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On the universal s/, invariant of boundary bottom tangles

SAKIE SUZUKI

The universal s/, invariant of bottom tangles has a universality property for the
colored Jones polynomial of links. A bottom tangle is called boundary if its compo-
nents admit mutually disjoint Seifert surfaces. Habiro conjectured that the universal
sl, invariant of boundary bottom tangles takes values in certain subalgebras of
the completed tensor powers of the quantized enveloping algebra Uy (s/;) of the
Lie algebra s/,. In the present paper, we prove an improved version of Habiro’s
conjecture. As an application, we prove a divisibility property of the colored Jones
polynomial of boundary links.

57TM27; 5TM25

1 Introduction

In the 80s, Jones [9] constructed a polynomial invariant of links. After that, Reshetikhin
and Turaev [20] defined an invariant of framed links whose components are colored
by finite dimensional representations of a ribbon Hopf algebra. The colored Jones
polynomial is the Reshetikhin—Turaev invariant of links whose components are colored
by finite dimensional representations of the quantized enveloping algebra Uy (s/5).

The universal invariant associated with a ribbon Hopf algebra is an invariant of framed
links and tangles whose components are not colored by any representations; see
Hennings [8], Lawrence [13; 14], Reshetikhin [20], Ohtsuki [19], Kauffman [11]
and Kauffman and Radford [12]. The universal invariant has the universality property
for the Reshetikhin—Turaev invariant. By the universal sl, invariant, we mean the
universal invariant associated with Uy(s/,). In particular, one can obtain the colored
Jones polynomial from the universal s/, invariant.

A bottom tangle is a tangle consisting of arc components in a cube such that each
boundary point is on the bottom line, and the two boundary points of each component
are adjacent to each other; see Figure 1(a) for example. We can define the closure link
of a bottom tangle; see Figure 1(b). For each link L, there is a bottom tangle whose
closure is L. In [5], Habiro studied the universal invariant of bottom tangles associated
with a ribbon Hopf algebra, and in [7], he studied the universal s/, invariant in detail.
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998 Sakie Suzuki

Figure 1. (a) A bottom tangle 7" (b) The closure link of T

The universal s/, invariant of 7—component bottom tangles takes values in the com-
pleted n—fold tensor power Uy, (sl,)®" of Uy (sl,). By using bottom tangles, we can
restate the universality of the universal s/, invariant: the colored Jones polynomial of
alink L is obtained from the universal s/, invariant of a bottom tangle whose closure
is L, by taking the quantum traces associated with the representations attached to the
components of links (cf [5]).

We are interested in relationships between the algebraic properties of the colored Jones
polynomial and the universal s/, invariant and the topological properties of links and
bottom tangles.

Eisermann [2] proved that the Jones polynomial of an n—component ribbon link is
divisible by the Jones polynomial of the n—component unlink. Habiro [4] generalized
this result to links which are ribbon concordant to boundary links. Habiro [7] also
proved that the universal s/, invariant of n—component, algebraically split, 0—framed
bottom tangles takes values in certain small subalgebras of the completed tensor
powers of Uy(sly), and gave a divisibility property of the colored Jones polynomial of
algebraically split, 0—framed links.

In [23], the present author proved improvements of Habiro’s results for algebraically
split, 0O—framed bottom tangles and links, in the special case of ribbon bottom tangles
and ribbon links.

In the present paper, we study the universal s/, invariant of boundary bottom tangles.
A bottom tangle is called boundary if its components admit mutually disjoint Seifert
surfaces; see Figure 2 for example. We can obtain each boundary link from a boundary
bottom tangle by closing. Habiro [7] conjectured that the universal s/, invariant of
boundary bottom tangles takes values in certain subalgebras of the completed tensor
powers of Uy, (s/,). We prove an improved version of Habiro’s conjecture (Theorem 1.2),
and give a divisibility property of the colored Jones polynomial of boundary links
(Theorem 1.6).
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Figure 2. A boundary bottom tangle

1.1 Main result

The quantized enveloping algebra Uy, = Uy(sl,) is an h—adically completed Q[[A]-
algebra (see Section 2.2 for the details). We set ¢ = exph.

Habiro [7] proved that the universal s/, invariant J7 of an n—component, algebraically
split, O—framed bottom tangle 7" is contained in the Z[q,q 1]—subal‘gebra (Z/ICV)®”
of U} 81 1n [23], we defined another Z[q, ¢~ ']-subalgebra (Us Jevy®n (Z/lev)‘g’”
and prove the following theorem. (See Section 2.3 for the deﬁnltlon of U;V and see
Sections 6.1-6.4 for the definition of the completion (U;V)A®" of (U;V)®” )

Theorem 1.1 [23] Let T be an n—component ribbon bottom tangle with 0—framing.
Then we have Jr € (U;V)A®".

The main result of the present paper is the following.

Theorem 1.2 Let T be an n—component boundary bottom tangle with 0—framing.
Then we have Jp € (U;V)'@".

Remark 1.3 Habiro [7, Conjecture 8.9] conjectured Theorem 1.2 with (Ug eV)A®"
replaced with the Z|[q, q_l] —subalgebra (U evy~®” " which includes (U eV)A®” The
definition of our algebra (U evy~®n appears to be more natural than that of Uy e")'“®”

though we do not know whether the inclusion (U, "‘V)A®" C (U vy ®n i proper or not.

Since every 1—component bottom tangle is boundary, Theorem 1.2 for n =1 gives a
possible improvement of the following theorem.

Theorem 1.4 (Habiro) Let T' be an 1—component bottom tangle with 0—framing.
Then we have Jr € (Ug")"~
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Theorem 1.4 follows from [7, Theorem 4.1] and the equalities

nv(@Uf") = ZUg") = Z(T)N.
which is implicit in [6, Section 9]. Here, for a subset X C Uy, we denote by Inv(X)
the invariant part of X, and by Z(X) the center of X .

If we use the one-to-one correspondence described in [5, Section 13] between the set of
bottom tangles and the set of string links, then we can define the Milnor p invariants
[17; 18] of a bottom tangle as that of the corresponding string link. See [3] for the
Milnor p invariants of string links. In fact, all the Milnor px invariants vanish both
for ribbon bottom tangles and for boundary bottom tangles. It is natural to expect the
following conjecture.

Conjecture 1.5 Let T be an n—component bottom tangle with 0—framing with van-
ishing all the Milnor v invariants. Then we have Jr € (U;V)A®”.

The converse of Conjecture 1.5 is also open.

1.2 Application to the colored Jones polynomial

We give an application (Theorem 1.6) of Theorem 1.2 to the colored Jones polynomial
of boundary links. This result is parallel to the result in [23] for ribbon links.

We use the following g—integer notation:
itg=q"—1. {ijgn={i}qli —Lg--{i—n+1}q. {n}g!={njgn.
L R M | T P M I S i

fori e Z,n>0.

For m > 1, let V},, denote the m—dimensional irreducible representation of Uj,. Let
‘R denote the representation ring of Uy over Q(ql/ 2),ie, R is the Q(ql/ 2)—algebra

R = Spang1/2){Vm | m = 1}

with the multiplication induced by the tensor product. It is well known that R =
Qg [Val.

