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On volumes of hyperbolic orbifolds

ILESANMI ADEBOYE

GUOFANG WEI

We use H C Wang’s bound on the radius of a ball embedded in the fundamental
domain of a lattice of a semisimple Lie group to construct an explicit lower bound for
the volume of a hyperbolic n–orbifold.

57M50, 57N16; 20H10, 22E40

0 Introduction

Let Hn denote hyperbolic n–space, the unique simply connected n–dimensional
Riemannian manifold of constant sectional curvature �1. A hyperbolic n–orbifold Q

is a quotient Hn=� , where � represents a discrete group of orientation-preserving
isometries. A hyperbolic n–orbifold is a manifold when � contain no elements of
finite order. Martin [17] constructed a lower bound for rn , the largest number such that
every hyperbolic n–manifold contains a round ball of that radius; see also Friedland
and Hersonsky [8]. From this one can compute, in each dimension, an explicit lower
bound for the volume of a hyperbolic n–manifold.

The purpose of this paper is to give an explicit lower bound for the volume of a
hyperbolic n–orbifold, again depending only on dimension. The result of this article is
more general than what was achieved in the prequel [1]. Our work also significantly
improves upon the volume bounds of [1; 17], even though we consider a larger category
of orbit spaces.

We define a Riemannian submersion � W SOo.n; 1/=�!Hn=� , where the connected
component SOo.n; 1/ of the identity in the Lie group O.n; 1/ is isomorphic to the full
group of orientation-preserving isometries of Hn . The study of the volume of a hyper-
bolic orbifold is thereby reduced to the study of the covolume of a lattice in a Lie group.

Wang [23] showed that the covolume of a lattice in a semisimple Lie group that contains
no compact factor can be bounded below by the volume of ball with a radius that depends
only on the group itself. We estimate the sectional curvature of SOo.n; 1/ and apply
a comparison theorem due to Gunther (see eg Gallot, Hulin and Lafontaine [10]), to
produce a lower bound for VolŒSOo.n; 1/=��. The following theorem gives our main
result.
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Theorem 0.1 The volume of a hyperbolic n–orbifold is bounded below by B.n/, an
explicit constant depending only on dimension, given by

B.n/D
2.6�n/=4�n=4.n� 2/!.n� 4/! � � � 1

.2C 9n/.n
2Cn/=4�..n2C n/=4/

Z minŒ0:08
p

2C9n;��

0

sin.n
2Cn�2/=2 � d�:

Remark 0.2 The equation of Theorem 0.1 can be refined for nD 2; 3 to give a slightly
better estimate. We describe these cases at the end of Section 4.

The next section describes a canonical metric for SOo.n; 1/. Section 1 outlines Wang’s
crucial result. In the third section, we derive the curvature formulas for a canonical
metric of a semisimple Lie group. These formulas are then used to construct an upper
bound for the sectional curvatures of SOo.n; 1/.

We prove Theorem 0.1 in Section 4. From this formula, we get a lower bound of
2:46� 10�7 for hyperbolic 3–orbifolds, 2:93� 10�13 for 4–orbifolds and 2� 10�20

for 5–orbifolds.

For comparison, Section 5 lists several results on hyperbolic volume. Sharp volume
bounds for hyperbolic orbifolds are known for dimensions 2 and 3. The hyperbolic
2–orbifold of minimum volume was identified by Siegel [21] in a theorem closely
related to a result on birational transformations of an algebraic curve due to Hurwitz [15].
The analogous result for dimension 3 was proved by Gehring and Martin [11]. A
hyperbolic orbifold is: a manifold when � does not contain elliptic elements; cusped
when � does contain parabolic elements; arithmetic when � can be derived by a specific
number-theoretic construction (see eg Belolipetsky [2]). What has been established for
higher dimensions relate to these categories and their various intersections.

Intimately linked with hyperbolic volume is the size of symmetry groups of hyperbolic
manifolds. Specifically, any bound in one category immediately produces a bound
in the other. The quotient of a hyperbolic manifold M by its group of orientation-
preserving isometries is an orientable hyperbolic orbifold (as long as �1.M / is not
virtually abelian, in which case VolŒM � is infinite). The following corollary is a direct
analogue of Hurwitz’s formula for groups acting on surfaces.

