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Dyer–Lashof operations on Tate cohomology of finite groups

MARTIN LANGER

Let kDFp be the field with p>0 elements, and let G be a finite group. By exhibiting
an E1–operad action on Hom.P; k/ for a complete projective resolution P of the
trivial kG –module k , we obtain power operations of Dyer–Lashof type on Tate
cohomology yH�.GI k/ . Our operations agree with the usual Steenrod operations
on ordinary cohomology H�.G/ . We show that they are compatible (in a suitable
sense) with products of groups, and (in certain cases) with the Evens norm map.
These theorems provide tools for explicit computations of the operations for small
groups G . We also show that the operations in negative degree are nontrivial.

As an application, we prove that at the prime 2 these operations can be used to
determine whether a Tate cohomology class is productive (in the sense of Carlson)
or not.

20J06, 55S12

1 Introduction

Let k D Fp be the field with p elements. For every finite group G , let yH�.G/ D
yH�.G; k/ denote the graded Tate cohomology algebra of G over k . Then yH� is

functorial with respect to injective group homomorphisms. The starting point of our
discussion will be the following Theorem.

Theorem 1.1 There is a family of k –linear operations Qs (and ˇQs for p � 3) for
all integers s on Tate cohomology yH� , satisfying the following properties.

(1) The operations Qs are natural with respect to injective group homomorphisms.

(2) The operation Qs lowers the degree by 2s.p � 1/ (by s if p D 2), and ˇQs

lowers the degree by 2s.p� 1/� 1 for p > 2.

(3) Qs.x/D 0 if 2s < �jxj (if s < �jxj for p D 2).

(4) If p > 2, then ˇQs.x/D 0 if 2s � �jxj.

(5) Qs.x/D xp if 2s D�jxj (if s D�jxj for p D 2).

(6) Qs.1/D 0 unless s ¤ 0, where 1 2 yH 0.G/ is the unit element.
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(7) The internal Cartan formula holds:

Qs.xy/D
X

iCjDs

Qi.x/Qj .y/;

ˇQs.xy/D
X

iCjDs

ˇQi.x/Qj .y/C .�1/jxjQi.x/ˇQj .y/ for all x;y 2 yH�.G/.

(8) The Adem relations hold: For r > ps ,

Qr Qs D

X
i

.�1/rCi.pi � r; r � .p� 1/s� i � 1/QrCs�iQi

and for r � ps and p > 2

QrˇQs D

X
i

.�1/rCi.pi � r; r � .p� 1/s� i/ˇQrCs�iQi

�

X
i

.�1/rCi.pi � r � 1; r � .p� 1/s� i/QrCs�iˇQi :

Here the convention is that .a; b/D 0 if a or b is negative, and .a; b/D
�
aCb

b

�
otherwise.

(9) On classes of nonnegative degree, the operations agree with the Steenrod opera-
tions on H�.BGI k/DH�.G/. More precisely, for jxj � 0 we have

Q�n.x/D Sqn.x/ for p D 2 and n� 0,

Q�n.x/D Pn.x/; ˇQ�n.x/D ˇP
n.x/ for p > 2 and n� 0,

Q�n.x/D 0; ˇQ�n.x/D 0 for n< 0.

We define the total operation QD
P

i Qi . To be more precise, we define for every
Z–graded ring R the ring R_ to be

R_ D

�
.xn/n2Z 2

Y
n2Z

Rn
ˇ̌̌
there is some N 2 Z with xn D 0 for all n�N

�
;

where Rn denotes the homogeneous elements of degree n in R. Similarly, for later
reference, we define R^ to be the ring of all those sequences .xn/n2Z which vanish
in sufficiently negative degrees. Now for x 2 yH�.G/ we have Q.x/ 2 yH�.G/_ by
part (3) of Theorem 1.1, and the Cartan formula reads Q.xy/DQ.x/Q.y/ for all x;y .
If p D 2 then we will sometimes use the notation

Sqi.x/DQi�jxj.x/

so that Sqi.x/D 0 for all i < 0 and Sq0.x/D x2 .
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Example 1.2 Let p D 2, and let G D Z=2Z be the cyclic group of order 2. We can
easily compute all the operations on yH�.G/ using the statements of the theorem only. It
is known that yH�.G/Š kŒs˙1� for the unique nonzero class s of degree 1; see Cartan
and Eilenberg [6, XII.Section 7]. We know Q.s/D sCs2 , so 1DQ.1/DQ.s�1s/D

Q.s�1/.sCs2/. Using that Q.s�1/D s�2C.terms of degree less than �2/ we obtain

Q.s�1/D s�2
C s�3

C s�4
C � � � :

More generally we get for all integers i

Q.si/D .sC s2/i D s2i.s�1
C 1/i D

X
j�0

� i

j

�
s2i�j ;

so that Qj�i.s
i/ D

�
i
j

�
s2i�j for all j � 0. Here we use the generalized binomial

coefficient � i

j

�
D

i.i � 1/ � � � .i � j C 1/

j !
for integers i; j with j � 0.

Example 1.3 Slightly more complicated, but still an immediate consequence of the
theorem is the case G D Z=pZ for odd primes p . Here yH�.G/ Š kŒs˙1�˝ƒ.u/,
where s is of degree 2 and u is exterior of degree 1. Let us define ˇQD

P
i ˇQi ;

then from the topological fact ˇ.u/D s we get for integers i

Q.si/D
X
j�0

� i

j

�
spi�j ; Q.siu/ DQ.si/u;

ˇQ.si/D 0; ˇQ.siu/DQ.si/s:

Example 1.4 Let us do an example of a noncommutative group. Let G D Q8

be the quaternion group with 8 elements, and let p D 2. Then it is known that
yH�.G/ŠkŒs˙1;x;y�=.x2CxyCy2;x3/ with degrees jxjD jyjD 1 and jsjD 4. We

immediately get Q.x/D xCx2 and Q.y/D yCy2 . Every automorphism of H 1.G/

is realized by a group automorphism; this implies that Sq1.s/ D 0 and Sq2.s/ D 0.
From the Adem relation Sq3.s/D Sq1 Sq2.s/ it then follows that Q.s/D sC s2 . By
the same methods as above, one easily deduces the operations on all of yH�.G/.

Remark 1.5 We will prove Theorem 1.1 by establishing an E1–operad action on
HomkG.P; k/, the cochains of a complete projective resolution P of the trivial kG –
module k . There is another way of constructing Dyer–Lashof operations on Tate
cohomology, using equivariant stable homotopy theory as follows. In the homotopy
category of G –spectra (see Lewis, May, Steinberger and McClure [13]) let kG DHFp

denote the Eilenberg–Mac Lane spectrum, regarded as a G–spectrum with “trivial
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G –action”. Associated with kG there is a Tate spectrum t D F.EGC; kG/^ zEG (see
Greenlees and May [10]) with the property that yH�.GI k/Š ŒS; t ��

G
(see Greenlees [9]).

Then McClure [16] shows that t is an E01–ring spectrum, that is, we have a nonequiv-
ariant operad acting equivariantly, which can be used to define power operations on
yH�.G/. The author does not know whether the operations defined in that topological

manner agree with the rather algebraically defined operations of this paper.

Remark 1.6 Benson and Greenlees [3] define an action of the Steenrod algebra on
Tate cohomology. As the operations of this paper, their operations agree with the
usual Steenrod operations on elements of positive degree. However, in the negative
range their operations raise the degree, whereas ours lower the degree. For instance, in
Example 1.2, the total squaring operation SqB;G in the sense of Benson and Greenlees
satisfies the Cartan formula SqB;G.s

�1/.s2C s/D 1, but now SqB;G.s
�1/ lies in the

ring yH�.G/^ , so for degree reasons we get

SqB;G.s
�1/D s�1

C 1C sC s2
C � � �

which is the inverse of s C s2 in the ring yH�.G/^ ; this should be compared with
Example 1.2, where Q.s�1/ was the inverse of sC s2 in the ring yH�.G/_ .

From now on, assume that the order of G is divisible by p . Let us define a graded
submodule M �.G/ of a shift of yH�.G/ as follows:

M n.G/D

�
yH n�1.G/ if n� 0,

0 otherwise.

Then M �.G/ inherits the Dyer–Lashof operations from yH�.G/, because classes of
negative degrees are mapped to classes of negative degrees (or to 0) by the Qi .
Via the identification M �.G/ Š . yH�.G/=H�.G//Œ1� we can also view M �.G/

as a left H�.G/–module. For finite groups G1 and G2 , we have the Künneth
isomorphism H�.G1 � G2/ Š H�.G1/ ˝ H�.G2/ which is known to be an iso-
morphism of modules over the Steenrod algebra. We also have the isomorphism
M �.G1 � G2/ Š M �.G1/˝M �.G2/ which is an isomorphism of modules over
H�.G1 �G2/. Even more is true:

Theorem 1.7 For finite groups G1 and G2 , the Künneth isomorphism M �.G1�G2/Š

M �.G1/˝M �.G2/ is an isomorphism of modules over the Dyer–Lashof algebra. In
other words, Q.˛˝ˇ/DQ.˛/˝Q.ˇ/ for all ˛ 2M �.G1/ and ˇ 2M �.G2/.

