Volume 12, issue 1 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
On volumes of hyperbolic orbifolds

Ilesanmi Adeboye and Guofang Wei

Algebraic & Geometric Topology 12 (2012) 215–233
Bibliography
1 I Adeboye, Lower bounds for the volume of hyperbolic n–orbifolds, Pacific J. Math. 237 (2008) 1 MR2415204
2 M Belolipetsky, On volumes of arithmetic quotients of SO(1,n), Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (2004) 749 MR2124587
3 M Belolipetsky, Addendum to : “On volumes of arithmetic quotients of SO(1,n), Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007) 263 MR2352518
4 M Belolipetsky, V Emery, On volumes of arithmetic quotients of PO(n,1), n odd arXiv:1001.4670v1
5 J Cheeger, D G Ebin, Comparison theorems in Riemannian geometry, AMS Chelsea (2008) MR2394158
6 T Chinburg, E Friedman, The smallest arithmetic hyperbolic three-orbifold, Invent. Math. 86 (1986) 507 MR860679
7 T Chinburg, E Friedman, K N Jones, A W Reid, The arithmetic hyperbolic 3–manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30 (2001) 1 MR1882023
8 S Friedland, S Hersonsky, Jorgensen’s inequality for discrete groups in normed algebras, Duke Math. J. 69 (1993) 593 MR1208812
9 D Gabai, R Meyerhoff, P Milley, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22 (2009) 1157 MR2525782
10 S Gallot, D Hulin, J Lafontaine, Riemannian geometry, , Springer (1990) MR1083149
11 F W Gehring, G J Martin, Minimal co-volume hyperbolic lattices, I : The spherical points of a Kleinian group, Ann. of Math. 170 (2009) 123 MR2521113
12 R Gilmore, Lie groups, Lie algebras, and some of their applications, Wiley Interscience (1974) MR1275599
13 T Hild, The cusped hyperbolic orbifolds of minimal volume in dimensions less than ten, J. Algebra 313 (2007) 208 MR2326144
14 T Hild, R Kellerhals, The FCC lattice and the cusped hyperbolic 4–orbifold of minimal volume, J. Lond. Math. Soc. 75 (2007) 677 MR2352729
15 A Hurwitz, Über algebraische gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1892) 403
16 D A Kazhdan, G A Margulis, A proof of Selberg’s conjecture, Mat. Sb. (N.S.) 75 (117) (1968) 163 MR0223487
17 G J Martin, Balls in hyperbolic manifolds, J. London Math. Soc. 40 (1989) 257 MR1044273
18 R Meyerhoff, A lower bound for the volume of hyperbolic 3–orbifolds, Duke Math. J. 57 (1988) 185 MR952231
19 G D Mostow, Quasi-conformal mappings in n–space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. (1968) 53 MR0236383
20 G Prasad, Strong rigidity of Q–rank 1 lattices, Invent. Math. 21 (1973) 255 MR0385005
21 C L Siegel, Some remarks on discontinuous groups, Ann. of Math. 46 (1945) 708 MR0014088
22 H C Wang, On a maximality property of discrete subgroups with fundamental domain of finite measure, Amer. J. Math. 89 (1967) 124 MR0207895
23 H C Wang, Discrete nilpotent subgroups of Lie groups, J. Differential Geometry 3 (1969) 481 MR0260930
24 H Zassenhaus, Beweis eines Satzes über diskrete gruppen, Adh. Math. Sem. Univ. Hamburg 12 (1938) 289