Noninjectivity of the “hair” map

BERTRAND PATUREAU-MIRAND

Kricker constructed a knot invariant Z^{rat} valued in a space of Feynman diagrams with beads. When composed with the “hair” map H, it gives the Kontsevich integral of the knot. We introduce a new grading on diagrams with beads and use it to show that a nontrivial element constructed from Vogel’s zero divisor in the algebra Λ is in the kernel of H. This shows that H is not injective.

57M25, 57M27

Introduction

The Kontsevich integral Z is a universal rational finite type invariant for knots (see the Bar-Natan survey [1]). For a knot K, $Z(K)$ lives in the space of Chinese diagrams isomorphic to $\overline{\mathcal{B}}(*)$ (see Section 1.1). Rozansky [5] conjectured and Kricker [3] proved that Z can be organized into a series of “lines” called Z^{rat}. They can be represented by finite \mathbb{Q}–linear combinations of diagrams whose edges are labelled, in an appropriate way, with rational functions. Garoufalidis and Kricker [2] directly proved that the map Z^{rat} with values in a space of diagrams with beads is an isotopy invariant and that Z factors through Z^{rat}. For a knot K with trivial Alexander polynomial, $Z(K) = H \circ Z^{\text{rat}}(K)$ where H is the hair map (see Section 1.3). Rozansky, Garoufalidis and Kricker conjectured (see Ohtsuki [4, Conjecture 3.18]) that H could be injective. Theorem 4 gives a counterexample to this conjecture.

1 The hair map

1.1 Classical diagrams

Let X be a finite set. A X–diagram is an isomorphism class of finite unitrivalent graphs K with the following data:

- At each trivalent vertex x of K, we have a cyclic ordering on the three oriented edges starting from x.
- A bijection between the set of univalent vertices of K and the set X.

Published: 14 March 2012 DOI: 10.2140/agt.2012.12.415
We define $A(X)$ to be the quotient of the \mathbb{Q}–vector space generated by X–diagrams by the relations:

1. The (AS) relations for “antisymmetry”:
 \[
 \begin{array}{c}
 \begin{array}{cc}
 \includegraphics[width=0.2\textwidth]{as.pdf}
 \\
 +
 \\
 \includegraphics[width=0.2\textwidth]{as.pdf}
 \\
 \end{array}
 \end{array}
 = 0
 \]

2. The (IHX) relations for three diagrams which differ only in a neighborhood of an edge:
 \[
 \begin{array}{c}
 \begin{array}{cc}
 \includegraphics[width=0.2\textwidth]{ihx.pdf}
 \\
 =
 \\
 \includegraphics[width=0.2\textwidth]{ihx.pdf}
 \\
 \end{array}
 \end{array}
 \]

These spaces are graded. The degree of an X–diagram is given by half the total number of vertices.

Let $[n] = \{1, 2, \ldots, n\}$ and define F_n to be the subspace of $A([n])$ generated by connected diagrams with at least one trivalent vertex. The permutation group $\mathfrak{S}(X)$ acts on $A(X)$. Let $B(*)$ be the coinvariant space for this action:

\[B(*) = \bigoplus_{n \in \mathbb{N}} A([n]) \otimes \mathfrak{S}_n \mathbb{Q} \]

and let $\hat{B}(*)$ be the completion of $B(*)$ for the grading.

Finally let Λ be Vogel’s algebra generated by totally antisymmetric elements of F_3 (for the action of \mathfrak{S}_3).

We recall (see [6]) that Λ acts on the modules F_n and that for this action, F_0 and F_2 are free Λ–modules of rank one. Furthermore, the following elements are in Λ:

\[t = \begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{t.pdf}
\end{array}
\end{array} = \frac12 \begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{xt.pdf}
\end{array}
\end{array}, \quad x_n = \begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{x.pdf}
\end{array}
\end{array}_{n-2} \]

Theorem 1 (Vogel [6, Section 8 and Proposition 8.5]) The element t is a divisor of zero in Λ.