Example 1.8 Let us consider the case G D Z=2Z�Z=2Z at the prime p D 2. Let
'i be a generator of M�i.Z=2Z/; it corresponds to s�i�1 2 yH�.Z=2Z/, but this
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notation suggests the existence of an internal product which we do not have on M � .
Let us write 'ij 2

yH�i�j�1.G/ for the element 'i ˝ 'j 2M �.G/; then yH�.G/ is
the commutative graded algebra generated by polynomial classes x;y of degree 1

(coming from the two factors of G ) and the classes 'ij subject to the relations

'ij x D

�
'i�1;j if i � 1,
0 otherwise,

'ij y D

�
'i;j�1 if j � 1,
0 otherwise,

'ij'i0j 0 D 0:

The total square on '0 is given by Q.'0/D '1C'2C � � � ; see Example 1.2. By the
theorem, the total square on '0˝'0D'00 2

yH�.G/ is given by Q.'00/D
P

i;j�1 'ij .
More generally we get the formula

Q.'ij /D
X

k;l�0

� kCi

k

�� lCj

j

�
'2iCkC1;2jClC1:

In particular Sq0 D 0 and Sq1.'ij /D '2iC1;2jC1 .

In the same spirit we can prove:

Corollary 1.9 Suppose that the group G is a direct product of r groups of order
divisible by p , and let a 2 yH�.G/ with jaj < 0. Then Qj .a/ D 0 if p is odd and
jaj C 2j < r � 1. If p D 2, then Qj .a/D 0 if jaj C j < r � 1, so that Sqj vanishes
on elements of negative degree if j < r � 1.

Proof Let G D G1 � � � � �Gr , and take an element of the form a D a1˝ � � � ˝ ar

with ai 2
yH jai j.Gi/ and jai j < 0. Then jaj D ja1j C � � � C jar j C r � 1. Now Q.ai/

is a sum of elements of degrees at most pjai j by part (3) of Theorem 1.1. Therefore,
Q.a/DQ.a1/˝Q.a2/ � � �˝Q.ar / can be written as sum of elements bDb1˝� � �˝br

with jbi j � pjai j, so that

jbj D jb1jC� � �Cjbr jC.r�1/�pja1jC� � �Cpjar jC.r�1/Dpjaj�.p�1/.r�1/:

We have therefore shown that Qj .a/D 0 whenever jQj .a/j> pjaj � .p� 1/.r � 1/.
If p is odd, then this is equivalent to

jaj � 2j .p� 1/ > pjaj � .p� 1/.r � 1/;

which in turn simplifies to r � 1> 2j Cjaj. If p D 2 then Qj .a/D 0 if

jaj � j > 2jaj � .r � 1/

which means r � 1> jajC j . This implies the result.
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Remark 1.10 Notice that, unlike the ordinary Steenrod operations (see Evens [8]),
the operations Qi are not compatible with transfers. For instance, if we embed
K D Z=2Z� f0g � Z=2Z�Z=2ZD V , then the diagram

yH�1.K/
Q1

Š
//

trK;V

��

yH�2.K/

trK;V ¤0

��

yH�1.V /
Q1

D0
// yH�2.V /

cannot commute.

Let us consider the following application of our operations. Let G be a finite group, and
let �W �nk! k be a surjective map representing a Tate cohomology class Œ��2 yH n.G/.
Define L� to be the kernel of � ; we therefore get an exact triangle

.1:11/ �k
�
�!L�

�
�!�nk

�
�! k:

Following Carlson [5, Section 9] we call the class Œ�� productive if � annihilates the
cohomology of L� , that is, the map �˝ idL� W �

nk˝L� ! L� is stably zero. It is
known that, for all primes p � 3, a nonzero class Œ�� is productive if and only if its
degree n is even (see Carlson [4, Theorem 4.1]). The case p D 2 is more complicated,
and we will show in Section 6 that the operations Q can be used to determine whether
a class is productive or not:

Theorem 1.12 Let p D 2, and let G be a finite group. A cohomology class Œ�� 2
yH n.G/ is productive if and only if Sq1.�/ is divisible by � in yH�.G/.

Remark 1.13 The “only if” part of this theorem has been conjectured and inde-
pendently proven in the case of ordinary cohomology classes by Yalçin [17], using
connections to the existence of diagonal approximations of certain chain complexes.

1.1 Notation and conventions

Throughout the paper, p is a prime number and k D Fp is the prime field of charac-
teristic p . Some of the results also hold for arbitrary fields of characteristic p , but
then certain k –vector spaces have to be twisted by the Frobenius map. Groups labelled
G , K , L are assumed to be finite. All modules are right modules, unless mentioned
otherwise. We will mainly work in mod–kG , the category of right kG –modules, with
its tensor product ˝ and internal Hom-object Homk obtained from the Hopf algebra
structure on kG . We will use several known results about projective modules without
further notice (eg, projective is the same as injective, the tensor product of a projective
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and an arbitrary module is projective, and arbitrary products and sums of projectives
are projective). The ground field k is considered as an object in mod–kG by the
trivial G –action. We denote by mod–kG the stable module category, obtained from
mod–kG by dividing out those morphisms which factor through a projective module.
Homomorphisms in mod–kG between modules X;Y are denoted by Hom.X;Y /.
The category mod–kG is a triangulated category with shift functor †D��1 , and Tate
cohomology can be defined as yH n.G/DHom.�nk; k/, with the composition product
as multiplication. A morphism X ! Y in mod–kG is called a stable equivalence if it
induces an isomorphism in the stable category. See Carlson [5] for an introduction to
the stable module category.

In this paper, we use the notation ˝ for the internal tensor product ˝k of mod–kG ,
but Hom is used for the k –vector space of kG –linear maps, that is, HomD HomkG .
Furthermore, the symbol @ is used for the differential of chain complexes over kG ,
whereas d often denotes the differential of cochain complexes over k .

1.2 Plan of the paper

In Section 2, we will construct the E1–operad acting on HomkG.P; k/ for a projective
resolution P of the trivial kG –module k . We also compare the Dyer–Lashof operations
obtained from that action with the usual Steenrod operations that we have on H�.G/Š

H�.BG/, thereby completing the proof of Theorem 1.1. In Section 3 we prove
Theorem 1.7 about products of groups. In Section 4 we give a description of negative
Tate Ext-groups in terms of complexes of projective modules, a tool we need for the
proofs in the later sections. The duals of certain operations are shown to commute
with the Evens norm map in Section 5, where we also show that our operations are
nontrivial in negative degrees. Finally, in the last section we prove Theorem 1.12.

Acknowledgements Most of the paper evolved from parts of my PhD thesis written
at the University of Bonn under supervision of Stefan Schwede. I would like to thank
him for suggesting that project, and for his interest and helpful comments on this paper.
Furthermore, I would like to thank Wolfgang Lück for the financial support during
my stay in Münster. Finally, I thank the referee for various helpful comments and
suggestions.

2 The operad

2.1 Resolutions

Let k be a field of characteristic p , and let G be a finite group. Let M be a kG–
module. A complete projective resolution of M is a long exact sequence of projective
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kG –modules

� � � P�2
oo P�1

oo P0
oo

"
}}

P1
@1

oo P2
oo � � �oo

M

bb

such that " is the cokernel map of @1 . The map " is called augmentation and can be
viewed as a chain map "W P !M , where M is regarded as a complex concentrated in
degree 0. If N is another module, then a map "0W P0!N (or, equivalently, a chain
map "0W P ! N ) will be called quasi-augmentation if there is a stable equivalence
f W M !N such that f ı "D "0 .

There is a dual notion using injectives. A complete injective resolution of M is a long
exact sequence of injective kG –modules

� � � I�2
oo I�1

oo I0
@0

oo I1
oo

}}

I2
oo � � �oo

M

�

aa

in which � is the inclusion of the kernel of @0 . The map � is called coaugmentation
and can be viewed as a chain map �W M ! I . If N is another module, then a
map �0W N ! I will be called quasi-coaugmentation if there is a stable equivalence
f W N !M with � ıf D �0 .

Since projectives are the same as injectives, the notions of complete resolutions only
differ in the position of the resolved module M . If P is a complete projective resolution
of the trivial module k , and N is another kG –module, then the cohomology groups of
the complex HomkG.P;N / define the Tate cohomology of G with coefficients in N ,
that is, yH n.GIN /ŠH n HomkG.P;N /.

Proposition 2.1 Let P and Q be complete projective resolutions, and let �W P !M

be a quasi-augmentation. If for some chain transformation f W Q! P the composite

Q0

f0
�! P0

�
�!M

is zero, then f is null-homotopic. The corresponding statement holds for injective
resolutions.

We omit the straightforward proof.

Whenever C is a cochain complex of kG –modules, we define the dual complex C_

as .C_/nDHom.C�n; k/ with the induced differentials. If P is a complete projective

Algebraic & Geometric Topology, Volume 12 (2012)



Dyer–Lashof operations on Tate cohomology of finite groups 837

resolution of M with (quasi-augmentation ", then P_ is a complete injective resolution
of M_ with (quasi-coaugmentation "_ , and the same is true with the roles of projective
and injective interchanged.

Let k be the trivial kG –module, and choose complete injective resolutions I and I 0

of k with coaugmentations �; �0 . The tensor product I˝I 0 is defined to be the complex
with modules .I˝I 0/nD

L
iCjDn Ii˝I 0j and differential @I˝I 0 D @I˝ idC id˝@I 0

(note here that evaluation of the differential involves the usual sign, ie, .id˝@/.x˝y/D

.�1/jxjx ˝ @y ). It is known that the tensor product I ˝ I 0 is a complete injective
resolution of k with quasi-coaugmentation �˝ �0 (see Krause [11, Section 8]).

Now let P and P 0 be complete projective resolutions of k , and assume that all modules
Pi ;P

0
i are finitely generated. Let us define a new tensor product P�P 0D .P_˝P 0_/_ ;

more explicitly, .P � P 0/n D
Q

iCjDn Pi ˝P 0j . By the considerations above, this is
a complete projective resolution of k with quasi-augmentation "� "0W P � P 0! k .
These definitions and observations can be generalized to �–products of finitely many
complete projective resolutions.