For [ > 0, set
-1
Pl — H(VZ_qi+l/2 _q—i—l/Z) c R,
i=0

~, g/
/_
P = —{l}q! P eR,
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which are used in [7] to construct the unified Witten—Reshetikhin—Turaev invariants for
integral homology spheres. We denote by J;.5 5 the colored Jones polynomial
) ]17"'7 In

of L with 7 —th component L; colored by ﬁl/ . Habiro proved that Theorem 1.2 implies
the following result.

Theorem 1.6 [7, Conjecture 8.10] Let L be an n—component boundary link with
0—framing. For [ > 0, let I; denote the ideal in Z[q, q~ '] generated by {I —k}4!{k},!
fork=0,...,]. Forly,...,I, >0, we have

26+ 1,11 ~
JL;f,’l ..... ﬁ]’n ET ll"'[lj"'[ln,

where j is an integer such that [; = max{/; }1<;<y, and flj denotes the omission of Ij; .

Remark 1.7 For m > 1, let &, = ]_[d|m(qd — 1)#m/d) ¢ 714] denote the m—th
cyclotomic polynomial, where [ | d|m denotes the product over all the positive divisors d
of m, and p is the Mobius function. In [22], we proved that for / > 0, the ideal I;
is the principal ideal generated by [,,,>; CD;’,"” with 17, = max{0, [(/ +1)/m] — 1},
where, for r € Q, we denote by |r ]| the largest integer smaller than or equal to 7.

Theorem 1.6 is an improvement of the following result in the special case of boundary
links.

Theorem 1.8 (Habiro [7, Theorem 8.2]) Let L be an n—component, algebraically

split link with O—framing. For [, ...,l, > 0, we have
J ~ _ c {2]] + l}q,lj+1 [ _1]
L;Pl/l""’Pl/n {l}q ’q )

where j is an integer such that [; = max{/; }1<;<n.

1.3 Examples

Let Tp be the Borromean bottom tangle depicted in Figure 3(a), whose closure is
the Borromean rings. Since we have Jr, ¢ ((7;")”83 (cf [23]), it follows from
Theorems 1.1 and 1.2 that the Borromean rings is neither boundary nor ribbon, as is
well known.

More generally, for n > 3, let M,, be Milnor’s n—component Brunnian link depicted
in Figure 3(b). Note that M3 is the Borromean rings. Since there is a nontrivial
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Milnor p invariant of M, of length n (cf [17]), M}, is neither boundary nor ribbon.
We can prove this fact also from Theorem 1.6 and

IngyiBp,. 5 = CD"2TRR(@) T2 00(g) P 03 (9) alg)"
£ D1(q)" P2(q)P3(0)Zlg. g '],

which we will prove in a forthcoming paper [21].

(@) (b)
Figure 3. (a) Borromean rings (b) Milnor’s link M,

1.4 Organization of paper

The rest of the paper is organized as follows. Section 2 contains preliminary results
about bottom tangles, the quantized enveloping algebra Uy, and the universal s/,
invariant of bottom tangles. In Section 3, we recall from [7] Habiro’s formula for the
universal s/, invariant of boundary bottom tangles, and then give a modification of his
formula. In Sections 4, 5, and 6, we prove Theorem 1.2.

2 Preliminaries

In this section, we give preliminary results about bottom tangles, the universal envelop-
ing algebra Uy, and the universal s/, invariant of bottom tangles.

2.1 Bottom tangles and boundary bottom tangles

A tangle (cf [10]) is the image of an embedding

(]m_[[o, 1]) U (ﬁsl) < [0, 173,

with m,n > 0, whose boundary is on the two lines [0, 1] x {%} x {0, 1} on the bottom
and the top of the cube; see Figure 4(a) for example. We equip the image with both an
orientation and a framing. Here, at each boundary point, the framing is fixed on the
lines [0, 1] x {%} x {0, 1} as in Figure 4(b), where the thin arrows represent the strands
of the tangle, and the thick arrows represent the framing.
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(b)
Figure 4. (a) A tangle (b) The framing on the boundary

A bottom tangle (cf [5; 7]) is a tangle consisting of arc components such that each
boundary point is on the line [0, 1] x {%} x {0} on the bottom, and the two boundary
points of each component are adjacent to each other. We give a preferred orientation of
the tangle so that each component runs from its right boundary point to its left boundary
point. For example, see Figure 5(a), where the dotted lines represent the framing. We
draw a diagram of a bottom tangle in a rectangle assuming the blackboard framing;
see Figure 5(b).

For each n > 0, let BT, denote the set of the ambient isotopy classes, relative to
boundary points, of #—component bottom tangles.

The closure link cI(T) of a bottom tangle T is defined as the link in R? obtained
from 7 by closing; see Figure 1 again. For each n—component link L, there is an
n—component bottom tangle whose closure is L. For a bottom tangle, we can define
its linking matrix as that of the closure link.

A Seifert surface of knot K is a compact, connected, orientable surface F in R3
bounded by K. An n—component link L = L U---U L, is called boundary if it
has # mutually disjoint Seifert surfaces Fj,..., F, in R3 such that L; bounds F; for
i=1,...,n.

Figure 5. (a) A 3—component bottom tangle 7" (b) A diagram of T

For a 1-component bottom tangle 7' € BT, there is a knot K7 = T Uy €0, 1]?,
where y is the line segment in the bottom [0, 1] x {%} x {0} such that dy = dT.
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A Seifert surface of a 1-component bottom tangle 7" is a Seifert surface of the knot K7
contained in [0, 1]*. A bottom tangle 7" = T} U---U T}, is called boundary if it has n
mutually disjoint Seifert surfaces Fj, ..., F, in [0, 1]* such that K7, bounds F; for
i =1,...,n. For example, see Figure 2 again. Obviously, for each boundary link L,
there is a boundary bottom tangle whose closure is L.

2.2 Quantized enveloping algebra U,

We recall the definition of the universal enveloping algebra U (sl,) of the Lie alge-
bra s/,, and its ribbon Hopf algebra structure. We follow the notation of Habiro [7].

We denote by Uy = Up(sl,) the h—adically complete Q[[/x]—algebra, topologically
generated by H, E, and F, defined by the relations

K—K!

HE—-FH=2FE, HF-FH=-2F EF—-FF=——F———,
ql/2 —g—1/2

where we set

hH
g=exph. K=g"?=exp—-.

We equip Uy, with the topological Z—graded algebra structure such that deg £ =1,
deg F = —1, and deg H = 0. For a homogeneous element x of Uy, the degree of x
is denoted by |x|.

There is a complete ribbon Hopf algebra structure on Uy, as follows. The comultiplica-
tion A: Uy, = U,®Uj,, the counit &: U — Q[[A]], and the antipode S: Uy, — Uy, are
given by
A(H)=H®1+1Q®H, e(H)=0, S(H)=-H,
AE)=E®1+KQE, e(E)=0, S(E)=-K'E,
AF)=FQK '+1®F, &F)=0, S(F)=-FK.

