Volume 12, issue 1 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
On piecewise linear cell decompositions

Alexander Kirillov, Jr

Algebraic & Geometric Topology 12 (2012) 95–108
Abstract

We introduce a class of cell decompositions of PL manifolds and polyhedra which are more general than triangulations yet not as general as CW complexes; we propose calling them PLCW complexes. The main result is an analog of Alexander’s theorem: any two PLCW decompositions of the same polyhedron can be obtained from each other by a sequence of certain “elementary” moves.

This definition is motivated by the needs of Topological Quantum Field Theory, especially extended theories as defined by Lurie.

Keywords
cell decomposition, Triangulating manifolds
Mathematical Subject Classification 2000
Primary: 57Q15
References
Publication
Received: 21 June 2011
Accepted: 17 October 2011
Published: 15 February 2012
Authors
Alexander Kirillov, Jr
Department of Mathematics
SUNY at Stony Brook
Stony Brook, NY 11794
USA
http://www.math.sunysb.edu/~kirillov/