Remark 2.2 The �–product can be used to define the multiplication on Tate co-
homology. By usual homological algebra, the identity map on k can be lifted to a
commutative diagram as follows:

P
�
//

"

��

P � P

"�"
��

k k

Such a lift is unique up to homotopy. A more explicit construction of � is given in
the proof of Theorem 4.1 in Cartan and Eilenberg [6, XII], where it is also shown
that � induces the Tate cohomology product in the following way: given cycles
f;g 2Hom�

kG
.P; k/ we get a cycle .f �g/ı�2Hom�

kG
.P; k/ representing Œf � � Œg�.

2.2 Motivation for the definition of the operad

Let P be a complete projective resolution of k by finitely generated kG–modules.
Before we start with the actual construction of an E1–structure on Hom�

kG
.P; k/,

let us point out a major issue in the construction of power operations which does not
turn up in the case of ordinary cohomology H�.G/. For simplicity, let us assume that
pD 2 throughout this motivational part. Let us naively transfer to Tate cohomology the
construction of Sq1 as it is done in ordinary cohomology. We know that the identity map
of k can be lifted to a map �W P ! P�2 as in Remark 2.2, and any two such liftings
are homotopic. Therefore, if T denotes the twist map of P�2 , then we know that
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.1�T / ı� is the boundary of some map �1W P ! P�2 of degree �1. If �W P ! k

is a chain map of degree n representing some cohomology class Œ�� 2 yH n.G/, then we
know that ��2 ı�1 is a chain map of degree 2n, and we could define Sq1.�/ to be
the class represented by that map. The problem is here that there is an ambiguity in the
choice of the map �1 , and any two such choices differ by a chain map P ! P�2 of
degree �1. Therefore, Sq1.�/ is only well-defined up to some element in �2 � yH�1.G/.
This problem does not occur in ordinary cohomology simply because H�1.G/ is zero.
We therefore have to rigidify our choice of �1 in order to get actual operations. To do
so, observe that a chain map P!P�2 of degree �1 certainly represents the zero class
if the composite P�1! .P�2/0 � P0˝P0! k vanishes, so that one possibility is
to require the map P�1! P0˝P0 to be zero. The next step is to elaborate this idea,
and because we want an E1–structure, we need to do so in an “operadic” way.

2.3 Definition of the operad

As before, let P be a complete projective resolution of k by finitely generated kG–
modules. We are now going to define an acyclic operad which acts on Hom�

kG
.P; k/.

To do so, we will work in the category of (increasing degree) differential graded modules
over k (or, equivalently, the category of cochain complexes of k –vector spaces) with
its symmetric monoidal tensor product ˝. Recall that if X and Y are chain complexes
of kG–modules with differential @, then we get such a differential graded module
Hom�.X;Y / by defining

Homn.X;Y /D
Y
j2Z

HomkG.XnCj ;Yj /

with differential d.f /D @f � .�1/nf @.

Let us recall some basics about operads; see, eg, Kříž and May [12] for an introduction.
A symmetric operad C is given by a differential graded module C. j / for every integer
j � 0 together with a †j –action, equivariant structure maps

C. j /˝ C.i1/˝ : : : C.ij /! C.i1C � � �C ij /

for all j ; i1; : : : ; ij , and a unit map k ! C. j / for each j ; all these maps have to
satisfy certain coherence diagrams. A typical example of such an operad is the so-called
coendomorphism-operad F. j /D Hom�.P;P�j / for j � 0, whose structure maps
are given by

Hom.P;P�j /˝Hom.P;P�i1/˝ � � �˝Hom.P;P�ij /! Hom.P;P�.i1C���Cij //

g˝f1˝ � � �˝fj 7! . f1 � � � ��fj / �g:
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We have written � here because we want to stress that the Koszul sign rule also applies
to this situation; whenever a and b are composable maps of certain degrees, we write
a � b for .�1/jajjbj � a ı b , so that expressions like b˝ a 7! a � b indeed yield maps of
chain complexes. The symmetric group †j acts on P�j by permutation of the factors
(note that this also involves the usual signs), and we therefore get an action of †j on
Hom.P;P�j /. The unit map k ! Hom.P;P / is given by the identity of P . The
operad we are up to will be a suboperad of the coendomorphism-operad F .

An operad C is called unital if C.0/D k . In that case, the C. j / have augmentations
coming from the operad structure maps

C. j /Š C. j /˝ C.0/ j
! C.0/D k:

The operad is called acyclic if the augmentations are quasi-isomorphisms of chain
complexes. An operad C is called an E1–operad if it is acyclic and for every j , C. j /

is free as a k†j –module. A differential graded module A is called a C–algebra if
there are structure maps

C. j /˝Aj
!A

for every j � 0 which are associative, unital and equivariant (see [12, Section 2] for
details). Our goal is to define an acyclic operad C (and later an E1–operad) and a
C–algebra structure on AD Hom�.P; k/. This structure can then be used to define
the operations Qi on H�AŠ yH�.G/, and also for proving most of Theorem 1.1.

Let us begin with the definition of C . For every nonnegative integer j , we define a
differential graded submodule C. j / of Hom�.P;P�j / as follows:

C. j /m D 0 for m> 0,

C. j /0 D ff 2 Hom0.P;P�j / j df D 0g;

C. j /m D

8̂<̂
:f 2 Homm.P;P�j /

ˇ̌̌̌ Pi

projıf
����! Ps1

˝Ps2
˝ � � �˝Psj

vanishes for all i < 0 and
all s1; : : : ; sj � 0

9>=>; for m< 0.

In order to check that C. j / is indeed a differential graded submodule, we have to
prove dC. j /m � C. j /mC1 . This is clear for m� �1, and in case m< �1, the map

Pi

projıdf
�����! Ps1

˝ � � �˝Psj

is the sum of

Pi
@
�! Pi�1

projıf
����! Ps1

˝ � � �˝Psj
and maps

Pi

projıf
����! Ps1

˝ � � �˝PstC1˝ � � �˝Psj

id˝@˝id
������! Ps1

˝ � � �˝Psj ;
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all of which are zero by assumption.

Next we show that C is a suboperad of the co-endomorphism operad F . In order to
do so, we only need to show that it is closed under the structure maps, the †–action,
and the unit. The latter two are immediate consequences of the definition, so let us
take g 2 C. j /, fi 2 C. ji/ for i D 1; : : : ; j and prove that .f1 � � � �� fj / � g 2

C. j1C� � �Cjj /. If one of the chosen elements is of positive degree, then the composition
is zero. If all the chosen elements are of degree zero, then they are chain transformations
and so is the composition. Now we can assume that the composition is of negative
degree, and we have to show that the composite

Pi

g
�! Ps1

˝ � � �˝Psj

f1�����fj
�������! Pt1;1

˝ � � �˝Pt1;j1
˝ � � �˝Ptj ;1 ˝ � � �˝Ptj ;jj

is zero for all i < 0 and tl;n � 0. If sl is negative, then fl W Psl
�! Ptl;1

˝ � � �˝Ptl;jl

vanishes and so does the composition. But if all the sl ’s are nonnegative, then g is
zero, so we are done.

The operad C is unital, that is, C.0/ is isomorphic to k concentrated in degree 0. Here
we use the convention P�0 D k ; then C.0/m D 0 unless mD 0, in which case

C.0/0 D f f 2 Hom0.P; k/ j df D 0g Š k h"i :

So we get augmentations C. j /Š C. j /˝C.0/ j! C.0/Š k given by postcomposition
with "�j .

2.4 Acyclicity of the operad

We are now going to show that the augmentations C. j /! k are quasi-isomorphisms.

To do so, let us consider another complete projective resolution Q of k , constructed as
follows. Let us define PC to be the nonnegative part of P , that is PCn DPn for n� 0

with the induced differentials. Then k  � PC W" is an acyclic augmented complex,
and by the Künneth theorem k  � .PC/˝j W"˝j is also acyclic. Next, we define a
complex � � �  R�2 R�1 R0 by setting Rn D Pn for n < 0 and R0 D k , the
differential R�1 R0 being the coaugmentation of P . Then R is acyclic, and by
the Künneth theorem R˝j is also acyclic. Note that .R˝j /0 D k , so we can splice
the complexes R˝j and k .PC/˝j to get a complex Q, which then is a complete
projective resolution of k . There is a chain map ˆW P�j !Q which in nonnegative
degrees is given by projections, and in negative degrees the maps

Ps1
˝Ps2

˝ � � �˝Psj !Rs1
˝Rs2

˝ � � �˝Rsj

are zero unless all the si ’s are nonpositive, in which case the map is the tensor product
of identity maps and the augmentation "W P0!R0 D k .
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Since the composition

P�j ˆ
�!Q

"
�! k

equals the quasi-augmentation "�j , we get that ˆ is a chain homotopy equiva-
lence. Therefore, the induced map �W Hom�.P;P�j / ! Hom�.P;Q/ is a quasi-
isomorphism. Moreover, � is surjective because ˆ is levelwise onto.

Proposition 2.3 Suppose that �W A!B is a surjective quasi-isomorphism of differ-
ential graded modules, and let C � B be a differential graded submodule of B . Then
the restriction �W ��1.C /! C is a quasi-isomorphism as well.

Proof Let us denote by K the kernel of �. Since � is a quasi-isomorphism, the long
exact sequence in homology implies that H�.K/D 0. Since K is also the kernel of
�j��1.C / , using the long exact sequence in homology again we get that the restriction
of � is a quasi-isomorphism.

Now the idea is to choose a dg submodule C of Hom�.P;Q/ quasi-isomorphic to k ,
and such that ��1.C / is (close to) our C. j /. Define

C m
D 0 for m> 0,

C 0
D ff 2 Hom0.P;Q/ j df D 0g

C m
D ff 2 Homm.P;Q/ jPi

f
�!Qj is zero for all i < 0� j g for m< 0.

Then C is indeed a dg submodule of Hom�.P;Q/.