Set

1/YH®H h ®2
(1) D =qWVHSH — oxp (b @ H) e U2,
2) FM = F"K" [[n],! € Uy,
3) e=(q"?—q7HE €Uy,
for n > 0.
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The universal R—matrix and its inverse R¥! € U,®Uj, are given by
R=D Zq(l/Z)n(n—l)F(n)K—n ®en’
n=0
R'=D7' Y (—1)"FW @ K",
n=0

We have R*! = Y on>0 a,:f ® ,33:, where for n > 0, we set formally

oy ® Bu( =y ®B,) = D(q/P"DFW KT "),

ay, ® By =D ((=1)"F™ @ K™"e).
Note that the right hand sides are infinite sums of tensors of the form as x ® y with
x, y € Uy. We denote them by oz,jf ® ,B,j'E for simplicity.

+

The ribbon element and its inverse r=! € U}, are central elements given by

r= Zan_K_l,Bn_ = Z,B;Kan_, = ZanK,B,, = Z,B,ZK_lan.
n=0 n=0 n=0 n=0

We use a notation D =) D’ ® D”. We use the following formulas.

@ Y D'®D =D,

6)) (A®1)D = D3 D3, (18 A)D = Dy3D15,

(©6) (e®1)(D)=1=(1®¢)(D),

N (1®S)D=D"'=(S®1)D,

@®) D(1®x) = (K*®x)D, D(x®1) = (x® K™D,

where Dj3=) D'®1® D", D,3=1® D, D;; =D®]1, and x € U, homogeneous.

2.3 Subalgebras of U,

In this section, we recall from [7] the subalgebras Uz 4, Uq and 17;" of Uy,. Recall
from (2) and (3) the definitions of F® € U}, and e € Uy, respectively. Similarly, set

E® = (¢7'2E)"/Inly € Uy,
[ =(@-1)FK €U,

for n > 0.

Let Uz, denote the Z[g,q~!]-subalgebra of U, generated by K, K~ E™ and
F® forn>1.
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Let Uq denote the Z[q, g~ !]-subalgebra of Uz,q generated by K, K ~l eand f. Let
Ug" be the Zlg, ¢~ 1]-subalgebra of U, generated by K2, K~2,¢ and f.
Remark 2.1 Forie€Z,n>0, set
i/2 _ —i/2
24" —q
[i]= m [n]! = [n]---[1].

Let Uz be the Z[q'/2, ¢~ 1/2]-subalgebra of Uj, generated by K, K~', E® =
E"/[n]!, and F® = F"/[n]! for n > 1 (Lusztig’s integral form; cf [15]). We have

Uz =Uz,4®z14.4-1] Zlg'? . g7 2.

Let U be the Z[g'/2, g~1/2]-subalgebra of Uy, generatedby K, K~!, (¢'/2—¢~1/2)E
and (¢/2 —q~Y/2)F (ct [1]). We have

U=U;®z154-112l¢"*.q72]

There is a Hopf Z[q, ¢~ ']-algebra structure on Uz, inherited from Uy, (cf [15; 23]).
We have

m

© AE™) =" Em=D gl @ EO),

Jj=0

~ m ~ . . ~ .

(10) A(F™) = 3" Fm=D kT @ FO),

Jj=0
(11) S:i:l(E'(m)) — (_l)mq(l/z)m(m¢1)K—mE‘(m)’
(12) SELFm)Y — (_1ymg=(1/DmmF1) g—m p(m)

for i € Z,m > 0. Similarly, there is a Hopf Z[q, ¢~ !]—algebra structure on (7q inherited
from Uy (cf [1; 7).

Let U, 9 denote the Cartan part of Uy, ie, the subalgebra of Uj, topologically generated
by H. Let U 9 denote the Z[q, g~ !]- —subalgebra of Uq generated by K and K~ Let
Uy U0 be the Z[q g~ ']-subalgebra of Uq generated by K2 and K—2. We have

Ul =U0,nUp. U =0"nUy.
2.4 Adjoint action

In what follows, we use the following notation. For m > 0, let Alml. U, - U h@m
denote the m—output comultiplication defined by Al = ¢ Al = idy, , and

A = (A ®idF" %) 0 AT,
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for m > 2. For x € Uy, m > 1, we write
AlMl(x) = ZX(I) ®: ® X(m)-
For mq,...,m; >0, set
(13) Almmi] - Almil g ... Almil; g, g &mtetm
We use the left adjoint action ad: U, QUj, — Uy, defined by
(14) adx®y)=xp>y:= ZX(I)yS(x(z)),

for x, y € Uy,. We use the following proposition.

Proposition 2.2 [23, Proposition 3.2] Fori =0, 1, we have
if7 ir7
Uzqa> KU CK'US".

We also use a right action ad: U, ®Uj, — Uy, which is the continuous Q[[4]-linear
map defined by

ad(y@x)=yax:=) S xe)rxq,
= Z S7Hx)> p.

for x, y € Uy. Proposition 2.2 implies the following.

Corollary 2.3 Fori =0, 1, we have

KUY aUzq C KUY

2.5 Universal s/, invariant of bottom tangles

For an n—component bottom tangle 7= T U---U T, € BTy, we define the universal
sly invariant Jr € U }‘IX’” as follows (see Ohtsuki [19] and Habiro [5]).

We choose and fix a diagram of 7" obtained from the copies of the fundamental tangles
depicted in Figure 6, by pasting horizontally and vertically. We denote by C(7") the
set of the crossings of the diagram. For example, for the bottom tangle B depicted in
Figure 7(a), we can take a diagram with C(B) = {cy, c2} as depicted in Figure 7(b).
We call a map

s: C(T) — {0,1,2,...}

a state. We denote by S(7T') the set of states of the diagram.
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\\ /\/U/\

Figure 6. Fundamental tangles, where the orientations of the strands are arbitrary

Figure 7. (a) A bottom tangle B € BT, (b) A diagram of B (c) The labels
which are put on the diagram of B

Given a state s € S(T'), we attach labels on the copies of the fundamental tangles in
the diagram following the rule described in Figure 8, where “S’” should be replaced
with id if the string is oriented downward, and with S otherwise. For example, for
a state 1 € S(B), we put labels on the diagram of B as in Figure 7(c), where we set
m=1t(c1) and n = t(cp).

U K Sf(as(CS\ S'(Bstey) y
e m N ) NS o)

Figure 8. How to place labels on the fundamental tangles

We define an element Jr 4 € U, }‘?” as follows. The i —th tensorand of Jr 4 is defined
to be the product of the labels put on the component corresponding to 7;, where the
labels are read off along 7; reversing the orientation, and written from left to right.
We identify the labels S’ (ai) and S’ (,Bi) with the first and the second tensorands,
respectively, of the element S’ (ai) ® S’ (,Bi) €U, ®2 Also we identify the label K +1
with the element K*! € Up. Then, Jry is a well defined element in U ®”. For

Algebraic € Geometric Topology, Volume 12 (2012)



On the universal sly invariant of boundary bottom tangles 1009

example, for the state 1 € S(B) with t(cy) = m and t(c;) = n, we have

-]B,t = S(otm) S (Bn)®nBm
_ Z q(1/2)m(m—1)q(1/Z)n(n—l)S(Dll ﬁ(m) K—m)S(Dlzlen)®D;I:—?(n)K—nDlllem
— +n,_—n+2 -2/ 7 -2 = -2 ®2
= (=1ymtngTntmn p=2 (i) gm2neng pln) gm2memy ¢ U2,
where D =) D| ® D{ =} D, ® D). Note that J7 ; depends on the choice of the
diagram.
Set Jr= Y Jrs
seS(T)
For example, we have
Jg = Z Jp, = Z (_1)m+nq—n+2mnD—2(ﬁ(m) K—Znen ® F(n)K—Zmem)‘
teS(B) m,n=0

As is well known [19], J7 does not depend on the choice of the diagram, and defines
an isotopy invariant of bottom tangles.

