Volume 12, issue 1 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Spectra associated to symmetric monoidal bicategories

Angélica M Osorno

Algebraic & Geometric Topology 12 (2012) 307–342
Abstract

We show how to construct a Γ–bicategory from a symmetric monoidal bicategory and use that to show that the classifying space is an infinite loop space upon group completion. We also show a way to relate this construction to the classic Γ–category construction for a permutative category. As an example, we use this machinery to construct a delooping of the K–theory of a rig category as defined by Baas, Dundas and Rognes [London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 18–45].

Keywords
symmetric monoidal bicategory, spectra, $K$–theory
Mathematical Subject Classification 2010
Primary: 18D05, 55B20, 55P42
Secondary: 19D23, 55N15
References
Publication
Received: 8 December 2010
Revised: 21 November 2011
Accepted: 28 November 2011
Published: 12 March 2012
Authors
Angélica M Osorno
Department of Mathematics
University of Chicago
5734 S University Ave
Chicago IL 60637
USA
http://math.uchicago.edu/~aosorno