Proposition 2.4 We have H�.C /Š k .

Proof Clearly, H m.C / D 0 for m > 0. Let m < 0, and let f 2 C m be a cocycle.
Define gW PiCm�1!Qi to be zero for all i D 0; 1; : : : ;�m. By common homological
algebra we can extend g to a chain null-homotopy for f (the condition needed for the
inductive construction of g is that @g@D f at the two boundary points of the domain
on which g has been defined, and this condition is clearly satisfied). Then dg D f

with g 2 C , and hence H m.C /D 0 for m> 0.

Finally, we claim that the image of d W C�1 ! C 0 is the same as the image of
d W Hom�1.P;Q/ ! C 0 (then it follows that H 0.C / Š H 0.G/ Š k ). Let f 2
Hom�1.P;Q/; then the bottom row in the diagram

P0
@

//

"
��

P1

f
// Q0

"˝j
  

@
// Q�1

k //

�

??

k

==
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is stably trivial and therefore the zero map (we assume here that jGj is divisible by p ,
which is the only interesting case). Therefore the upper row vanishes, and by usual
homological algebra there is a cocycle g 2 Hom�1.P;Q/ with f0 D g0W P�1!Q0 .
Then f �g 2 C�1 and d.f �g/D df , so we are done.

We finally use a method of chopping off the positive part of a dg module. Given a dg
module A, define F.A/ to be the dg submodule given by

F.A/m D

8<:
0 if m> 0,
cycles of A0 if mD 0,
Am if m< 0.

(This can be viewed as the (co)connected cover of A.) Then the inclusion F.A/�A

induces an isomorphism H�.F.A//ŠH�.A/ in nonpositive degrees.

Proposition 2.5 The augmentation C. j / ! k is a quasi-isomorphism. Thus, the
operad C is acyclic.

Proof Note that C. j /DF.��1.C //, so H�.C. j //ŠH�.C /Šk by Proposition 2.4.
Since there is a cocycle f 2 C. j /0 such that

P
f
�! P�j "�j

��! k

equals the augmentation ", the map C. j /! k is onto in H 0 and therefore a quasi-
isomorphism.

For every operad A, the module A.0/ is an algebra over A via the action map
A. j / ˝ A.0/˝j ! A.0/. In particular, Hom�.P; k/ is an algebra over the co-
endomorphism operad Hom�.P;P˝j /, and we can restrict the operad action to the
suboperad C . Hence, Hom�.P; k/ is a C–algebra.

Proposition 2.6 The operad C induces an E1–structure on Hom�.P; k/ in such a
way that the product on H�Hom�.P; k/ agrees with the composition product of the
Tate cohomology ring yH�.G/.

Proof The operad C might itself not be †–free, so we have to choose an approximation
of C by an E1–operad. One possible way of doing so (see [14, Section 1]) is to choose
an arbitrary E1–operad E 0 and tensor its augmentation E 0!k with C . Then EDC˝E 0
is an E1–operad acting on Hom�.P; k/ via the action of C pulled back along the
morphism of operads E! C . The statement about the product follows from the fact
that the element � 2 C.2/0 � Hom0.P;P � P / given in Remark 2.2 generates the
cohomology H 0.C.2// and induces the right product on H�Hom�.P; k/.
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2.5 Comparison with Steenrod reduced powers

For the proof of part (9) of Theorem 1.1 we need to recall the construction of Steenrod
operations in the cohomology of cocommutative Hopf algebras. Let zP be an ordinary
projective resolution of k , viewed as a complex � � �  0 zP0 

zP1 � � � . Then
zP˝j is a projective resolution of k for all j . Consider the suboperad A. j / D

F.Hom. zP ; zP˝j // of the coendomorphism-operad Hom. zP ; zP˝j /. Then A is acyclic,
and Hom. zP ; k/ is an A–algebra in the obvious way. Using an E1–approximation
of A, this operad action defines the Steenrod operations on H�Hom�. zP ; k/ŠH�.G/.

Extend zP to a complete projective resolution P of k . We are now going to write down
a quasi-isomorphism of unital operads C!A. Let us begin with a function ‰ which
maps an element f 2 Hom�.P;P�j / to the element in Hom�. zP ; zP˝j / given by the
composition

zP
�
�! P

f
�! P�j ��j

���! zP˝j :

Notice here that the inclusion map � is not quite a chain map; its differential d � in
Hom. zP ;P / is zero everywhere except for zP0!P�1 . On the other hand, the projection
map � is a chain map, and therefore

d.�f �/D �d.f /�˙�fd.�/

in Hom�. zP ; zP˝j /. Now assume that f 2 C. j /; then either f is of nonnegative
degree, in which case �fd.�/ is zero (because � vanishes in negative degrees), or f
is of negative degree, but then f is zero as maps P�1! Ps1

˝Ps2
˝� � �˝Psj for all

si � 0, and � is zero on all other factors of P�j of interest. Hence d.‰.f //D‰.df /,
so that ‰ restricted to C. j / is indeed a map of dg modules. We get a map ‰W C!A
of unital operads, and we need to show that ‰ commutes with the augmentations
of C. j / and A. j /. This follows from the following commutative diagrams:

zP
�
//

"
��

P

"

��

P�j

"�j
##

��j
// zP˝j

"˝j

��

k k

Proof of Theorem 1.1 Everything except part (9) is a consequence of Proposition 2.6
and the fact that E1–structures can be used to construct power operations with the
desired properties; see, eg, Kříž and May [12, I, Section 7], Cohen, Lada and May [7, I,
Section 1] and May [15]. For part (9), note that by construction of the operations Qi via
C and the Steenrod operations via A we get the desired statement for n� 0. To prove
Q�n.x/D 0 and ˇQ�n.x/D 0 for n< 0 it is enough to notice that for elements f
in C.p/ we have that f W Pneg! P

˝p

jxj
vanishes.
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3 Products of groups

This section is devoted to the proof of Theorem 1.7. Let G be any finite group whose
order is divisible by p . As a first step, we shall define a new operad action defining
some power operations on M �.G/. In the second step we prove that these operations
agree with the Dyer–Lashof operations coming from yH�.G/.

Let P be a complete projective resolution of k as a kG –module. We denote by xP the
complex � � � P�2 P�1 0 0 : : : , with the P�1 sitting in degree 0 and with
differential @ xP D �@P , and let �W k! xP be the coaugmentation. For j � 1 define
the differential graded module B. j /D F.Hom�. xP ; xP˝j //. Also put B.0/D k ; we
want to turn B into a unital operad, so we need to define the structure maps


 W B. j /˝B.i1/˝ � � �˝B.ij /! B.i1C � � �C ij /:

As long as all is ’s are positive, we simply take the usual structure maps of the
coendomorphism-operad Hom�. xP ; xP˝j /. If one of the is ’s is zero, then we put

 D 0 unless i1 D i2 D � � � D ij D 0, in which case

.3:1/ 
 W B. j /˝B.0/˝j
D B. j /! HomkG.k; k/D k D B.0/

sends a chain map xP ! xP˝j in B. j / to the induced map k ! k˝j D k on zero-
cycles. It is now straightforward to check that B is indeed a unital symmetric operad.
Also, B is acyclic because by usual homological algebra the augmentations B. j /! k

are quasi-isomorphisms.

Now Hom�. xP ; k/ is a B–algebra, therefore we obtain Dyer–Lashof operations on
H�Hom�. xP ; k/ŠM �.G/ which we are now going to compare with those obtained
from C . Let � 2 Hom1. xP ;P / be the inclusion, and let � 2 Hom�1.P; xP / be the
projection map. Then d �D 0, but d� ¤ 0. Let K be the cochain complex of k –vector
spaces generated by an element x of degree �1 which is mapped by the differential to
a nontrivial element y in degree 0:

� � � 0oo k hyioo k hxioo 0oo � � �oo

y x�oo

Let Y DK˝p , and then define the augmented cochain complex X by the formula XiD

Yi�1 for all i � 0 with augmentation X0! Y0 D k hypi. Then X is an acyclic aug-
mented complex of k†p –modules. The map of cochain complexes K!Hom�.P; xP /
given by x 7! � induces a map of cochain complexes 'W Y ! Hom�.P�p; xP˝p/.
Let us define � W X ˝ C.p/! B.p/ by the formula �.v˝ f /D .�1/jf j'.v/ ı f ı �

(the sign coming from shifting Y to X ).
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Proposition 3.2 The map � W X ˝ C.p/! B.p/ enjoys the following properties:

(a) It is a †p –equivariant cochain map lifting the identity of k .

(b) For every f 2 C.p/ we have �.xp˝f /D .�1/jf j��p ıf ı �.

(c) For every element w 2X ˝ C.p/ of bidegree .m; n/ with m>�pC 1, and for
every cocycle a 2 Hom�. xP ; k/, we have 
 .�.w/˝ a˝p/D 0, where 
 is the
operad action of B on Hom�. xP ; k/.

Proof Part (b) follows from the definition. To show (c), let wDw1˝� � �˝wp˝f 2

X ˝ C.p/ with wi 2 fx;yg for all i . Up to a sign, 
 .�.w/˝ a˝p/ is given by the
composition

xP
�
�! P

f
�! P�p

u1�����up

�������! xP˝p a˝p

���! k;

where ui D � if wi D x and ui D d� if wi D y . From the condition on the bidegree
of w we know that at least one of the ui ’s equals d� , so that a ı ui D 0, which
implies (c).

For (a), let f 2 C.p/ be a cocycle in degree 0 mapping to 1 under the augmentation
C.p/! k ; then consider the following diagram:

k
�

//

�˝p

��

P�1

f

��

P0

"

jj

@
::

f{{

.P�p/0

"�p

\\

�.d�/�p

yy

@

))

. xP˝p/0 .P�p/�1
��.d�/�.p�1/

oo

All smaller parts commute, and since "W P0 �! k is surjective we can deduce that the
exterior square commutes. Therefore, � indeed lifts the identity of k . Also, � is
†p –equivariant and is a cochain map because d �D 0, so (a) is proved.