Corollary 0.3 Let M be an orientable hyperbolic n–manifold. Let H be a group of
orientation-preserving isometries of M . Then

jH j �
VolŒM �

B.n/
:

The Mostow–Prasad rigidity theorem [19; 20] implies that the group of isometries of a
finite volume hyperbolic n–manifold can be identified with Out.�1.M //. Hence, we
have the following “topological” version of Corollary 0.3.
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On volumes of hyperbolic orbifolds 217

Corollary 0.4 Let M be a finite volume orientable hyperbolic n–manifold. Let H

be a subgroup of Out.�1.M //. Then

jH j �
2 VolŒM �

B.n/
:

1 The canonical metric of SOo.n; 1/

Let G be a Lie group and g its Lie algebra. For X 2 g, the adjoint action of X is the
g–endomorphism defined by the Lie bracket

ad X.Y / WD ŒX;Y �:

The Killing form on g is a symmetric bilinear form given by

B.X;Y / WD trace.ad X ı ad Y /:

We note here that for all X 2 g, ad X is skew symmetric with respect to B , ie,

(1-1) B.ŒX;Y �;Z/D�B.Y; ŒX;Z�/:

A Lie group G is called semisimple if the Killing form associated to its Lie algebra is
nondegenerate. In this case, there exists a Cartan decomposition gD k˚ p such that
B j k is negative definite and B j p is positive definite, with bracket laws

(1-2) Œk; k�� k; Œk; p�� p; Œp; p�� k:

A positive definite inner product on g is defined by putting

hX;Y i WD

8<:
B.X;Y / for X;Y 2 p;

�B.X;Y / for X;Y 2 k;

0 otherwise:

Let e denote the identity element of G . We identify g with TeG , the tangent space
of G at the identity, and extend hX;Y i to a left invariant Riemannian metric over G

by left translation. This metric will be referred to as a canonical metric for G . When
the choice of Cartan decomposition is clear, we denote the associated canonical metric
by g and the induced distance function on G by � .

Let K denote the maximal compact subgroup of G with Lie algebra k. Important in
what follows is that the restriction of hX;Y i to p' TeK G=K induces a Riemannian
metric on the quotient space, as well. In Definition 1.5, the canonical metric on a
specific Lie group G is scaled in order to secure desired curvature properties for G=K .
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218 Ilesanmi Adeboye and Guofang Wei

Denote by GL.n;R/ the group of real nonsingular .n�n–matrices. The Lorentz group
O.n; 1/ is defined by

O.n; 1/ WD fA 2 GL.nC 1;R/ W JAT J DA�1
g; where J D

0B@ 1
1

:::
1
�1

1CA :
The Lorentz group is a matrix Lie group; it is a differentiable manifold where matrix
multiplication is compatible with the smooth structure. The positive special Lorentz
group SOo.n; 1/ is the identity component of O.n; 1/. It consists of the elements of
O.n; 1/ that have determinant 1 and a positive .nC 1; nC 1/ coordinate.

The Lie algebra of any matrix Lie group G is the set of matrices X such that etX 2G ,
for all real numbers t . Denote by so.n; 1/ the Lie algebra of SOo.n; 1/. Then

X 2 so.n; 1/ ) etX
2 SOo.n; 1/

) J.etX /T J D .etX /�1

) JetX T

J D e�tX

) etJX T J
D e�tX

) JX T J D�X:

Let X D .aij / be an .nC1/�.nC1/–matrix. If JX T J D�X , then X has the form0BBBBB@
0 a12 a13 : : : a1;nC1

�a12 0 a23 : : : a2;nC1

�a13 �a23 0
:::

: : :

a1;nC1 a2;nC1 0

1CCCCCA :
For each n, let eij represent the .nC1/�.nC1/–matrix with 1 in the ij –position and
0 everywhere else. Let ˛ij D .eij � eji/ and �ij D .eij C eji/:

Definition 1.1 The standard basis for so.n; 1/, denoted by B, consists of the fol-
lowing set of n.nC 1/=2 matrices:

˛12 ˛13 ˛14 : : : ˛1n �1;nC1

˛23 ˛24 : : : ˛2n �2;nC1

˛34 : : : ˛3n �3;nC1

: : :

˛n�1;n �n�1;nC1

�n;nC1
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The Lie bracket of a matrix Lie algebra is determined by matrix operations:

ŒX;Y � WDXY �YX:

The following proposition describes the Lie bracket of so.n; 1/.