3 Universal invariant of boundary bottom tangles

In this section, we recall Habiro’s formulas for boundary bottom tangles at the topo-
logical level (Proposition 3.1), and at the algebraic level on the universal s/, invariant
(Proposition 3.3). Then, we modify these formulas into a form more convenient for
our purpose. In the last section, we give an outline of the proof of Theorem 1.2.

In what follows, we use the following notation. Let n: Q[ — U}, be the unit morphism
and w: U}?Z — Uy, the multiplication of Uy,. For g > 0, let [L[g]I U}‘?g — U}, denote
the g—input multiplication defined by ,u[o] =1, M[l] =idy, , and

— . ®g—2
el = ple=o (u @ idge ™),
for g > 2. For g1,...,g, >0, set
(15) M[gl ,,,,, gnl — M[gll R ® M[gn]: Uh®g1+...+gn N U}{é)n_

3.1 Habiro’s formula (topological level)

Let T =T7U---UT, € BT, be a boundary bottom tangle and Fjy,..., F,; mutually
disjoint Seifert surfaces such that 0F; = K7, fori =1,...,n. We can arrange 7" with
the surfaces Fy, ..., Iy as depicted in Figure 9, where the dotted lines in the rectangle
represent a tangle D(7”) which may intertwine, while the bottom half is precisely
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as depicted. Note that D(7"”) is obtained from a bottom tangle 7’ € BT, by first
duplicating each component and then reversing the orientation of the inner component
of each pair of duplicated components. Here g = g{ +--- + g, with g; = genus(Fj).

D(T)

it N e R Vi R W
\b\]t J\b\] \JB\JL JUB\/
o I ~J

Figure 9. How to arrange Seifert surfaces

Let yp be the tangle as depicted in Figure 10(a). For U € BT,g, g > 0, let Yb®g U)
be the bottom tangle obtained from D(U) by gluing yl‘?g to the bottom as depicted in
Figure 10(b). Here, as usual, the tensor product of tangles is obtained by placing them
side by side.

(a) (b)
Figure 10. (a) yp (b) Y 2¢(U) € BTy for U € BTy,

For g > 0, let Mgg] be the tangle as depicted in Figure 11(a). For g,...,g, >0, set

Mggl ..... gnl _ Mggll ®___®M5)gn].
For V € BTg, 4..yg,,let uggl """ g"](V) € BT, be the bottom tangle obtained from V'
by gluing the product p bg 181l (o the bottom as depicted in Figure 11(b).
The above argument implies the following result, which appeared in the proof of [5,

Theorem 9.9].

Proposition 3.1 (Habiro [5]) For a bottom tangle T' € BT}, the following conditions
are equivalent.
(1) T is aboundary bottom tangle.

(2) There is a bottom tangle T’ € BT, g = 0, and integers g1,...,8n = 0
satisfying g1 + -+ + gn = g, such that

(16) T = Mggl’m’gn]yb®g(T/)'
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. Vi
2g endpoints g1 gn
[¢] ‘ [ ] | AN
Wy = R‘Lu/A py ER VY = e LI
N

Ds

n

(@) (b)

Figure 11. (a) pup (b) u¥V""")(V') € BT, for V € BTy, 414,

3.2 Habiro’s formula (algebraic level)

Recall from [5, Proposition 9.7] the commutator morphism Yg: H ® H — H for a
ribbon Hopf algebra H . In the present case H = Uy, the morphism Yy, : Up®U, — U,
is the continuous Q[/]]-linear map defined by

Yy,(x®y)=> xv (ﬁkS((Olk > J/)(l)))(olk > ¥)(2)
k=0

for x, y € Uy,.
Lemma 3.2 (Habiro [5]) (i) For each bottom tangle T € BT,g, g > 0, we have

JYh®g(T) = Yﬁg(JT).

(i1) For each bottom tangle T € BTg, y..4g,, &1....,8n = 0, we have
— g1 gnl
JME,gl ----- gn](T) = (JT)

Proposition 3.1 and Lemma 3.2 imply the following.

Proposition 3.3 (Habiro [5]) For a boundary bottom tangle T € BT, and a bottom
tangle T" € BT, satisfying (16), we have

Jr = M[glan-,gn](yg)@g(‘]r)'
3.3 Modification of Habiro’s formula (topological level)

In this section, we modify Proposition 3.1.

We decompose the operator Yb®g : BT,y — BTy into the two operators v?g . BTye —
v?g(Bng) and Yb®g: v?g(Bng) — BTy as follows.
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Let v be the tangle as depicted in Figure 12(a). For U € BT5,, g >0, let U= vgg’g(U)
be the 2g—component (nonbottom) tangle obtained from U by gluing Ug@g to the
bottom as depicted in Figure 12(b).

.............. e . b

_ / b— I"‘/"A“l'l“"A“ v2e(0) = &%@)Q{%@)

’ l \ T IngE lf\ LN
(@) (b) (©)

Figure 12. (a) v, (b) U =v8%(U) (c) Y2%(U) € BT,

By the definitions, we have Yb®g = I7b®g ) vl‘?g . Thus, we can modify Proposition 3.1
by replacing (2) with (2°) as follows.
Proposition 3.4 For a bottom tangle T' € BT, the following conditions are equivalent.

(1) T is aboundary bottom tangle.

(2’) There exist a 2g—component tangle T € vl?g(Bng), g > 0 and integers
g1,--.,8n = 0 satisfying g1 +---+ gn = g, such that

T — Mggl ,~~~,gn])_/b®g(7:')'

For a boundary bottom tangle 7" € BT}, we call (T; g1,-..,8n) asin (2°) a boundary
data for T'.

3.4 Modification of Habiro’s formula (algebraic level)

In this section, we modify Proposition 3.3.

Let Y: U,QUj, — Uy, be the continuous Q[[#]-linear map defined by
17 Y(x®y) =) x1yKS(r@) KS(x@)ya),

for x,y € Uy,.

Note that we can define the universal s/, invariant J7 € U h®2g of atangle 7" consisting
of arc components in a similar way to that of bottom tangles (cf [5]).
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Proposition 3.5 Let T € BT, be a boundary bottom tangle and (T“; g1,-..,8n) a
boundary data for T'. We have

Jr = M[gl ,,,,, gn])7®g(‘]f).

Proof By Proposition 3.4 and Lemma 3.2(ii), it is enough to prove that
- —V®8(J=
J?b®g(T) =Y g(JT)
for T € vl?g(Bng).

Let W = W U---UW, be a tangle which consists of arc components whose boundary
points are all on the bottom. For i =1,...,n,let (171 ® Ap ® 1®"71)(W) be the
tangle obtained from W by duplicating W;, and (1®~! ® S; ® 1¥777)(W) the tangle
obtained from W by reversing the orientation of W;.

It is well-known that
Jasi-iga,e1en-imw) = (1271 @ A® 1% (Jy),
J®i-1gs,18n—i)(W) = (171 @ § @ 19" (Jy),

where §(x) = K S(x) for x € Uy, (cf[5, Section 7.5], where k = ano S(,Bn)oz,,r_1 =
K~ in the present case).