Proposition 3.3 The operad action of B on Hom�. xP ; k/ and the action of C on
Hom�.P; k/ define the same operations on M �.G/.
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Proof Let �W X ! kŒ1� p� be the k†p –linear chain map given by xp 7! 1, and
define � D �˝ idC W X ˝ C.p/! C.p/Œ1�p�. By suitably shifting the action of C.p/
on the negative part of Hom�.P; k/ we get a map defined by


C W C.p/Œ1�p�˝Hom�. xP ; k/˝p
! Hom�. xP ; k/

f ˝w 7! .�1/jf j�.jwjC1/w ı��p
ıf ı �

for all f 2C.p/Œ1�p� and w2Hom�. xP ; k/˝p . The sign is due to the Koszul sign rule,
and the check that this is indeed a map of chain complexes uses the fact that aı.d�/D0

for all a 2 Hom.P; k/. Now 
C can be used to construct the power operations on
M �.G/ as follows. Let W be the standard free resolution of the trivial kCp –module k

(where Cp denotes the cyclic group of order p ), so that Wi is generated by a single
element ei . Since X ˝ C.p/ is an acyclic augmented complex of kCp –modules, we
can lift the identity of k to a Cp –equivariant chain map # W W !X ˝ C.p/. We then
have a diagram like this:

B.p/

W
#
// X ˝ C.p/

� 33

�
++

C.p/Œ1�p�

For cocycles a2Hom�. xP ; k/, define DC
i .a/ to be the cohomology class of the cocycle


C.�#.ei/˝ap/2Hom�. xP ; k/, and define DB
i .a/ to be the class of 
B.�#.ei/˝ap/2

Hom�. xP ; k/. We need to show that DC
i DDB

i , and for this it suffices to prove the
identity


B.�.w/˝ ap/D 
C.�.w/˝ ap/

for all w 2X ˝C.p/ and a 2Hom�. xP ; k/. We can write wD xp˝f C
P

i ui˝fi

with ui 2X of degree jui j> 1�p , and f; fi 2 C.p/. By Proposition 3.2 we have that


B.�.w/˝ ap/D 
B.�.x
p
˝f /˝ ap/D .�1/jf j
B

�
.��p

ıf ı �/˝ ap
�
:

On the other hand, 
C.�.w/˝ ap/ D 
C.f ˝ ap/, and all these expressions equal
.�1/jf j.ja

p jC1/ times the composition

xP
�
�! P

f
�! P�p ��p

���! xP˝p a˝p

���! k:

Proof of Theorem 1.7 Let us write G D G1 � G2 . Choose complete projective
resolutions P and Q for k as trivial kG1 – and kG2 –module, respectively. Then
k! xP ˝ xQ is the negative part of a projective resolution of k as kG–module. We
denote by BG1 , BG2 and BG the operads constructed above using these resolutions;
then we get a quasi-isomorphism of unital operads BG1 ˝BG2 ! BG by tensoring
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morphisms. Let us denote by A1 D Hom�
kG1

. xP ; k/, A2 D Hom�
kG2

. xQ; k/ and AD

Hom�
kG
. xP ˝ xQ; k/ the corresponding B–algebras, then the commutative diagram

BG1.p/˝A
p
1
˝BG2.p/˝A

p
2

//

��

A1˝A2

��

BG.p/˝Ap // A

implies the desired result.

4 An alternative description of negative Ext-groups

Let n>0. It is well-known that Extn
kG
.A;B/DHomkG.�

nA;B/ admits a description
via extensions of B by A. We will now give a similar description of cExt�n

kG
.A;B/Š

HomkG.A; �
nB/, which will be used throughout the next two sections. Let us define

a category Kn.A;B/, whose objects are all the chain complexes

C W A �! Pn �! Pn�1 �! : : : �! P1 �! B

with projective modules P1;P2; : : : ;Pn , and a morphism of two such complexes is a
commutative diagram as follows:

C

��

A // Pn
//

��

Pn�1
//

��

� � � // P1
//

��

B

C 0 A // P 0n
// P 0

n�1
// � � � // P 0

1
// B

For objects C and C 0 , let us write C �C 0 if there is a morphism C!C 0 in Kn.A;B/.
Define the relation � on Kn.A;B/ to be the equivalence relation generated by �, and
put Kn.A;B/DKn.A;B/=�, the connected components of Kn.A;B/.

Let us fix a projective resolution of B :

P W 0 �!�nB
i
�! Pn �! Pn�1 �! : : : �! P1 �! B �! 0.4:1/

Theorem 4.2 The map ˆW HomkG.A; �
nB/!Kn.A;B/ which associates to each

map f W A!�nB the complex

A
iıf
��! Pn! Pn�1! � � � ! P1! B

induces a bijection

HomkG.A; �
nB/

1W1
 !Kn.A;B/

which is natural in G .
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To prove this, we need the following proposition.

Proposition 4.3 Consider two finite chain complexes AD.0!AnC1!� � �!A0!0/

and B D .0! BnC1! � � � ! B0! 0/, where Ai is projective for i D 1; 2; : : : ; n,
and B is exact. Let f;gW A! B be chain maps satisfying f0 D g0W A0! B0 . Then
the classes of fnC1 and gnC1 in HomkG.AnC1;BnC1/ are the same.

The proof is standard homological algebra, and we omit it.

Proof of Theorem 4.2 As a first step, we show ˆ induces a map HomkG.A; �
nB/!

Kn.A;B/. Suppose we are given f 0 2 HomkG.A; �
nB/ such that f 0 � f factors

through some projective module R:

f 0�f W A
u

// R
w
// �nB

Then the complexes ˆ.f / and ˆ.f 0/ differ in their first map only; let us denote these
by ˛; ˛0W A! Pn , respectively. From the commutative diagram

A
˛
// Pn

// Pn�1
// Pn�2

// � � � // B

A
. ˛ u /

// Pn˚R

�
id
0

�OO �
@
0

�
//�

id
@ıw

�
��

Pn�1
// Pn�2

// � � � // B

A
˛0

// Pn
// Pn�1

// Pn�2
// � � � // B

we get that ˆ.f /�ˆ.f 0/. Therefore, we obtain a map HomkG.A; �
nB/!Kn.A;B/

which we also denote by ˆ.

To construct an inverse for ˆ, start with some object C D .A!Q�!B/2Kn.A;B/.
Since the Qi ’s are projective and (4.1) is exact, we can lift the identity on B to a map
of chain complexes f W C ! P :

A //

��

Qn
//

��

Qn�1
//

��

� � � // Q1
//

��

B

�nB // Pn
// Pn�1

// � � � // P1
// B

By Proposition 4.3, the stable class of the resulting map fnC1W A ! �nB is in-
dependent of the choice of the lift; let us write ‰.C / D fnC1 2 HomkG.A;B/.
Suppose we are given a morphism gW C 0 ! C in Kn.A;B/. Then f ı g is a lift
of the identity on B to a map of chain complexes C 0! P . Since gnC1 D idA , we
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have ‰.C 0/D .f ı g/nC1 D fnC1 D ‰.C /. Therefore, we have constructed a map
‰W Kn.A;B/! HomkG.A; �

nB/. The proofs of ‰ ıˆ D id and ˆ ı‰ D id are
immediate.

Example 4.4 Suppose that p divides the order of the group G . Then it is known that
yH�1.G/Š HomkG.k; �k/ is isomorphic to k . Under the bijection of Theorem 4.2,

a canonical generator of that vector space is given by the complex

k

P
g2G g

// kG
�
// k;

where � is the augmentation of kG .

Proposition 4.5 Suppose we have a commutative diagram

A //

g

��

Pn
//

��

: : : // P1
//

��

B

f

��

0 // D // En
// � � � // E1

// C // 0

in mod–kG . Assume further that the Pi ’s are projective, so that the upper row
represents some element ˛ 2HomkG.A; �

nB/, and assume that the lower row is exact,
therefore representing some element ˇ 2 HomkG.�

nC;D/. Then the diagram

A
˛
//

g

��

�nB

�nf

��

D �nC
ˇ

oo

commutes stably.

Proof Choose projective resolutions �nB!Q�! B and �nC !R�! C . By
the usual “projective to acyclic” argument, we get a diagram

A //

x̨
��

P� //

��

B

�nB //

�nf
��

Q� //

��

B

f
��

�nC //

x̌
��

R� //

��

C

D // E� // C

where x̨ and x̌ are unstable representatives of ˛ and ˇ , respectively. The result follows
from Proposition 4.3.
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Remark 4.6 Suppose we have an exact sequence A ,! Pn! � � � ! P1 � B with
projective modules P1; : : : ;Pn . Then we can view this as an extension representing
some stable isomorphism �nB ! A; but we can also consider this as an element
of Kn.A;B/, representing some stable isomorphism A ! �nB ; by the previous
proposition, the two maps are stable inverses of each other.

We have a composition product Kn.B;C /�Km.A;B/!KnCm.A;C / similar to the
Yoneda splice: given EW A! P�! B and E0W B!Q�! C we define E0 ıE to
be the complex

E0 ıEW A // P� //

!!

Q� // C:

B

<<

This product is compatible with the equivalence relation � and therefore induces a
product

Kn.B;C /�Km.A;B/!KnCm.A;C /:

Proposition 4.7 The composition products on K� and cExt��
kG

coincide under the
bijection of Theorem 4.2.