Proposition 1.2 For 1� i < j � n; 1� k < l � n,

Œ˛ij ; ˛kl �D ıjk˛il C ıjl˛ki C ıil j̨k C ıki˛lj(1-3)

D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

˛il if j D k;

˛ki if j D l;

j̨k if i D l;

˛lj if i D k;

0 otherwise;

Œ˛ij ; �k;nC1�D ıkj�i;nC1� ıik�j ;nC1(1-4)

D

8̂<̂
:
�i;nC1 if k D j ;

��j ;nC1 if i D k;

0 otherwise;

Œ�i;nC1; �j ;nC1�D ˛ij :(1-5)

Proof The proof of the first equation is given here. The proofs of the remaining
identities are similar.

By the definition of ˛ij and the fact that eij ekl D ıjkeil ,

Œ˛ij ; ˛kl �D Œeij � eji ; ekl � elk �

D .eij � eji/.ekl � elk/� .ekl � elk/.eij � eji/

D eij ekl � eij elk � ejiekl C ejielk � ekleij C ekleji C elkeij � elkeji

D ıjk.eil � eli/C ıjl.eki � eik/C ıil.ejk � ekj /C ıki.elj � ejl/

D ıjk˛il C ıjl˛ki C ıil j̨k C ıki˛lj :

Proposition 1.2 illustrates a Cartan decomposition so.n; 1/D k˚ p, where

(1-6) kD spanf˛ij ; 1� i < j � ng and pD spanf�i;nC1; 1� i � ng:

We note here that kD so.n/, the Lie algebra of the Lie group SO.n/. In turn, SO.n/
is a maximal compact subgroup of SOo.n; 1/.
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220 Ilesanmi Adeboye and Guofang Wei

In this article, the canonical metric for SOo.n; 1/ refers to the canonical metric induced
by the Cartan decomposition of (1-6). It is denoted by g . The following lemma and
corollary give a description of the metric g .

Lemma 1.3 Let X;Y 2B. Then

hX;Y i D

�
2n� 2 if X D Y;

0 otherwise.

Proof The proof follows from a close study of Proposition 1.2.

The set B is closed under the Lie bracket (modulo sign). Therefore, for any X 2B

the entries of ad X are all 0; 1 or �1 and each column has at most one nonzero entry.
Since bracket multiplication is determined by index, each row also has at most one
nonzero entry. Furthermore, two standard basis elements have a nonzero Lie bracket
if and only if they share exactly one index number. So if X has index ij , ad X has
exactly

.nC 1� i/C .j � 1/C .nC 1� j /C .i � 1/� 1� 1D 2n� 2

nonzero entries.

Now assume X D ˛ij . For all Y 2B; ŒX;Y �DZ) ŒX;Z�D�Y: This implies that
the hg entry of ad X is the negative of the gh entry.

By definition,

h˛ij ; ˛ij i D �B.˛ij ; ˛ij /

D� trace.ad˛ij ı ad˛ij /:

The h–th diagonal entry of ad˛ij ı ad˛ij is the dot product of the h–th row of ad˛ij

with the h–th column of ad˛ij . If the only nonzero entry in the h–th row of ad˛ij

is a 1 (resp. �1) in the hg–position then the only nonzero entry in the h–th column
of ad˛ij is a �1 (resp. 1) in the gh–position. Hence, the h–th diagonal entry of
ad˛ij ı ad˛ij is �1. Thus,

h˛ij ; ˛ij i D �.�1C�1C � � �C�1„ ƒ‚ …
2n�2 times

/D 2n� 2:

Similarly, h�ij ; �ij i D 2n� 2.

Let X;Y 2B, with X ¤˙Y . If ad X has a nonzero entry in the hg–position then
the bracket of X with the h–th basis element is sent to the g–th basis element. That
is, there exists V;W 2B such that

ŒX;V �D˙W:
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If, in addition, ad Y has a nonzero entry in the gh–position, we may write

ŒY;W �D˙V:

Again, note that the Lie bracket of basis elements is determined by index. This forces

X D˙Y

and we have a contradiction. Thus, all the diagonal entries of ad X ı ad Y are equal to
zero. Therefore hX;Y i D 0.

