to obtain one with M

not Seifert fibred, by replacing a tubular neighbourhood of another regular fibre by the
exterior of a hyperbolic knot.)
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However we have considerable latitude in our choice of link L representing Ker.f�/.
In particular, we may modify L by a link homotopy, and so the key question may be:

Is every knot K �M homotopic to one admitting a drastic surgery?

The existence of PD3 –complexes which are not homotopy equivalent to 3–manifolds
shows that we cannot expect a stronger result, in which “contains: : : �1.@n.Li//”
replaces “meets the image: : : finite index” in the definition of drastic surgery.

In general, we might expect to encounter obstructions in L3.�;w/ to obtaining a
ZŒ��–homology equivalence by integral surgery. For instance, there are finite groups
of cohomological period 4 with finite Swan complexes but which do not act freely
on homology 3–spheres [15]. The validity of the Novikov conjecture for aspherical
3–manifolds suggests that such obstructions may never arise in the cases of most
interest to us. (See [24; 25].) In any case, we allow more general Dehn surgeries.

The argument for the existence of a degree–1 map f W M ! X does not require
us to assume a priori that X be finite, nor even that �1.X / be finitely presentable.
The latter condition is needed to ensure that Ker.f�/ is represented by a link in M .
In all dimensions n � 4 there are PDn –groups of type FF which are not finitely
presentable [8]. This leaves the question: are PD3 –groups finitely presentable? Our
strategy does not address this issue.
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