Proof Let us start with complexes A!P�!B and B!Q�!C representing stable
maps ˛W A!�mB and ˇW B!�nC , respectively. Choose projective resolutions
�nC ! R� ! C and �nCmC ! T� ! �nC . Then we can lift the identity map
on C to commutative diagrams as follows:

A //

x


��

P� ////

��

B

x̌

��

B //

x̌

��

Q�

��

// C

�nCmC // T� // �nC �nC // R� // C

Here, x̌ and x
 are unstable representatives of ˇ and some 
 . Note that the extension
�nCmC ! T�!�nC represents the identity map id 2HomkG.�

m�nC; �nCmC /.
By Proposition 4.5, the left diagram shows that 
 D ˇ˛ . After splicing the two
diagrams the result follows from Proposition 4.3.

There is also a way of composing an element x 2 cExt�n
kG
.A;B/ given as a complex

A!P�!B with an element of y 2 cExtm
kG
.B;C / (with m> 0) given as an extension

C ,!M�� B :
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Proposition 4.8 Suppose m< n. The identity map of B can be lifted to a diagram

A // Pn
// � � � // PmC1

��

// Pm
//

��

� � � // P1
//

��

B

C // Mm
// � � � // M1

// B

and for any such lifting, the complex A // Pn
// � � � // PmC1

// C represents
the composition y �x 2 cExtm�n

kG
.A;C /.

Proof Existence of the lifting is common homological algebra. For the second
statement choose a projective resolution �n�mC ! R� ! C ; then we have the
following commutative diagram:

A //

x


��

Pn
//

��

� � � // PmC1

##

//

��

Pm
//

��

� � � // P1
//

��

B

C

""

�n�mC // Rn�m
// � � � // R1

;;

// Mm
// � � � // M1

// B

The complex in question represents the stable class of the map x
 . The bottom row rep-
resents y 2 HomkG.�

nB; �n�mC /, the upper row represents x 2 HomkG.A; �
nB/.

The result follows from Proposition 4.5.

Proposition 4.9 Suppose that we have a commutative diagram

A //

f

��

Pn
//

��

� � � // P1
//

��

B

g

��

A0 // Qn
// � � � // Q1

// B0

with projective modules Pi ;Qi for i D 1; 2; : : : ; n. Then the rows represent maps
xW A!�nB and yW A0!�nB0 , respectively, and y ıf D�n.g/ ıx in mod–kG .

Proof Choose a projective resolution �nB0 ! R� ! B0 . By usual homological
algebra, we get a diagram

A //

f 0
��

P� //

��

B
g
��

A0 //

y
��

Q� //

��

B0

�nB0 // R� // B0

and then the result follows from Proposition 4.5.
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Remark 4.10 There is a similar statement for extensions. Suppose that we have a
diagram as in Proposition 4.9, but this time with exact rows and the Pi ’s and Qi ’s
are not necessarily projective. Then the rows represent maps xW �nB ! A and
yW �nB0!A0 , and f ıx D y ı�n.g/ in mod–kG .

Remark 4.11 If k! I0! I1! � � � ! Ij is an injective resolution and �W Ij ! k

represents some cohomology class in yH�1�j .G/ŠH j Hom.I; k/, then the complex

k! I0! � � � ! Ij
�
�! k

represents the same class.

5 The Evens norm map and the dual operations

In this part we are going to show that some of the dual operations Q�i on ordinary
group cohomology are compatible with the Evens norm map in certain cases. For
simplicity we restrict to the case p D 2. Recall (see, eg, Benson [1, Section 4.1]) that
the Evens norm map is a function

normK ;G W H
i.K/!H ni.G/

for all i � 0, where G is a finite group and K �G is a subgroup of index n. It can be
defined as follows: let x 2H i.K/D Exti

kK
.k; k/ be represented by an exact sequence

kDEi!Ei�1!� � �!E0!k , which we think of as an augmented complex E!k .
Then define x˝n to be the augmented complex E˝n! k , which is an exact sequence
of k.†n oK/–modules. It therefore represents some class in H ni.†n oK/. We then
choose a suitable inclusion �W G ,!†n oK and define normK ;G.x/D �

�.x˝n/.

In the following, we often implicitly identify H�.G/ with the dual of yH�1��.G/ by
the use of Tate duality. In particular, we have dual operations Q�i W H

iCj .G/!H j .G/.

Theorem 5.1 Let k D F2 , and let K be a subgroup of index n of a finite group G .

(1) For all i � 0 the diagram

H i.K/
Q�

i
//

.�/˝n

��

H 0.K/

.�/˝n

��

H ni.†n oK/
Q�

ni
// H 0.†n oK/

commutes.
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(2) If K is a central factor of G (eg, a central subgroup or a direct factor), then for
x 2H i.K/ we have that normK ;G Q�i .x/DQ�ni.normK ;G x/.

(3) For x 2H i.K/ we have that Q�i .x/DQ�ni.x
n/ 2H 0.K/.

Remark 5.2 Recall that K is a central factor of G if and only if the product of K

with its centralizer is the whole group G . The condition we really need for the proof of
part (2) is that we can choose coset representatives for K in G which commute with all
elements of order 2 in K . This is true if K is a central factor, but it is also true in other
cases like Z=4Z �Q8 . The condition is not satisfied for Z=2Z�Z=2Z �D8 (the
dihedral group with 8 elements), and we will see in Remark 5.18 that the conclusion
fails in that case.

Corollary 5.3 If the order of the finite group G equals an odd multiple of 2i with
i � 1, then the operation QnW

yH�1.G/ ! yH�1�n.G/ is nontrivial whenever n is
divisible by 2i .

Proof Let P � G be a 2–Sylow subgroup, which is of order 2i . The commutative
diagram

yH�1.G/

resP;GŠ

��

Qn
// yH�1�n.G/

resP;G

��

yH�1.P /
Qn

// yH�1�n.P /

shows that it is enough to consider the case of a 2–group P . Let K � P be a central
cyclic subgroup of order 2; then the following commutative diagram proves the claim:

H 2i j .P /

Q�
2i j
// H 0.P /

H j .K/

norm

OO

Q�
j

Š
// H 0.K/

norm Š

OO

For the proof of Theorem 5.1 we use a reinterpretation of Qi W
yH�1.G/! yH�1�i.G/:

Proposition 5.4 Let G be a finite group of order divisible by p D 2, and let ' 2
yH�1.G/ be the canonical generator. For every i � 0, the complex

k
N˝2

���! kG˝2 1CT
���! kG˝2 1CT

���! � � �
1CT
���! kG˝2 "˝2

��! k

with i C 1 projective modules kG˝2 represents the element Qi.'/ 2 yH
�1�i.G/.

Here, T denotes the twist map interchanging the two factors of kG˝2 , and " is the
augmentation map.
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Proof We use the definition of Qi using the operad B from Section 3. Let P be
a complete projective resolution of k as trivial kG–module, where we assume that
P�1 D kG and k ,! P�1 is the norm map N . Let W be the standard free resolution
of k as trivial k†2 –module, with one generator ej in degree j for every j � 0.
Choose a †2 –equivariant chain map ‰W W !B.2/ lifting the identity of k , and define

j̨ W P�1�j!P˝2
�1

to be the degree 0–part of the map ‰.ej /2B.2/�Hom�. xP ; xP˝2/.
We get a commutative diagram

k
N
// P�1

˛0

��

// P�2

˛1

��

// P�3

˛2

��

// � � � // P�i

˛i�1

��

�
// k

k
N˝2

// P˝2
�1 1CT

// P˝2
�1 1CT

// P˝2
�1 1CT

// : : :
1CT
// P˝2
�1 "˝2

// k

By definition, the class of � in H i Hom. xP ; k/Š yH�1�i.G/ represents Qi.'/. The
commutative diagram then shows the claim by Remark 4.11.

Proposition 5.5 Let G be a finite group of order divisible by pD2, and let �W k!kG

be the norm map. If ˛W kG˝2! k is a map for which

k
�˝2

���! kG˝2 ˛
�! k

is a complex, then that complex represents
P

g2G ˛.1˝g/ 2 k D yH�1.G/.

Proof Let b D
P

g ˛.1˝g/; then the result follows from the commutative diagram

k
�˝2
// kG˝2

˛
// k

k
�
//

b
��

kG
b"
//

1˝�

OO

b
��

k

k
�
// kG

"
// k

and Example 4.4 and Proposition 4.9.

Proposition 5.6 Suppose that � 2 †n satisfies �2 D 1 and � ¤ 1, and let K be a
finite group. Define the map f W Z=2Z�K!†n oK to be .u;g/ 7! .�uIg;g; : : : ;g/.
Then there is some m � 1 such that for every x 2 H i.K/ we have f �.x˝n/ D

xn�2m
�Pjxj

rD0
Sqr .x/zjxj�r

�m , where H�.Z=2Z/D kŒz�.
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Proof We can assume that � is of the form .1 2/ .3 4/ � � � .2m� 1 2m/ for some
m. For every i and every group L denote by ‰i;L the map L! †i oL given by
l 7! .idI l; l; : : : ; l/. Let h be the composition

Z=2Z�K!†2 oK
‰m;†2oK

������!†m o .†2 oK/ ,!†2m oK;

the first map being given by .uIg/ 7! .�uIgIg/, where � is the generator of †2 . Also
let j be the composition

Z=2Z�K
proj
��!K

‰n�2m;K

������!†n�2m oKI

then we get a composition

Z=2Z�K
h�j
���!†2m oK �†n�2m oK ,!†n oK

which equals f . Now let x 2H i.K/; then x˝n 2H ni.†n oK/ restricts to

.x˝2m/˝ .x˝.n�2m// 2H ni.†2m oK �†n�2m oK/:

Now

h�.x˝2m/D res‰�m;†2oK
..x˝2/˝m/D .res x˝2/m D

�
normK ;Z=2Z�K .x/

�m
:

On the other hand, j �.x˝.n�2m//D xn�2m , so it remains to show that

normK ;Z=2Z�K .x/D

jxjX
rD0

Sqr .x/zjxj�r ;

which is done, eg, in [1, Section 4.4]; note that this can actually be used to define the
Steenrod operations on ordinary group cohomology.