Corollary 1.4 The matrix representation for g , the canonical metric for SOo.n; 1/, is
the square n.nC 1/=2 diagonal matrix0BBB@

2n� 2

2n� 2
: : :

2n� 2

1CCCA :
We will be interested in the metric that induces constant sectional curvature �1 on
the quotient space SOo.n; 1/=SO.n/. To this end, we scale the metric g by the factor
1=.2n� 2/.

Definition 1.5 Let g be the canonical metric for SOo.n; 1/. The metric zg on
SOo.n; 1/ is defined by

zg WD
1

2n� 2
g:

2 Discrete subgroups of semisimple Lie groups

For any Lie group, a theorem of Zassenhaus [24] guarantees the existence of a neighbor-
hood U of the identity such that the subgroup generated by any subset of U is either
nondiscrete or nilpotent. Such a neighborhood is called a Zassenhaus neighborhood.

Kazhdan and Margulis [16] proved that if G is a semisimple Lie group without compact
factor it contains a Zassenhaus neighborhood U such that, for any discrete subgroup
� of G , there exists g 2 G with the property that g�g�1 \U D feg. This implies
that the fundamental domain for any lattice in G has a definite size.

In [23], H C Wang undertook a quantitative study of a Zassenhaus neighborhood for a
semisimple Lie group G , with respect to a canonical metric. Wang found a value RG

such that a metric ball in G centered at the identity with radius RG satisfied the
conclusion of the Kazhdan–Margulis theorem.
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Recall the definitions and notation of Section 1. Again, let G be a Lie group, g its
Lie algebra, gD k˚ p a Cartan decomposition and h � ; � i the associated inner product.
Define a norm on g by kXk WD hX;X i1=2 . For each g–endomorphism f , let

N.f / WD supfkf .X /k WX 2 g; kXk D 1g:

Furthermore, let

C1 WD supfN.ad X / WX 2 p; kXk D 1g

C2 WD supfN.ad X / WX 2 k; kXk D 1g:and

The number RG is defined to be the least positive zero of the real-valued function

(2-1) F.t/D exp C1t � 1C 2 sin C2t �
C1t

exp C1t � 1
:

The following theorem [23, Theorem 3.2] demonstrates the role of the value RG in
the construction of a Zassenhaus neighborhood for a semisimple Lie group.

Theorem 2.1 (Wang) Let G be a semisimple Lie group. Let e 2 G denote the
identity. Then for any discrete subgroup � of G, the set

‚D fg 2 � W �.e;g/�RGg

generates a nilpotent group.

Now, let g� be the totality of elements X in g such that the imaginary parts of all the
eigenvalues of ad X lie in the open interval .��; �/ and let G� D fexp X WX 2 g�g.
In an earlier work [22], Wang had proved that the restriction of the exponential map to
g� is injective. Hence, the following proposition [23, Proposition 5.1] establishes the
fact that RG is less than the injectivity radius of G .

Proposition 2.2 (Wang) Let G be a semisimple Lie group. Then the closed ball

BG D fx 2G W �.e;x/�RGg

is contained in G� .

We now give Wang’s quantitative version [23, Theorem 5.2] of the theorem of Kazhdan–
Margulis. It shows that the volume of the fundamental domain of � is larger than the
volume of a �–ball with radius RG=2.

Theorem 2.3 (Wang) Let G be a semisimple Lie group without compact factor and
BG D fx 2 G W �.e;x/ � RGg. Then for any discrete subgroup � of G, there exists
g 2G such that BG \g�g�1 D feg.
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The appendix to [23] includes a table of the constants C1 and C2 for noncompact and
nonexceptional Lie groups. For SOo.n; 1/, n� 4, with respect to the scaled canonical
metric zg (Definition 1.5), we have

(2-2) C1 D 1 and C2 D
p

2:

Therefore, by (2-1) and (2-2),

(2-3) RG D 228=1000 when G D SOo.n; 1/; n� 4:

When nD 2; 3,

(2-4) C1 D C2 D 1:

This gives

(2-5) RG D 277=1000 when G D SOo.n; 1/; nD 2; 3:

3 The sectional curvatures of SOo.n; 1/

In this section, we construct an upper bound on the sectional curvatures of SOo.n; 1/.
As a first step, we derive the curvature formulas for a canonical metric of a semisimple
Lie group. These formulas are of independent interest as we could not find them in the
literature.