Note that D(T) =(1® Sb)®gA?2g(T) by the definitions. Thus, if we write J7 =
Y X1 ®---® Xx24, then we have

J

by = (18 5)PF A% (/)

= le(l) ® KS(x1(2)) ® X2(1) @ KS(X2(2)) ® - ® X24(1) ® KS(x24(2))-

Recall that we obtain Yb®g (T ) from D(T ) by gluing /,LE)4""’4]. This implies

Jf/b®g(f) = Zx1(1)KS(xz(z))KS(xl(z))xzu)@
@ Xog1(1) KS(X2g(2)) KS (X24-1(2))X2¢(1)
= )_’®g(.]f).

See Figure 13 for an example with g = 1.

Hence we have the assertion. O
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X1(1) X2(1) D(T")
xl 2 S KS(x12)) KS(xa@)h
r’ : l, ‘. |' P N " ] ,""‘\ '
| A | — ~ N ’/ SR \ |I
F=1 Y(T)=| | AN !
A | SIS

Jf = le X X3 be(j:) = Zxl(l)KS(xz(z))KS(xl(z))xz(l)

Figure 13. T € BT, Y, (7~" ) € BT and their universal s/, invariants

3.5 Commutator maps

In this section, we study the commutator map ¥ of Uj,.

Let Y: U,®Uj, — Uy, be the continuous Q[/]|-linear map defined by

Yx®p) =Y xS (r@)SEx@)ra)-

for x, y € Uy. Note that

(13) Yx®p) =) (xS @)y
(19) =Y x)(S(x@) 9y)
(20) = Zx(l)(S_l(y) > S(x@2))).

By the following lemma, we can study Y by using Y, > and <.

Lemma 3.6 For x, y € Uy, we have
Yx®p) =) Y(xn®ye)(x@> K <yam).

Proof We have

Yx®py) =) xyKS(@)KS(x@)ya)

=Y xS (@) K*S(x@) ¥
= 296(1)5_1 (r2))S(x2))x3) K>S (x(a)) y(1)
=Y xS ) S(x2)ye ST (@)X K S(x@)ya)
=Y Y (xa) ® yo)((xe > K*) <yq)).

where the second identity follows from Kz = S™2(z)K for z € Uj,. ]
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The rest of this section is devoted to studying the map Y.

Lemma 3.7 For x, y, z € Uy, we have

(21) Yxy®2) =) (x1)> Yy ®22)Y (x@) ® 2(1)).
(22) Y(x®yz) = Z Y (x(1y ® z2) (Y (x2) ® ¥) < z(1))-

Proof We have
Y(xy®z) =Y (0SS ((x»)@)za)
=Y xymS T E@)S (@) S (x@)z)
=Y x1yymS @S @)z S 2@) S(x@)za)
=3 xS @) S (1223 S(x2)xX3) S T (22) S (x@4)z(1)
=) (Y (r®z))Y (@) ® 2(1)-
Similarly, we have
Y(x®yz) =Y x1)S™ (1)) S(x@)(r2))
= xS @) S(x@)z3 S T C@)x3 S T (@) S (@) ya)za)
= Yy ®z) (Y (v@) ® ») 92(1))- =

Lemma 3.8 For x, y € U, we have

Y(x® ) =e(x)e(y).

Proof It is enough to prove
Y (H™ ® H") = 8m,08n,0.

for m,n > 0. By using the formula

m

A(H™) = Z(T)Hi ® H™ .
i=0
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for m > 0, we have

Y(H" ® H") = i Xn:(’?)(;)Hi(_H)j(_H)m—iHn—j

i=0;=0
m m n n
_ 1\ _1\J __1\In gyh+m
- (2 () (v ()
i=0 j=0
= 8n,05m,0- O
Lemma 3.9 We have
(23) Y(Uz,®U,) CU,
(24) Y(Uy®Uzq) C U

Proof We prove (23). Then (24) is similar. Note that

(25) (1®Ss=YAl,) c @ (KT @ K'TM),
i=0,1

since we have

26)  (1®STHAKKTH)=K*T' @ KT!,

n
@) (A®@SEHAFEM) =3 (1)t VDTV - ki g k=T FO,
Jj=0
(28) (1R STHA()=e®1—¢V/PIFDK @ K le.

Then, (18) and (25) imply

Y(Uzg®Up) C Y (Uzgv K'UKTS.
i=0,1
By Proposition 2.2, we have
Z (UZ,q > Ki U;V)Ki quv - Z (Ki U;V) . (Ki ﬁ;V) - quv.
i=0,1 i=0,1

This completes the proof. |

In what follows, we use the notation D! =3" D, ® 3" D/|..
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Lemma 3.10 We have

(29) Y Y(Uzg®U)DL)®Y (U, ® U DY) C (U2,
(30) > Y (Uzq®UIDL)®Y(UYDYL ®Uy) C (U2,
(31) Y Y (U)Dy®Uzq)®Y (U, ® UL DY) C (U2,
(32) Y Y(U)DL®Uz¢)®Y (U DL U, C (US)®.

Proof First, we prove (30) with D. Let us assume a weaker inclusion
(33) Y Y(Uzy®D)RY (D" @Uy) C (U2,
which we prove later. We have

> Y(Uzg®U)D)®Y (U D" ®Uj)
= Y(Uza®D'U)®YULD" ®Uy)
CY Y(Uzq®U)(Y(Uzy®D)<alUy)
(34) ® (U Y (D" ®Uy)Y (UL ® Uy)
CY Y(Uzqa®UN(U «UQ) @ (UL > U )Y (UL @ Uy)
CY Y(Uza®UD)-USR@US-Y (UL ®Uy)
- (ﬁqﬁV)@Z’

where the identity follows from (8), the first inclusion follows from Lemma 3.7,
AX)C X®2, for X = Uy, U;, Uz,4 » and the last inclusion follows from Lemma 3.9.

Now, we prove (33). By (5) and (7), we have
(1®S'®1®S)(A®A)(D)=) D;_D;®Dy)D)_®Dj_D|®D;D|_.
where D=3 D| ® D{=) D, ® Dy and D~' =3 D| _®D|_=3 D) _®D; .
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Fora € Uz, and b € (7q homogeneous, we have
Y Y@eD)®Y(D'®b)
=Y _amDyD; _S(a@) D} D ® Dy _D{S™! (b)) Dy D] _bq)
= Za(l)D;D;,_K_lb(z’|S(a(2))K|b(2)|D'l’_D'l
® ST (b)) Dy _D{ Dy D] b
= Za(l)K_|b(2)|S(a(2))K|b(2>| ® S_l(b(z))b(l)
— Z(a > K—Ib(Z)l)Klbml ® S_l(b(z))b(l),

(35

where by (26)—(28), we can assume that S_l(b(z))b(l) € l_];", with b(y), bp) € Uq
homogeneous. By Corollary 2.3, we have a > K bol e K'b(2>|l7;”. Hence we have

Y (@ KTl klPole §71(bg))bay c (KPITM KPl @ gt  (T)®2,
which completes the proof of (33).
We can prove (29), (30) with D™!, (31), and (32) almost in the same way by using
Y Y@®D)®Y(bheDL) =) (a> KEPo)KFbal @by S(by),
Y Y@®D )@V (D! ®b) =) (av KP@)K Pl S (byp))b),
Y Y(DLea)@Y (e DL) =) KTPol(kEholqaa) @by Sba).