Consider the augmentation k†n ! k as an augmented chain complex; then the
augmented chain complex k†n˝ k†n! k is a chain complex of right †2 �†n –
modules, where †n acts diagonally and †2 acts by permuting the factors. Let W

be the standard free resolution of k as trivial k†2 –module. By endowing W with a
trivial right †n –action, we can consider W ! k and hence also W ˝k†n˝k†n! k

as augmented chain complexes of right †2 �†n –modules. As such the latter consists
entirely of free modules, and we can therefore lift the identity map of k to a map of
chain complexes # W W ˝k†n˝k†n!W ˝n , where †n acts on W ˝n by permuting
the factors and †2 acts diagonally. Finally note that k†n is a right †n oK–module
via the projection map †n oK ! †n , and kK˝n is also a right †n oK–module.
Therefore the tensor product k†n˝kK˝n is a right k.†n oK/–module, which is free
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of rank one. We can now form the following map � of augmented chain complexes
over k.†n oK/:

W ˝†2
.k.†n oK//

˝2 Š //

� ))

W ˝†2
.k†n˝kK˝n/˝2 Š // .W ˝k†n˝k†n/˝†2

.kK˝n/˝2

#˝twist
��

.W ˝†2
kK˝2/˝n W ˝n˝†2

.kK˝2/˝n

twist
oo

In the following, we consider triples .E; x̌; x
 / where E ! k is an exact sequence
k D Ei ,! Ei�1 ! � � � ! E0 � k of kK–modules, x̌W W ˝†2

kK˝2 ! E is
a map of augmented chain complexes, and x
 is defined to be x
 D x̌˝n ı � . Then
x
 W W ˝†2

.k.†n o K//
˝2 ! E˝n is a map of augmented chain complexes over

k.†n oK/. Define ˇ to be the composite

kK˝2
ŠWi ˝†2

kK˝2
x̌

i
�!Ei D k;

and similarly define 
 W k.†n oK/
˝2 ! k . Furthermore, for every group L let us

define the subset L0 D fl 2L j l2 D 1g �L.

Proposition 5.7 If .E; x̌; x
 / is a triple as above, thenX
g2K

ˇ.1˝g/D
X

g2K 0

ˇ.1˝g/ and
X
l2L


 .1˝ l/D
X
l2L0


 .1˝ l/:

Proof The formula

.5:8/ x̌
i.w˝†2

.g˝ h//D ".w/ˇ.g˝ h/;

holds because it is true for w D 1 2 †2 and for w D 1 � � 2 k†2 (where � is
the generator of †2 ) since x̌ is a chain map. The formula implies that ˇ.1˝ g/D

ˇ.g˝1/D ˇ.1˝g�1/, and therefore
P

g2K ˇ.1˝g/D
P

g2K 0 ˇ.1˝g/. The same
proof applies to 
 .

Proposition 5.9 There exist constants cn;i;� (for all � 2 †n ), not depending on K ,
with the following property: for all triples .E; x̌; x
 / as above and all elements g D

.�; k1; k2; : : : ; kn/ 2†n oK we have that


 .1˝g/D cn;i;� �ˇ.1˝ k1/ � � �ˇ.1˝ kn/:

Some of the constants will be determined later in Proposition 5.13.

Algebraic & Geometric Topology, Volume 12 (2012)



Dyer–Lashof operations on Tate cohomology of finite groups 857

Proof We can write #ni.1˝ 1˝ �/D
P

s ws;1˝ � � �˝ws;n where ws;j 2W . Then

 .1˝g/ equals


 .1˝g/D
X

s

x̌˝n
��
ws;1˝†2

.1˝ k1/
�
˝ � � �˝

�
ws;n˝†2

.1˝ kn/
��
:

If the degree of one of the ws;j is bigger than i , then the corresponding s–th summand
vanishes because x̌ is the zero map. Therefore, we are only interested in the case
where all ws;j are of degree i , in which case we can simplify by (5.8)


 .1˝g/D
�X

s

".ws;1/ � � � ".ws;n/
�
�ˇ.1˝ k1/ˇ.1˝ k2/ � � �ˇ.1˝ kn/

D cn;i;� �ˇ.1˝ k1/ˇ.1˝ k2/ � � �ˇ.1˝ kn/;

where cn;i;� is some constant in k not depending on the group K .

Proposition 5.10 Let L be any finite group, and suppose that f W L!†n oK is an
injective group homomorphism and c 2 k is some constant. Suppose that for all triples
.E; x̌; x
 / as above we have that c �

P
g2K ˇ.1˝g/D

P
l2L 
 .1˝f .l//. Then for

all x 2H i.K/ the formula Q�nif
�.x˝n/D c �f �.Q�i .x/

˝n/ 2H 0.L/ holds.

Proof We may assume that the order of both K and L is divisible by p D 2. Then
we identify yH 0.K/ and yH 0.L/ with k , so that we have to prove

Q�ni f
�.a˝n/D c �Q�i .a/

for all a 2 H i.K/ (recall that k D F2 ). Let E be an exact sequence representing
a 2H i.K/. Since the modules of the augmented complex W ˝ kK˝2! k are free,
we can lift the identity of k to a chain map x̌:

k
�2
// kK˝2

1CT
//

ˇ

��

kK˝2
1CT

//

��

� � �
1CT
// kK˝2

"2
//

��

k

k // Ei�1
// � � � // E0

// k

Here �W k! kK is the norm map, and the upper row represents Qi.�/ 2 yH
�1�i.K/

for the generator � 2 yH�1.K/ (by Proposition 5.4). Due to Proposition 4.8 the product
Qi.�/a 2 yH

�1.K/ is represented by the complex

k
�2

�! kK˝2 ˇ
�! k:
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Therefore, by Proposition 5.5, Qi.�/aD
P

g2K ˇ.1˝g/� and hence

.5:11/ Q�i .a/D
X
g2K

ˇ.1˝g/ 2 k:

As before, we get a triple .E; x̌; x
 / in such a way that the diagram of kL–modules

k
�2

// kL˝2
1CT

//

.kf /˝2

��

kL˝2
1CT

//

��

� � �
1CT

// kL˝2
"2

//

��

k

k.†n oK/
˝2

1CT
//




��

k.†n oK/
˝2

1CT
//

��

� � �
1CT

// k.†n oK/
˝2 "2

//

��

k

k // .E˝n/ni�1
// � � � // .E˝n/0

// k

commutes, where �W k!KL is the norm map, such that the upper row represents
Qni.�/2 yH

�1�ni.L/, where �2 yH�1.L/ is the generator. As above, Propositions 4.8
and 5.5 show that Qni.�/f

�.a˝n/D
P

l2L 
 .1˝f .l//�, so that

.5:12/ Q�ni.f
�.a˝n//D

X
l2L


 .1˝f .l// 2 k:

Combining formulas (5.11) and (5.12) we get the desired result.

We will now exploit this fact for several maps f .

Proposition 5.13 The constants cn;i;� satisfy

cn;i;id D 1;.5:14/
cn;i;� D 0 if �2

D 1 and � ¤ id,.5:15/
cn;i;� D cn;i;��1 for all � ..5:16/

Proof of Proposition 5.13 and Theorem 5.1 As a first step, take L D K and let
f W K!†n oK be given by g 7! .idIg; : : : ;g/ for all g 2K . Then xn D f �.x˝n/,
and the computationX

g2K


 .1˝f .g//D
X
g2K


 .1˝ .idIg; : : : ;g//D cn;i;id

X
g2K

ˇ.1˝g/n

D cn;i;id

X
g2K

ˇ.1˝g/
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shows that Q�i .x/D cn;i;idQ�ni.x
n/ 2H 0.K/. If we put K D Z=2Z, then the com-

putations in Example 1.2 show that the constant cn;i;id equals 1, so we have proved
(5.14) and Theorem 5.1(3).

As a second step, let us take L D Z=2�K and let f W Z=2Z�K ! †n oK to be
given by .u;g/ 7! .�uIg;g; : : : ;g/, where � 2†n is some fixed element of order 2.
Then X

g2Z=2Z�K


 .1˝f .g//D
X
g2K


 .1˝ .idIg; : : : ;g//C 
 .1˝ .� Ig; : : : ;g//

D .1C cn;i;� /
X
g2K

ˇ.1˝g/:

We take KDZ=2Z, but we keep the notation K in order to distinguish from the other
factor Z=2Z. We have H�.K/Š kŒx� and H�.Z=2Z/Š kŒz� for one-dimensional
classes x and z . By Proposition 5.6, we know that f �..xi/˝n/ D f �.x˝n/i D

x.n�2m/i.x2Cxz/mi . By the computations in Example 1.8, applying Q�ni to such a
polynomial in x; z equals the sum of the evaluations of that polynomial at .x; z/D
.1; 1/, .0; 1/ and .1; 0/; therefore, Q�ni.f

�..xi/˝n// D 1 2 H 0.Z=2Z �K/. This
implies (5.15).

In order to prove (5.16), take a situation in which l 2 K is of order 2, and ˇ is
such that ˇ.1˝ l/ ¤ 0. Then put g D .� I l; l; : : : ; l/ and the result follows from

 .1˝g/D 
 .1˝g�1/. Up to this point, we have proved Proposition 5.13 completely.