A connection r on the tangent bundle of a manifold can be expressed in terms of a left
invariant metric by the Koszul formula. For any left invariant vector fields X;Y;Z;W ,
we have

(3-1) hrX Y;Zi D
1

2
fhŒX;Y �;Zi � hY; ŒX;Z�i � hX; ŒY;Z�ig :

The curvature tensor of a connection r is defined by

(3-2) R.U;V /X DrUrV X �rVrU X �rŒU;V �X:

When a Lie group G is semisimple and compact, the canonical metric is the negative of
the Killing form and induces a bi-invariant metric on G . The connection and curvature
can be described in terms of the Lie bracket in a simple way (see eg [5, Corollary 3.19]).

rX Y D
1

2
ŒX;Y �;(3-3)

hR.X;Y /Y;X i D
1

4
kŒX;Y �k2:(3-4)
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When G is semisimple and noncompact, a canonical metric is bi-invariant only when
restricted to K , the maximal compact subgroup of G with Lie algebra k. The connection
and curvature formulas for this case are given below.

We will treat vector fields from k and p separately. From here on, U;V;W;W 0 2 k

and X;Y;Z;Z0 2 p denote left invariant vector fields.

Lemma 3.1 With respect to the canonical metric the subgroup K is totally geodesic
in G .

Proof Since the canonical metric restricted to K is bi-invariant

hrU U;V i D 0:

By (1-2) and (3-1),
hrU U;X i D �hU; ŒU;X �i D 0:

Lemma 3.2 The connections for the metric are given by

rU V D
1

2
ŒU;V �;(3-5)

rX Y D
1

2
ŒX;Y �;(3-6)

rU X D
3

2
ŒU;X �; rX U D�

1

2
ŒX;U �:(3-7)

Proof The first equation follows from Lemma 3.1. We will derive the last two
equations, the proof of the second equation is similar.

Again by (1-2) and (3-1),

hrU X;V i D
1

2
hŒU;X �;V i �

1

2
hX; ŒU;V �i �

1

2
hU; ŒX;V �i D 0;�

3

2
ŒU;X �;V

�
D 0:

Thus,

(3-8) hrU X;V i D

�
3

2
ŒU;X �;V

�
for all V 2 k:

Similarly, by (1-1) and (3-1),

hrU X;Y i D
1

2
hŒU;X �;Y i �

1

2
hX; ŒU;Y �i �

1

2
hU; ŒX;Y �i;

hX; ŒU;Y �i D �hŒU;X �;Y i;

hU; ŒX;Y �i D �B.U; ŒX;Y �/D B.ŒX;U �;Y /D hŒX;U �;Y i:
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Hence,

hrU X;Y i D
1

2
hŒU;X �;Y iC

1

2
hŒU;X �;Y iC

1

2
hŒU;X �;Y i(3-9)

D

�
3

2
ŒU;X �;Y

�
for all Y 2 p:

From (3-8) and (3-9), we have

Finally,

rU X D
3

2
ŒU;X �:

rX U DrU X C ŒX;U �D�
1

2
ŒX;U �:

Proposition 3.3 The corresponding curvature formulas are

R.U;V /W D
1

4
ŒŒV;U �;W �;(3-10)

R.X;Y /Z D�
7

4
ŒŒX;Y �;Z�;(3-11)

R.U;X /Y D
1

4
ŒŒX;U �;Y ��

1

2
ŒŒY;U �;X �;(3-12)

R.X;Y /V D
3

4
ŒX; ŒV;Y ��C

3

4
ŒY; ŒX;V ��:(3-13)

In particular,

hR.U;V /W;X i D 0;(3-14)

hR.X;Y /Z;U i D 0;(3-15)

hR.U;V /V;U i D
1

4
kŒU;V �k2;(3-16)

hR.X;Y /Y;X i D �
7

4
kŒX;Y �k2;(3-17)

hR.U;X /X;U i D
1

4
kŒU;X �k2:(3-18)

Proof We prove (3-11). The proofs of the remaining equations are similar.