Z Y(D;: Ra)® Y(Di Qb) = Z Kol gFlbol 44 g S_l(b(z))b(l),

forae Uz, and b € Uq homogeneous. |

3.6 Outline of the proof of Theorem 1.2
We give an outline of the proof of Theorem 1.2. There are two steps.

The first step is in Section 5, where we prove the following proposition.

Proposition 3.11 Let T € BT}, be a boundary bottom tangle and (7~“; g1,...,8n) a
boundary data for T . For each state s € S(T') we have

/L[gl’m’gn]?g)g(‘]is) c ((7qu)®n‘
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The second step is in Section 6, where we define a completion ((7;")'\‘8” of ((7“]”)@”
and prove Theorem 1.2, ie,

seS(T)

In the above two steps, we use “graphical calculus” because the proof is too complicated
to be written down by using expressions. In order to do so, in Section 4, we define two
symmetric monoidal categories A, M, and a functor F: 4 — M.

4 The categories M, A and the functor 7: A > M

In what follows, we use strict symmetric monoidal categories and strict symmetric
monoidal functors. Since we use only strict ones, we omit the word “strict”. For
the definition of symmetric monoidal categories, see for example, Kassel [10] and
Mac Lane [16].

4.1 The category M

We define the symmetric monoidal category M. The objects in M are nonnegative
integers. For k,/ > 0, the morphisms from k to / in M are Zl[q, ¢~ ']-submodules
of the Q[[4]-module Hom@m, (U };@k’ U ,‘lX’l ) of continuous Q[/]-linear maps from

- QllAl
®k ®1
U, " o US".
We equip M with a symmetric monoidal category structure as follows.
e The identity of an object k in M is defined by id; = Z[q,q '] idy®k.
The composition of morphisms
X Y
k—1—m
in M is defined by
Y oX =Spang, ,~1{yox|xeX, yeY}

e The unit object is 0, and the tensor product of objects k£ and / in M is defined
by k+1.
The tensor product of morphisms Z: k — [ and Z’: k' — I’ in M is defined
by
ZQ7Z = Spang, ,—111¢(z ®)|zez, ez},

where ¢ is the natural Q[/A]-linear map

@: Hom%s[[h]](U,?k, U,?l) ® Hom%s[[h]](U,?k/, Uh®l/) eHom%sﬂhH(U,?k’Lk/, U,?IH/).
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e The symmetry ¢k ;: k ® [ — | ® k of objects k and / in M is defined by

—1 - -
¢kt =Zlg. 9 ltu@k u@!

where ty®r y@!: URkt!l — URITk s the continuous Q[/]-linear map de-
fined by
TU};@/{’U;?/ (x ® y) = y ® X

®k &1
for x e U,” and y € U)>".
It is straightforward to check the axioms of a symmetric monoidal category.

4.2 The category .A and the functor F: A - M

Let A be the symmetric monoidal category with the unit object 7, freely generated by
an object A and morphisms

({i}q!) € Homu(I. 1),
() AED) (FO) (T2). (Ug*°) € Homu(I. A),
(DY € Homy (1, A%?),
(e} € Homy (A4, 1),
(A) € Hom4(4, A®?),
(). (Y). (ad), (ad) € Hom 4(4%2, 4),

for i > 0. (Here (D*!) is one morphism, not two morphisms (D*1!) and (D~1).)
We denote by cx,y: X ® Y — Y ® X the symmetry of objects X, Y in A.

We define the symmetric monoidal subcategories Ag, Ay, Aa, and Ay A of A as
follows. On objects, we define Ob(Ag) = Ob(A,) = Ob(Ap) =Ob(A, a) =Ob(A).
On morphisms, Ag is generated by no morphism as a symmetric monoidal category,
ie, for k,/ >0, k # [, we have Hom 4 (A®k, A®l) = &, and for / > 0, the monoid
Hom 4 (A®!, 4®!) is isomorphic to the symmetric group G (/) in a natural way. On
morphisms, A, is generated by (), Aa is generated by (A), and A, a is generated
by (u) and (A), as symmetric monoidal categories.

Let F: A — M be the symmetric monoidal functor defined by F(A) = 1 on objects
and

F({{itqh) = Zlg.q "Hitq!,
F(n) =Zlg.q" "I,
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F((e) = Zlg.q7"Je,
F((u) =Zlg.q ",
F({A) =Z[g.q7 1A,
F(Y) =Zlg.q7 "I,

FUEDY) =UED,
FWFDy) =02 F®
FUUMN =T,
]-“(((7,;”0 _ﬁqevO’

for i > 0, on morphisms. Here, for a Z[q,q~']- submodule X' C U, ,?”, we identify X
with a Z[q, q_l]—subglodule of Hom%s[[h]] (Q[~], U, ];8’”) by identifying x € X with the
map fx: Q[A] — Uh®” such that f%(a) = ax for a € Q[[A]).

In what follows, we use diagrams of morphisms in A as follows. The generating
morphisms in .4 are depicted as in Figure 14. The composition y o x of morphisms x
and y in A is represented as the diagram obtained by placing the diagram of x on the
top of the diagram of y; see Figure 15(a). The tensor product z ® z’ of morphisms z
and z’ in A is represented as the diagram obtained by placing the diagram of z’ to the
right of the diagram of z; see Figure 15(b).

idA:‘ A4 = >< ({ijg!) = | i}q! {n) = T {e) = _‘

5 E® 5 FO | _
(ED) = (FO) = (U)) = ? (U)) =

Figure 14. The diagrams of the generator morphisms in A
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D[] =5 [z e[z ]1=[z17]

(a) (b)
Figure 15. (a) Composition (b) Tensor product

For a diagram of a morphism b: A®% — A®! in A, we call the k edges at the top of
the diagram the input edges of b, and the / edges at the bottom of the diagram the
output edges of b.

For simplicity, a copy of a generating morphism f of A appearing in a diagram will

be called “an f” in the diagram.

4.3 Some morphisms in .4

In this section, we define morphisms (p)[&1:81 (A)lmis...mi] (OtijE ® BF), and (Y)
in A.
For g1,...,gn >0, we define
<M>[g1 ,,,,, gnl ¢ HomA(A®g1+'"+g”, A®")
in a similar way to (15), and for my,...,m; > 0, we define

(A>[m1,...,m1] e HOH]A(A®I, A®m1+~-~+m,)

in a similar way to (13); see Figure 16. Clearly we have

&1 &n
— T
(g1 gn]:\( \( (A)m15s ml]_/& /&
w_J w_J
ni my

Figure 16. Diagrams of (;1)l81:-8n] and (A)l71--mi]

(36) f((M>[g1 ..... gn]) — Z[q,q—l]u[gl ..... gnl,
(37) ]:((A)[ml,,ml]) — Z[q,q_l]A[ml""’ml].

Fori >0, set

(0;) = ({ilg!) @ (FD) @ (ED) € Hom4 (I, A®?).
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We depict (®;) as in Figure 17(a).We define
(ozijE ® ,BIi) € Hom 4 (1, A®2)
as in Figure 17(b), ie,

(@ @ BE) = (1) ® () 0 (idg ®ca,4 ®idg) o ((DE!) ® (O;)).

