Volume 12, issue 1 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Noninjectivity of the “hair” map

Bertrand Patureau-Mirand

Algebraic & Geometric Topology 12 (2012) 415–420
Abstract

Kricker constructed a knot invariant Zrat valued in a space of Feynman diagrams with beads. When composed with the “hair” map H, it gives the Kontsevich integral of the knot. We introduce a new grading on diagrams with beads and use it to show that a nontrivial element constructed from Vogel’s zero divisor in the algebra Λ is in the kernel of H. This shows that H is not injective.

Keywords
finite type invariant, Feynman diagram
Mathematical Subject Classification 2010
Primary: 57M25, 57M27
References
Publication
Received: 9 December 2011
Accepted: 13 December 2011
Published: 14 March 2012
Authors
Bertrand Patureau-Mirand
LMAM
Université de Bretagne-Sud
Université Européenne de Bretagne
BP 573
56017 Vannes
France