By (1-2), (3-2) and Lemma 3.2,

R.X;Y /Z D
1

2
.rX ŒY;Z��rY ŒX;Z�� 3ŒŒX;Y �;Z�/

D
1

2

�
�

1

2
ŒX; ŒY;Z��C

1

2
hŒY; ŒX;Z��� 3ŒŒX;Y �;Z�

�
:
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Therefore, by the Jacobi identity,

ŒX; ŒY;Z��C ŒY; ŒZ;X ��C ŒZ; ŒX;Y ��D 0 for all X;Y;Z 2 g;

R.X;Y /Z D
1

2

�
1

2
ŒZ; ŒX;Y ��� 3ŒŒX;Y �;Z�

�
D�

7

4
ŒŒX;Y �;Z�:

For a Lie group G , with Lie algebra g and X;Y 2 g, the sectional curvature of the
planes spanned by X and Y is denoted and defined by

K.X;Y /D
hR.X;Y /Y;X i

kXk2kY k2� hX;Y i2
:

In the next two propositions, we develop our bound for the sectional curvatures of
SOo.n; 1/. Recall the notation established in Section 1.

Proposition 3.4 The sectional curvature of SOo.n; 1/ with respect to the metric zg at
the planes spanned by standard basis elements is bounded above by 1

4
.

Proof Since ˛ij ; ˛kl are orthogonal,

K.˛ij ; ˛kl/D
hR.˛ij ; ˛kl/˛kl ; ˛ij i

k˛ijk
2k˛klk

2
:

By (3-16), Proposition 1.2 and Corollary 1.4,

(3-19) K.˛ij ; ˛kl/D
kŒ˛ij ; ˛kl �k

2

4k˛ijk
2k˛klk

2
�

1

4
:

Similarly,

(3-20) K.˛ij ; �k;nC1/D
kŒ˛ij ; �k;nC1�k

2

4k˛ijk
2k�k;nC1k

2
�

1

4
;

(3-21) K.�i;nC1; �j ;nC1/D�
7kŒ�i;nC1; �j ;nC1�k

2

4k�i;nC1k
2k�j ;nC1k

2
D
�7

4
:

Proposition 3.5 The sectional curvatures of SOo.n; 1/ with respect to �g0 are bounded
above by

1

2
C 2

1

4
C 2

6n

4
C 2

3n

4
D

2C 9n

2
:
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Remark 3.6 Using (2-4) instead of (2-2) in the proof of Proposition 3.5 gives a bound
of .3C 18n/=4 for nD 2; 3. In dimension 2, additional calculation reduces the bound
to 1=4.

Proof Again with U;V 2 k and X;Y 2 p, we have by (3-14) and (3-15),

hR.X CU;Y CV /Y CV;X CU i

D hR.X;Y /Y;X iC hR.U;V /V;U iC hR.U;Y /Y;U i

C hR.X;V /V;X iC 2hR.X;Y /V;U iC 2hR.X;V /Y;U i:

Assume that kU CXk D 1; kV CY k D 1 and hU CX;V CY i D 0. Write

U D
X
i<j

aij˛ij ; V D
X
i<j

a0ij˛ij ; X D

nX
iD1

bi�i;nC1; Y D

nX
iD1

b0i�i;nC1:

Note that X
i<j

jaij j
2;

X
i<j

ja0ij j
2;

nX
iD1

jbi j
2;

nX
iD1

jb0i j
2
� 1:(3-22)

R.U;V /V D
1

4
ŒŒV;U �;V �D�

1

4
ad V ı ad V .U /:By (3-10),

hR.U;V /V;U i �
1

4
C 2

2 D
1

2
:Hence,

Similarly, by (3-12),

R.U;Y /Y D�
1

4
ŒŒY;U �;Y �D

1

4
ad Y ı ad Y .U /;

hR.U;Y /Y;U i �
1

4
C 2

1 D
1

4
:

By (3-13),

hR.X;Y /V;U i D �
3

4
.hŒU;X �; ŒV;Y �iC hŒV;X �; ŒU;Y �i/ :

Now kŒU;Y �k2 D





�X
i<j

aij˛ij ;
X

k

b0k�k;nC1

�



2

D





X
k

�X
i

akib
0
i

�
�k;nC1





2

D

X
k

�X
i

akib
0
i

�2

� n:
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Hence, hR.X;Y /V;U i �
6

4
� n:

Similarly, by (3-12),

hR.X;V /Y;U i �
3

4
� n:

4 Volumes of hyperbolic n–orbifolds

Let .M;g/ and .N; h/ be Riemannian manifolds and qW M !N a surjective submer-
sion. For each point x 2M the tangent space TxM decomposes into the orthogonal
direct sum

TxM D .Ker dq/?x ˚ .Ker dq/x :

The map q is said to be a Riemannian submersion if

g.X;Y /D h.dqX; dqY / whenever X;Y 2 .Ker dq/?x for some x 2M:

Lemma 4.1 Let K ! M
q
!N denote a fiber bundle where q is a Riemannian

submersion and K is a compact and totally geodesic submanifold of M . Then for any
subset Z �N ,

VolŒq�1.Z/�D VolŒZ� �VolŒK�:

Proof Since K is totally geodesic, the fibers of q are isometric to each other. Thus,

dVolM D dVolN �dVolK :

So, VolŒq�1.Z/�D
R

q�1.Z/ dVolM D
R

q�1.Z/ dVolK dVolN D Vol.K/ �Vol.Z/.

Consider the quotient map

� W SOo.n; 1/! SOo.n; 1/=SO.n/:

Recalling the definitions and notation of Section 1, equip SOo.n; 1/ with the scaled
canonical metric zg . Furthermore, assign to the quotient the metric induced by the
restriction of zg to p� so.n; 1/. The map � is then a Riemannian submersion.

O’Neill’s formula (see eg [10, page 127]) relates the sectional curvature of the base
space of a Riemannian submersion, Kb , with that of the total space, Kt . Let X;Y 2 p

represent orthonormal vector fields on SOo.n; 1/=SO.n/ as well as their horizontal
lifts. O’Neill’s formula, applied to � , gives

Kb.X;Y /DKt .X;Y /C
3

4
jŒX;Y �vj2:
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Here, Zv denotes the vertical component of Z .

From (1-6) and (3-17), we then get

Kb.X;Y /D�
7

4
kŒX;Y �k2C

3

4
kŒX;Y �k2 D�kŒX;Y �k2;(4-1)

X D

nX
iD1

ai�i;nC1; Y D

nX
iD1

bi�i;nC1:where

By Proposition 1.2, Corollary 1.4 and Definition 1.5,

kŒX;Y �k2 D
X
i<j

.aibj � aj bi/
2:

Since
P

a2
i D 1;

P
b2

i D 1 and
P

aibi D 0, we have

2
X
i<j

.aibj �aj bi/
2
D

X
ij

.aibj �aj bi/
2
D

X
ij

a2
i b2

j C

X
ij

a2
j b2

i �2
X
ij

aibj aj bi D 2:

It follows that the quotient space SOo.n; 1/=SO.n/, with respect to the restriction of
the scaled canonical metric, has constant sectional curvature

Kb.X;Y /D�1:

It can therefore be identified with hyperbolic space, Hn .

For a discrete group � < SOo.n; 1/, let Q be the hyperbolic n–orbifold defined by
the quotient Hn=� . The map � induces another Riemannian submersion

� 0W SOo.n; 1/=�!Q:

The fibers of � 0 on the smooth points of Q are totally geodesic embedded copies of
SO.n/. By Lemma 4.1, we have

(4-2) VolŒSOo.n; 1/=��D VolŒQ� �VolŒSO.n/�:

Denote by V .d; k; r/ the volume of a ball of radius r in the complete simply connected
Riemannian manifold of dimension d with constant curvature k . A proof of the
following comparison theorem can be found in [10, Theorem 3.101].

Theorem 4.2 (Gunther) Let M be a complete Riemannian manifold of dimension d .
For m 2M , let Bm.r/ be a ball which does not meet the cut-locus of m.

If the sectional curvatures of M are bounded above by a constant b , then

VolŒBm.r/�� V .d; b; r/:
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Proposition 4.3 Let � be a discrete subgroup of SOo.n; 1/. Then

VolŒSOo.n; 1/=��� V .d0; k0; r0/;

where d0 D .n
2C n/=2, k0 D .2C 9n/=2 and r0 D 0:114.

Proof By Proposition 2.2, Theorem 2.3 and (2-3), the volume of a fundamental domain
of � in SOo.n; 1/ is greater than the volume of a ball of radius 0:114.