Fol| o .
©) = [ti34! - (e ® p) =

(a) (b)
Figure 17. (a) A diagram of (®;) (b) A diagram of (otiﬂE ® ,BIi)

In U}‘?z, we have
FlleF @ BEN) = (U @UNDFP @)+ (U@ U D (FP &),
which implies
@ ® Bi, oy ® B; € F((oiF ® BF)) (D).
For j,k € Z, since we have
(S ® S*)(F(laif ® BE) (1) = Fleif ® BEN(D).

it follows that
(38) ST (i) ® SK(Bi). S7 () ® SK(B7) € F(laiE @ BEN(1).
We define

(Y) € Hom4(A%®2, 4®1)
as in Figure 18, ie,
(Y) = (1) o (idg ®(ad)) o (id4 ®(ad) ®id,)

o ((Y) ®idg ®(US°) ®idy) o (id ®cyez 4) 0 ((A) ® (A)).

By Lemma 3.6, we have
Y = po(idy, ®ad)o (idy, ® ad ®idy,)

o(Y ®idy, ®k* ®idy,) o (idy, ®Tu$2,y,) o (A® A),
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Figure 18. A diagram of (Y)

where k2 denotes the operator of the multiplication by K?. Hence we have

(39) Y e F((Y)).

S Proof of Proposition 3.11

The goal of this section is to prove Proposition 3.11. For a subset X C Hom4 (I, A®¥),
set

FxOM = J FB)(1)cuge.
BeX

In Section 5.1, we define a subset 'y C Hom (1, A®¥), and prove Y®g(J~ ,) €
F(Tg)(1). In Sections 5.2-5.8, we prove F(I'g)(1) C (Uev)®g Thus we have

YO (U7 ) € (U)%E,

which implies Proposition 3.11.

5.1 Theset I'; ¢ Hom (I, A%®%)

Let W be the symmetric monoidal category freely generated by two objects Wy
and W_ and three morphisms

pw: (W)®% > Wi, ady: Wo @ Wy — Wy,  ady: We @ Wo — W

See Figure 19 for example. We define the symmetric monoidal functor Fyy: W — A
by Fyw(W4) = Fyy(W-) = A on objects, and

Fw(pw) = (1),  Fwladyw) = (ad), Fw(ady) = (ad),

on morphisms.
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W. Wy Wo Wy Wy W_W. W,y

W, W_W, WiW._
Hw = \(adw = \\' }// \ W+

W, Wy
Figure 19. A morphism in W

For g > 0, let f‘g be the set of quadruples b = (by, b, b3, bs) € Hom(A)** of
composable morphisms

]AA®211+212+132>A®[4+215 b3 A®l4+15+l6 ba A®g

in A such that

bl — (D:I:I)®ll ® <®S1) R <®S12) ® ((7‘;)>®l3’

b, € Hom4 A(A®2ll+2[2+l3 A®l4+215)
W, s R

b3 _ idﬁ’m ®<Y)®15 ® (Uv;VO)@lﬁ’
by € Fyy(Homyy (WS4 @ Wt w@s)),
for Iy,...,lg,81,...,51, = 0, satisfying Condition A below.

Condition A On a diagram of b4 o b3 0 by o by, from each output edge of (O, ) for
p=1,...,1,, we can find a descending path to an input edge of a (¥').

For example, see Figure 20, where the dotted arrow denotes a path as in Condition A
from the right output edge of (Oy,).
Let A: f‘g — Hom 4(I, A®#) be the composition map defined by
A(by,by, b3, bs) = bgobzobyoby.
Set Iy = A(Ty) C Hom4(1, A%%).

We consider the sequence of maps
= A ®gy T
I'e — I'y CHomy (1, A¥%) — Hompy (0, g).

Lemma 5.1 Let T € BT, be a boundary bottom tangle and (T; g1,--.,8n) abound-
ary data for T'. For each state s € S(T'), we have Y®g(Jf o) EF(Tg) ().
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Figure 20. An example of b4 0 b3 0 by 0 by with (by, by, b3, bs) € fg

Proof It is enough to construct an element B € I'g such that y®s (J7 ) € F(B)().

Recall from Section 2.5 the definition of J5  associated with a fixed diagram of T with
the crossings c1, ..., c;. We put the 1abels S (a ) and S’'(B (cl-)) on the crossing c¢;
fori=1,...,1, and put the labels K and K~ on the maximal and minimal points,
respectively, on strands running from left to right. After that, we multiply the labels
on each strand, and take the tensor product. Thus, there is £ > 0 and a permutation
o0 € 6(2] 4 k) such that

Ni,...,N:
Jf,s ( (1 zg]oa)(S (as(m))@S ('Bs(m)
®S (a;lzq)) ® S/('stzw)) ® (U;)g)k)’

where, foreachi =1,...,2g, N; > 0 is the number of labels put on i —th strand of T.
By (36) and (38), we have Jz € F(u)(1), where

“= (M)[Nl""’NZg] °oe (<aSﬂE01) ® ’stim)) Q- ® ( ser) ® ﬂs(cz)) (U >®k>
Here we identify o € &(2/ + k) with the corresponding morphism in

HOl’Il_A (A®21+k A®21+k)
& ’ .
By (39), we have

Y®g(J~ ) EF((Y)®Eou)(1).

Set B = (Y)®% ou € Homy (I, A®%). It is not difficult to check that B € I'g asin
Figure 21. In particular, B satisfies Condition A, since foreach i =1, .../, the output
edges of (Oy(,)) go down to the output edges of u, and there is a descending path

from each output edge of u to an input edge of a (Y) ; see the dotted arrow in Figure 21
for example. |
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Figure 21. (Y)®% ou = byobsobyoby with (by,ba, b3, by) € Ty
Proposition 3.11 follows from Lemma 5.1 and the following lemma.
Lemma 5.2 For g > 0, we have F(I'g)(1) C (U$")®%.

The outline of the proof of Lemma 5.2 is as follows. We define two subsets '/, Fg Ccly
such that I'; C I'y C I'g, and prove the inclusions

(40) F(Tg)(1) C F(T)(1) C F'(Tg)(1) C F (T (1) C (U5,

where F’ is a modification of the functor J, which is defined in Section 5.4. Here, for a
subset X C Hom 4 (I, A®%), we define ]-'/(X)(l) in a similar way to that of ]-"(X)(l).

5.2 The subset I‘s', crl,

In this section, we define the subset Fg, CcTly.

For g > 0, let Fé, be the set of 7—tuples (by,d, w, k, o, b3, bs) of morphisms in A,
such that (b;,0 0(d @ w ® k), b3, bs) € I'y is well-defined, 0 € Hom(Ag) and

by = (DF)®1 g (0,) @+ ® (O,) ® (U))®5,

q
1)
d € Homyu, (A% A®) w =) ((A)mrmel), k= ()],
p=1
forly,....l4.81,...,85,=20, my,....,my,,ny,...,n1,,71,...,7;, = 1. See Figure 22

for an example of 6o (d ® W ® k) o by.
Let «: f‘g — I:g be the map defined by

k(by.d.w.k,0,b3,bs) = (b1.00(d®w®K),b3.by).
Set I, =k(y)cTy and TI'y=AT,) CT,.
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V7 e

Figure 22. An example of 6 o (d ® w ® k) o by for (by,d,w,k,0,b3,bs) € I"é

5.3 Proof of F(I'y)(1) c F(I'y)(1)

In this section, we define a preorder < on I'g, and prove the following two lemmas,
which imply F(I'g)(1) C F(I'g)(1).

