Volume 12, issue 1 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 7, 3571–4137
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Motivic twisted $K$–theory

Markus Spitzweck and Paul Arne Østvær

Algebraic & Geometric Topology 12 (2012) 565–599
Abstract

This paper sets out basic properties of motivic twisted K–theory with respect to degree three motivic cohomology classes of weight one. Motivic twisted K–theory is defined in terms of such motivic cohomology classes by taking pullbacks along the universal principal BGm–bundle for the classifying space of the multiplicative group scheme Gm. We show a Künneth isomorphism for homological motivic twisted K–groups computing the latter as a tensor product of K–groups over the K–theory of BGm. The proof employs an Adams Hopf algebroid and a trigraded Tor-spectral sequence for motivic twisted K–theory. By adapting the notion of an E–ring spectrum to the motivic homotopy theoretic setting, we construct spectral sequences relating motivic (co)homology groups to twisted K–groups. It generalizes various spectral sequences computing the algebraic K–groups of schemes over fields. Moreover, we construct a Chern character between motivic twisted K–theory and twisted periodized rational motivic cohomology, and show that it is a rational isomorphism. The paper includes a discussion of some open problems.

Keywords
motivic homotopy theory, twisted $K$–theory, motivic cohomology, bundle, Adams Hopf algebroid
Mathematical Subject Classification 2010
Primary: 14F42, 55P43, 19L50
Secondary: 14F99, 19D99
References
Publication
Received: 7 April 2011
Revised: 29 November 2011
Accepted: 19 December 2011
Published: 29 March 2012
Authors
Markus Spitzweck
Fakultät für Mathematik
Universität Regensburg
D-93040 Regensburg
Germany
http://www.uni-math.gwdg.de/spitz
Paul Arne Østvær
Department of Mathematics
University of Oslo
0316 Oslo
Norway