Volume 12, issue 1 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 22
Issue 5, 2007–2532
Issue 4, 1497–2006
Issue 3, 991–1495
Issue 2, 473–990
Issue 1, 1–472

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
On volumes of hyperbolic orbifolds

Ilesanmi Adeboye and Guofang Wei

Algebraic & Geometric Topology 12 (2012) 215–233
Bibliography
1 I Adeboye, Lower bounds for the volume of hyperbolic n–orbifolds, Pacific J. Math. 237 (2008) 1 MR2415204
2 M Belolipetsky, On volumes of arithmetic quotients of SO(1,n), Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (2004) 749 MR2124587
3 M Belolipetsky, Addendum to : “On volumes of arithmetic quotients of SO(1,n), Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007) 263 MR2352518
4 M Belolipetsky, V Emery, On volumes of arithmetic quotients of PO(n,1), n odd arXiv:1001.4670v1
5 J Cheeger, D G Ebin, Comparison theorems in Riemannian geometry, AMS Chelsea (2008) MR2394158
6 T Chinburg, E Friedman, The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986) 507 MR860679
7 T Chinburg, E Friedman, K N Jones, A W Reid, The arithmetic hyperbolic 3–manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30 (2001) 1 MR1882023
8 S Friedland, S Hersonsky, Jorgensen’s inequality for discrete groups in normed algebras, Duke Math. J. 69 (1993) 593 MR1208812
9 D Gabai, R Meyerhoff, P Milley, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009) 1157 MR2525782
10 S Gallot, D Hulin, J Lafontaine, Riemannian geometry, , Springer (1990) MR1083149
11 F W Gehring, G J Martin, Minimal co-volume hyperbolic lattices, I : The spherical points of a Kleinian group, Ann. of Math. 170 (2009) 123 MR2521113
12 R Gilmore, Lie groups, Lie algebras, and some of their applications, Wiley Interscience (1974) MR1275599
13 T Hild, The cusped hyperbolic orbifolds of minimal volume in dimensions less than ten, J. Algebra 313 (2007) 208 MR2326144
14 T Hild, R Kellerhals, The FCC lattice and the cusped hyperbolic 4–orbifold of minimal volume, J. Lond. Math. Soc. 75 (2007) 677 MR2352729
15 A Hurwitz, Über algebraische gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1892) 403
16 D A Kazhdan, G A Margulis, A proof of Selberg’s conjecture, Mat. Sb. (N.S.) 75 (117) (1968) 163 MR0223487
17 G J Martin, Balls in hyperbolic manifolds, J. London Math. Soc. 40 (1989) 257 MR1044273
18 R Meyerhoff, A lower bound for the volume of hyperbolic 3–orbifolds, Duke Math. J. 57 (1988) 185 MR952231
19 G D Mostow, Quasi-conformal mappings in n–space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. (1968) 53 MR0236383
20 G Prasad, Strong rigidity of Q–rank 1 lattices, Invent. Math. 21 (1973) 255 MR0385005
21 C L Siegel, Some remarks on discontinuous groups, Ann. of Math. 46 (1945) 708 MR0014088
22 H C Wang, On a maximality property of discrete subgroups with fundamental domain of finite measure, Amer. J. Math. 89 (1967) 124 MR0207895
23 H C Wang, Discrete nilpotent subgroups of Lie groups, J. Differential Geometry 3 (1969) 481 MR0260930
24 H Zassenhaus, Beweis eines Satzes über diskrete gruppen, Adh. Math. Sem. Univ. Hamburg 12 (1938) 289