Corollary 2 There exists an element $r \in \Lambda \setminus \{0\}$ such that $t \cdot r = 0$. So one has

\[
\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{coro.pdf}
\end{array}
\end{array} \neq 0 \in F_0 \quad \text{but} \quad \begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{coro.pdf}
\end{array}
\end{array} = 0 \in F_3.
\]

Proof F_0 is a free Λ–module of rank one generated by the diagram Θ and the previous diagram of F_0 is $r \cdot \Theta \neq 0$. The diagram of F_3 of the corollary is the product

\[
\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{coro.pdf}
\end{array}
\end{array} = 2tr \in \Lambda.
\]
Remark Vogel shows that r can be chosen with degree fifteen in Λ (the degree in Λ is the degree in F_3 minus two), and in the algebra generated by the x_n. This element is killed by all the weight systems coming from Lie algebras (but r is not killed by the Lie superalgebras $\mathfrak{D}_{2,1,\alpha}$).

1.2 Diagrams with beads

Diagrams with beads were introduced by Kricker and Garoufalidis [3; 2]. A presentation of B which uses the first cohomology classes of diagrams is already present in [5]. Vogel explained me this point of view for diagrams with beads.

Let G be the multiplicative group $\{b^n, n \in \mathbb{Z}\} \cong (\mathbb{Z}, +)$ and consider its group algebra $R = \mathbb{Q}G = \mathbb{Q}[b, b^{-1}]$. Let $a \mapsto \overline{a}$ be the involution of the \mathbb{Q}–algebra R that maps b to b^{-1}.

A diagram with beads in R is an \emptyset–diagram with the following supplementary data: The beads form a map $f : E \to R$ from the set of oriented edges of K such that if $-e$ denotes the same edge than e with opposite orientation, one has $f(-e) = \overline{f(e)}$.

We will represent the beads by some arrows on the edges with label in R. The value of the bead f on e is given by the product of these labels and we will not represent the beads with value 1. So with graphical notation, we have:

$$f(b) = \overline{f(b)} \quad \text{and} \quad \overline{f(b)} \cdot g(b) = \overline{f(b)g(b)}$$

The loop degree of a diagram with beads is the first Betti number of the underlying graph.

Let $\mathcal{A}^R(\emptyset)$ be the quotient of the \mathbb{Q}–vector space generated by diagrams with beads in R by the following relations:

1. (AS)
2. The (IHX) relations should only be considered near an edge with bead 1.
3. PUSH:

$$\begin{array}{c}
\begin{array}{c}
\overline{b} \\
\downarrow \\
\overline{b}
\end{array}
\end{array}
\quad = \quad
\begin{array}{c}
\begin{array}{c}
\overline{b} \\
\downarrow \\
\overline{b}
\end{array}
\end{array}
$$

4. Multilinearity:

$$\alpha f(b) + \beta g(b) = \alpha \overline{f(b)} + \beta \overline{g(b)}$$
$\mathcal{A}^R(\emptyset)$ is graded by the loop degree:

$$\mathcal{A}^R(\emptyset) = \bigoplus_{n \in \mathbb{N}} \mathcal{A}^R_n(\emptyset)$$

We will prefer another presentation of $\mathcal{A}^R(\emptyset)$:

- Note that it is enough to consider diagrams with beads in G and the multilinear relation can be viewed as a notation.
- Next note that for a diagram with beads in G, the map f defines a 1–cochain \tilde{f} with values in $\mathbb{Z} \simeq G$ on the underlying simplicial set of K. The elements \tilde{f} are in fact 1–cocycles because of the condition $f(-e) = \overline{f(e)}$ which implies $\tilde{f}(-e) = -\tilde{f}(e)$.
- The “PUSH” relation at a vertex v implies that \tilde{f} is only given up to the coboundary of the 0–cochain with value 1 on v and 0 on the other vertices. Hence $\mathcal{A}^R(\emptyset)$ is also the \mathbb{Q}–vector space generated by the pairs $(3$–valent graph $D, x \in H^1(D, \mathbb{Z}))$ quotiented by the relations (AS) and (IHX). With these notation one can describe the (IHX) relations in the following way:

Let K_I, K_H and K_X be three graphs which appear in a (IHX) relation on an edge e. Let K_\bullet be the graph obtained by collapsing the edge e. The maps $p_i: K_I \to K_\bullet$ induce three cohomology isomorphisms. If $x \in H^1(K_\bullet, \mathbb{Z})$ then the (IHX) relation at e says that

$$(K_I, p_I^*x) = (K_H, p_H^*x) - (K_X, p_X^*x)$$

holds in $\mathcal{A}^R(\emptyset)$.