Now we prove Theorem 5.1(1). Take f W L!†n oK to be the identity map of †n oK

and computeX
gD.� Ik1;:::;kn/2†noK


 .1˝g/D
X
�

cn;i;� �

X
k1;:::;kn2K

ˇ.1˝ k1/ˇ.1˝ k2/ � � �ˇ.1˝ kn/

D

X
�

cn;i;�

� X
g2K

ˇ.1˝g/

�n

:

By Proposition 5.13,
P
�2†n

cn;i;� D 1, which proves Theorem 5.1(1).

Let � W †n oK!†n be the projection map. For the proof of Theorem 5.1(2), choose a
set fgig of coset representatives of K in G with the property that all the gi ’s commute
with all elements of order 2 in K . Then for each g 2 G , there are unique elements
k1; : : : ; kn 2K and � 2†n such that ggj Dg�. j/kj for all j , and we get an injection
f W G ,! †n oK by g 7! .� I k1; : : : ; kn/. Then normK ;G.x/ D f

�.x˝n/, and we
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need to investigateX
g2G


 .1˝g/D
X

g2G0


 .1˝g/ by Proposition 5.7

D

X
g2G0

�.f .g//Did


 .1˝g/ by (5.14) and (5.15).

But if �.f .g//D id, then ggj D gj kj for all j , which means ggj D kj gj for all j

by our condition on K . Therefore, we get g D kj for all j , so that g 2 K and
f .g/D .idIg;g; : : : ;g/. Conversely, if g 2K , then f .g/D .idIg;g; : : : ;g/ by our
condition on K . Therefore,X

g2G


 .1˝g/D
X

g2K 0


 .1˝ .idIg;g; : : : ;g//D
X

g2K 0

ˇ.1˝g/n D
X

g2K 0

ˇ.1˝g/:

This proves (2) of Theorem 5.1.

Example 5.17 Let us work out in detail the operations Q on the generator of yH�1.G/

in the case G DD8 , the dihedral group with 8 elements. The structure of the cohomol-
ogy ring H�.G/ is known to be H�.G/Š kŒa; b; c�=.ab/ where jaj D jbj D 1 and
jcj D 2 (see, eg, Carlson [5, Theorem 7.8]). From Benson and Carlson [2, Theorem 3.1
and Lemma 2.1] we get that yH�.G/ � yH�.G/ D 0 and that yH n.G/ � yH m.G/ D 0

for n < 0 � nCm. Consider the k –basis faicj ; bicj gi;j�0 of H�.G/ and let us
define f'ai cj ; 'bi cj g to be the dual basis; in particular, '1 is the canonical generator
of yH�1.G/. Using Tate duality, one derives the relations

c'ai cj D

�
'ai cj�1 if j > 0,
0 otherwise,

a'ai cj D

�
'ai�1cj if i > 0,
0 otherwise,

a'bi cj D 0;

and similarly for a and b interchanged. All these facts together completely determine
the multiplicative structure of yH�.G/.

From Q1.'1/ D '
2
1
D 0 we get that Q�

1
W H 1.G/! H 0.G/ is zero. Therefore, by

Theorem 5.1(3), we get Q�
2
.a2/DQ�

2
.b2/D 0. Now notice that G Š†2 oZ=2Z, so

that Theorem 5.1 implies that Q�
2
W H 2.G/!H 0.G/ is onto and hence Q�

2
.c/D 1.

We have therefore determined Q2.'1/ D 'c . More generally, note that Q.'1/ D

Q.a'a/ D Q.a/Q.'a/ D .aC a2/Q.'a/ is divisible by a and, by symmetry, also
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by b . This fact already implies that Qi.'1/ is a multiple of 'cj for some j . Together
with Q�

2i
.ci/DQ�

2
.c/i D 1 we get

Q2i.'1/D 'ci for i � 1,

Q2iC1.'1/D 0 for i � 0.

Remark 5.18 Let us prove that Theorem 5.1(2) is not true for arbitrary subgroups K

of G . Take K D Z=2Z�Z=2Z and G D D8 , and let us write norm for normK ;G .
We know that H�.K/Š kŒx;y� for some one-dimensional classes x;y . Suppose that
Theorem 5.1(2) would hold in that case. Then Q�

2
.norm.x//D norm.Q�

1
.x//D 0, so

that norm.x/ D ˛a2C ˇb2 for some ˛; ˇ 2 k . Similarly, norm.y/ D ˛0a2C ˇ0b2

for some ˛0; ˇ0 2 k . But then norm.xy/D norm.x/ norm.y/D ˛˛0a4Cˇˇ0b4 and
hence

0DQ�4.norm.xy//¤ norm.Q�2.xy//D norm.1/;

a contradiction.

6 Productive elements at the prime 2

We are now going to give the proof of Theorem 1.12, which relies on the following
commutative diagram.

Proposition 6.1 Under the conditions of Theorem 1.12, the following diagram com-
mutes stably:

�nk˝L�
�˝id

//

id˝�
��

L�

�nk˝�nk
Sq1.�/

// �k

�

OO

Proof of Theorem 1.12 We assume that Œ��¤0. If Sq1.�/ is divisible by � , then there
is a map ˛W �nk˝�nk!�nC1k such that Sq1.�/D�˛ . But then �Sq1.�/D��˛D0

because �� D 0. By Proposition 6.1 we get that � is productive.

Conversely, suppose that � is productive, so that �Sq1.�/�.id˝�/D0 by Proposition 6.1.
Since the triangle

�nk˝L�
id˝�
���!�nk˝�nk

id˝�
���!�nk
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is exact, we get that �Sq1.�/D � � .id˝�/ for some map �W �nk! L� . When we
apply the homological functor HomkG.�

nk;�/ to the triangle (1.11), we get a long
exact sequence

HomkG.�
nk; �k/

��
�!HomkG.�

nk;L�/
��
�!HomkG.�

nk; �nk/
��
�!HomkG.�

nk; k/:

Here �� can be viewed as � �W yH 0.G/! yH n.G/ which is injective because the class Œ��
is nonzero. By exactness, �� D 0 and �� is surjective. In particular, �D �� for some
map �W �nk!�k . Altogether we have that

�.Sq1.�/� �.id˝�//D �.id˝�/� ��.id˝�/D 0;

and therefore Sq1.�/� �.id˝�/D �� for some map � W �nk˝�nk!�nC1k . But
then Sq1.�/D Œ��Œ��C Œ��Œ� �, so that Sq1.�/ is divisible by Œ��.

Remark 6.2 Before we start proving that the diagram commutes, let us draw some
analogies to the topological world. Let us define k=� to be some choice of cone of
�W �nk! k . Then the commutative square of Proposition 6.1 is a shift of the diagram
on the left-hand side:

�nk˝ k=�
�
//

��

k=� S=2
2
//

pinch
��

S=2

�nk˝�n�1k
Sq1.�/

// k

OO

†S �
// S

incl

OO

Note the similarity to the topological situation on the right-hand side, which takes place
in the stable homotopy category. Here, S denotes the sphere spectrum, S=2 is the
mod–2–Moore spectrum, a cone of multiplication by 2 on S , and �D Sq1.2/ is the
Hopf map.

The rest of this section is devoted to the proof of Proposition 6.1. Let pD 2, and let G

be a finite group. Let P be a complete projective resolution of the trivial kG –module k ,
and let this resolution define the modules �nk .

Proposition 6.3 There is an unstably commutative diagram

�nk˝�nk // Q //

��

k

�nk˝�nk
1CT

// �nk˝�nk
�˝2

// k

in which Q is projective, and the upper row is a complex representing Sq1.�/ 2
yH 2n�1.G/.
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Proof We use the operad C given in Section 2.3 for the definition of Sq1.�/. Choose a
morphism of augmented †2 –chain complexes �W W !C.2/, where W is the standard
free resolution of k as trivial †2 –module. When we consider �nk as a chain complex
concentrated in degree 0, then the differential of P induces a chain map �nW P!�nk

of degree n. Let �i D�.ei/, where ei is the generator of Wi . We get a commutative
diagram

P
�0

//

�2n

��

P�2

��2
n
��

1CT
// P�2

��2
n
��

�2nk
 

// .�nk/˝2

1CT
// .�nk/˝2

where  is a stable equivalence and the upper row equals d�1 . Since �n is a chain
map, this diagram restricts to the following commutative diagram in dimension 2n:

P2n
@
//

�2n

��

P2n�1

�1
// .P�2/2n

��2
n

��

�2nk
 

// .�nk/˝2

1CT
// .�nk/˝2

We define �D ��2
n ı�1 ; then �˝2 ı�W P2n�1! k represents Sq1.�/ by definition.

Since  is a stable equivalence, we can choose a map !W .�nk/˝2!�2nk such that
 ! � id factors as

 ! � idW .�nk/˝2 ˛
�!R

ˇ
�! .�nk/˝2

for some projective module R. Then we have a commutative diagram

�2nk
incl

// P2n�1

�˝2ı�
// k

�nk˝�nk

�
inclı!
˛

�
//

!

OO

P2n�1˚R

.�; .1CT /ıˇ/

��

.�˝2ı�; 0/
//

.id; 0/

OO

k

�nk˝�nk
1CT

// �nk˝�nk
�˝2

// k

proving the claim.
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Proof of Proposition 6.1 Define the map �W �nk ˝ �nk ! L� by a ˝ b 7!

�.a/bC �.b/a. Then the upper left triangle in the diagram

�nk˝L�
�˝id

//

id˝�
��

L�

�nk˝�nk

�

99

Sq1.�/

// �k

�

OO

commutes, and we want to show that the bottom right triangle also commutes. To do
so, we extend the diagram of Proposition 6.3 as follows:

�nk˝�nk // Q //

��

k

�nk˝�nk
1CT

//

�
��

�nk˝�nk
�˝2

//

�˝id
��

k

L� �
// �nk

�

// k

The bottom row is an extension representing Œ�� 2 Ext1
kG
.k;L�/, so we are done

by Proposition 4.5.
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