From Definition 1.1, the dimension of SOo.n; 1/ is .n2Cn/=2. By Proposition 3.5 the
sectional curvatures of SOo.n; 1/ are bounded above by .2C 9n/=2. The proposition
then follows from Theorem 4.2.

In [12, page 399], the volumes of the classical compact groups are given explicitly. For
the special orthogonal group, the volume with respect to the metric zg is given by

(4-3) VolŒSO.n/�D
2.n

2C2n�2/=4�n2=4

.n� 2/!.n� 4/! � � � 1
:

We now prove Theorem 0.1, which for convenience is restated below.

Theorem 0.1 The volume of a hyperbolic n–orbifold is bounded below by B.n/, an
explicit constant depending only on dimension, given by

B.n/D
2.6�n/=4�n=4.n� 2/!.n� 4/! � � � 1

.2C 9n/.n
2Cn/=4�..n2C n/=4/

Z minŒ0:08
p

2C9n;��

0

sin.n
2Cn�2/=2 � d�:

Proof For k > 0, the complete simply connected Riemannian manifold with constant
curvature k is the sphere of radius k�1=2 . By explicit computation we have

V .d; k; r/D
2.�=k/d=2

�.d=2/

Z minŒrk1=2;��

0

sind�1 � d�:

The proof now follows from Proposition 4.3, (4-2) and (4-3).

In light of (2-5) and Remark 3.6, we can restate Proposition 4.3 for nD 2; 3. In both
cases, we have r0 D 0:1385. The value for k0 is taken to be 0:25 when n D 2 and
14:25 when nD 3. By the proof of Theorem 0.1, our improved bounds for nD 2; 3

are
B.2/D 1� 10�3;

B.3/D 2:46� 10�7:
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5 Volume bounds

That the smallest hyperbolic 2–orbifold and 2–manifold have area, respectively, �=21

and 4� are classical results. Gehring and Martin [11] proved that the smallest hyperbolic
3–orbifold has volume 0.03905. . . . Gabai, Meyerhoff and Milley [9] showed that the
Weeks manifold, with volume 0.9427. . . , is the hyperbolic 3–manifold of minimum
volume. Equivalent results are unknown for higher dimensions.

In this section, we reference several known results on volume, in terms of the hyperbolic
metric, for several subcategories of hyperbolic n–orbifolds. For ease of comparison,
we approximate to two significant digits. The bounds achieved in this paper improve
upon the general hyperbolic manifold and orbifold bounds known to the authors [1; 8;
17]. However, they are smaller than the sharp bounds given for cusped and arithmetic
orbifolds.

5.1 Hyperbolic manifolds

Martin [17] gave an explicit lower bound for the radius of a ball that can be embedded
in every hyperbolic n–manifold. An error in that paper was later corrected by Friedland
and Hersonsky [8]. Using the corrected radius,

0:0025

17bn=2c
;

one can obtain a lower bound for the volume of a hyperbolic n–manifold. In dimension
three the bound is 1:33� 10�11 .

5.2 Cusped hyperbolic orbifolds

The smallest cusped hyperbolic 3–orbifold has volume 7:22� 10�2 [18]. The bound
is 6:85� 10�3 in dimension four [14]. Analogous results for all dimensions less than
ten can be found in [13].

5.3 Arithmetic orbifolds

It is conjectured that, for each dimension, the hyperbolic orbifold (also manifold)
of minimum volume is arithmetic. This is the case in dimensions two and three by
Chinburg and Friedman [6] and Chinburg et al [7]. The minimal volume arithmetic
n–orbifolds were identified for all dimensions greater than or equal to four in by
Belolipetsky [2; 3; 4].
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For example, the volume of the smallest compact arithmetic hyperbolic n–orbifold, for
nD 2r and r even, is given by

!c.n/D
4 � 5r2Cr=2 � .2�/r

.2r � 1/!!

rY
iD1

.2i � 1/!2

.2�/4i
�k0
.2i/:

Here, �k0
represents the Dedekind zeta function of the number field k0 DQŒ

p
5�.

The cited papers contain similar formulas for n D 2r; r odd and n D 2r � 1. The
noncompact cases are also addressed. The volume of the smallest compact arithmetic
hyperbolic 4–orbifold, which is extremal among the volumes of all known hyperbolic
4–orbifolds, is calculated to be 1:8� 10�3 .
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