1.3 The hair map

The hair map $H: \mathcal{A}^R(\emptyset) \to \hat{\mathcal{B}}(*)$ replaces beads by legs (or hair): Just replace a bead b^n by the exponential of n times a leg.

$$b^n \mapsto \exp\left(\sum_{k=0}^{n} \frac{n^k}{k!} \right) = n + \frac{n^2}{2!} + \cdots$$

H is well defined (see [2]).
2 Grading on diagrams with beads

Note that for a 3-valent graph K, $H^1(K, \mathbb{Z})$ is a free \mathbb{Z}-module. The beads $x \in H^1(K, \mathbb{Z})$ which occur in an (AS) or (IHX) relation are the same up to isomorphisms. We will call $p \in \mathbb{N}$ the bead degree of (K, x) if x is p times an indivisible element of $H^1(K, \mathbb{Z})$.

Theorem 3 The bead degree is well defined in $\mathcal{A}^R_n(\emptyset)$. Thus we have a grading

$$\mathcal{A}^R_n(\emptyset) = \bigoplus_{p \in \mathbb{N}} \mathcal{A}^R_{n,p}(\emptyset),$$

where $\mathcal{A}^R_{n,p}(\emptyset)$ is the subspace of $\mathcal{A}^R_n(\emptyset)$ generated by diagrams with bead degree p.

Furthermore, $\mathcal{A}^R_{n,0}(\emptyset) \cong \mathcal{A}_n(\emptyset)$ and for $p > 0$, $\mathcal{A}^R_{n,p}(\emptyset) \cong \mathcal{A}^R_{n,1}(\emptyset)$.

Proof The second presentation we have given for $\mathcal{A}^R_n(\emptyset)$ implies that this degree is well defined. Indeed, the elements in a IHX relation have the same degree because the set of indivisible elements of the cohomology is preserved by isomorphisms.

Now, the map $\psi: R \rightarrow \mathbb{Q}$ that sends b to 1 induces the isomorphism $\mathcal{A}^R_{n,0}(\emptyset) \cong \mathcal{A}_n(\emptyset)$ and the group morphism $\phi_p: G \rightarrow G$ that sends b to b^p (or the multiplication by p in $H^1(\cdot, \mathbb{Z})$) induces the isomorphism $\mathcal{A}^R_{n,1}(\emptyset) \cong \mathcal{A}^R_{n,p}(\emptyset)$. These maps are isomorphisms because they have obvious inverses.

3 A nontrivial element in the kernel of H

Theorem 4 This nontrivial element of $\mathcal{A}^R(\emptyset)$ is in the kernel of H:

$$\begin{align*}
\begin{array}{c}
\hline
\hline
\end{array}
\end{align*}\begin{array}{c}
\hline
\hline
\end{array}\begin{array}{c}
\hline
\hline
\end{array}$$

Thus H is not injective.

Proof This element is not zero because its bead degree zero part is the opposite of the element $r \cdot \emptyset$ of Corollary 2. Then, one has

$$\begin{align*}
\begin{array}{c}
\hline
\hline
\end{array}
\end{align*}\begin{array}{c}
\hline
\hline
\end{array}\begin{array}{c}
\hline
\hline
\end{array} H \begin{array}{c}
\hline
\hline
\end{array}\begin{array}{c}
\hline
\hline
\end{array} + \frac{1}{2!} \begin{array}{c}
\hline
\hline
\end{array} + \frac{1}{3!} \begin{array}{c}
\hline
\hline
\end{array} + \cdots
\end{align*}$$

but all these diagrams are zero in $B(\ast)$ because they contain, as a subdiagram, the element of F_3 of Corollary 2.

Algebraic & Geometric Topology, Volume 12 (2012)
Remark The element of Theorem 4 has a loop degree seventeen.

The hair map is obviously injective on the space of diagrams with bead degree zero. I don’t know if the same is true in other degrees.

References

LMAM, Université de Bretagne-Sud, Université Européenne de Bretagne
BP 573, 56017 Vannes, France
bertrand.patureau@univ-ubs.fr

Received: 9 December 2011