Lemma 5.3 For B < B’ in Ty, we have F(B)(1) C F(B')(1).
Lemma 5.4 For each B € Ty, there exists B’ € Fg, such that B < B’.

The preorder < on I'y is generated by the binary relations =; fori =1,...,8 on
Hom(.A) defined by the local moves on diagrams as depicted in Figure 23, where in
each relation, the outsides of the two rectangles are the same. Note that I'g is closed
under =; fori =1,...,8, ie, for B =; B’ in Hom(A), if B € 'y, then B’ € ['y.
In particular, we can check that each =; preserves Condition A.

Figure 23. Local moves =; fori =1,...,8
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Proof of Lemma 5.3 It is enough to prove that, for B=>; B' in T'y withi {1, ..., 8},
we have F(B)(1) C F(B')(1).

The cases i = 1, 2, 3,4 are clear. The cases i = 5, 6 follow from Lemma 3.7. The
cases i = 7,8 follow from (5), A(qu) C (U(;))®2 and qu C M((U;)®2). ad

The rest of this section is devoted to the proof of Lemma 5.4. We divide Lemma 5.4
into the following two claims.

Claim 1 For b = (b1, bs, b3, by) € Tq, there exists b’ = (b}, b}, b}, b}) € Ty with
b, € Hom(Ap) such that A(b) < A(D').

Claim 2 For 0" = (b}.,b},b}. b)) € fg with b, € Hom(Ayp), there exists b” =

(b, by, b, by) € T, such that A(b') < A(D").

Roughly speaking, we prove Claim 1 by reducing the number of the (u)’s of b, by
using =; for i = 3,...,6. For that purpose, we define ““ (1) —complexity” functions

| |,m: Hom(A, A) = Zxo

as follows. Given an element 5 € Hom(A, A), we color each edge of a diagram of b
with an nonnegative integer. First, we color each edge on the top with 0. Then, we
color the edges below inductively as in Figure 24(a). We define |b| as the maximal
integer on the edges on the bottom. We define m(b) as the number of the edges on the
bottom colored with |b|. For example, for the colored morphism f € Hom(A, A) in
Figure 24(b), we have | f| = 3, and m(f) = 2.

i J i J k

P N N
J i i+j+1 k k
(a) (b)

Figure 24. (a) How to color the edges (b) An example of the coloring

We use the following lemma.

Lemma 5.5 For every B € Hom(Ay A), there exists B, € Hom(Ay,) and Bp €
Hom(Aa) such that B <X By o Ba and |B| = |Bj, 0 Ba|.

Proof We can realize a path from B to B, o BA with some B, € Hom(A,) and
Ba € Hom(Ap) by using =5, which preserves | | as in Figure 25. |
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i+j+1

i+j+1 i+j+1 i+j+1i4+j+1
Figure 25. The coloring before and after we apply = >

Proof of Claim 1 We use double induction on |b,| and m(b,). If |b,| = 0, then
we have b, € Hom(Aa). We assume |by| > 0. Tt is enough to prove that there
exists a = (a1, as,as,a4) € fg such that A(b) <X A(a) satisfying either |b,| > |a,|, or
|b2| = |az| and m(by) > m(az).

By Lemma 5.5, we can assume by = b, ;, 0 by o with by , € Hom(Ay) and by A €
Hom(An). Since |b; ;| = |b2| > 0, there is a (u) at the bottom of b, whose output
edge is colored by |b;|. We define a = (ay,a»,a3,a4) € I'g as follows.

(1) If the output edge of the (i) is connected to the left input edge of an {(ad) (resp.
the right input edge of an (ad)), then let a be the element obtained from b by
applying =>3 to the (ad) (resp. =4 to the (ad)) in A(b) as in Figure 26(a) (resp.

(b)).
k! kil kil k l/
|52 by az b2l b a
b3 =3 as by =4 | as
\)| b4 ;;I as |</ by F’ ay
(a) b
Figure 26. How to obtain a = (a1, a3, a3, as) € f‘g from b, where k,[ >0,
k+1+1=|by|

(2) If the output edge of the () is connected to the left (resp. right) input edge of

a (Y'), then let a be the element obtained from b by applying =5 (resp. =¢)
on the (Y) in A(b) as in Figure 27(a) (resp. (b)).

If m(by) =1, then we have |b;y| > |a;|. If m(by) > 1, then we have |by| = |a,| and
m(by) > m(ay). This completes the proof. |

Proof of Claim 2 We transform b/ ob] into b5 o b such that b” = (b{,b], b}, b)) €

fg, by the two steps as in Figure 28. That is,
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kolJj k\ 11J ik 1 J1 k!l
e R s PR

by = H H \D/Ch ¥ \L_H/ bz =6 as
by \—>Q ay | by
(a) (b)
Figure 27. How to obtain a=(a1,a2,a3,a4)ef‘g from b, where j,k,[>0,
k+14+1=|by]

(i) we can transform b} into o o (AYm1smil for some o € Hom(Ag), [ > 0
miy,...,m;>1 by using =1, and

(ii) we can transform ((A)"! @ (AY") o (DEY), m,n > 1, into a o (DE)®mn
for some a € Hom 4, (2mn, m + n), by using =,, =7, and =3 as depicted
in Figure 29.

! JANREAY S ¢
pon . ]y T}b AN /\\|||/l\/\“' NI A
b, € Hom(Ap) < 0 |
SN U D
. e I AN T A /\}bg

Figure 28. How to transform b/ o b} to b} o b}

Hence we have the assertion. O

5.4 The functor F’ and proof of F(I';)(1) C F'(I'y)(1)

In this section, we define the symmetric monoidal functor F': A — M and prove

F(Tp)(1) € F(Ty)(1).

For n > 0, we equip U hé’” with the topological Z"—graded algebra structure such that
deg(x1 ® -+ ®xn) = (|x1], ..., [xal),

for homogeneous elements x1, ..., X, € U, with respect to the topological Z—grading
of Uy, defined in Section 2.2.

For k,/ > 0, we call a map f: U,‘?k — Uhél homogeneous if it sends each homo-
geneous element to a homogeneous element. We call a morphism X: k — / in M
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Figure 29. How to transform ((A)" @ (A)"l)o (D*1) into a o (DE!)®mn
where p € Hom(Ag)

homogeneous if it is generated by homogeneous maps as a Z[q,q ~!]—submodule
of HomeE‘[[h]] w, &l U, ®!)  Note that the image by the functor F of each generator
morphism in A except (A) in Section 4.2 is homogeneous.

We define F” in the same way as F except that we set F'({A)) = Z;eZ Zlq,q A
instead of F((A))=Z[q,q ']A. Here, for j €Z, Aj: Uy, — U, ®Uj, is the continuous
Q[/]-linear map defined by

Aj(x) =) X1y ® pi(x2).

for x € Uy, where p;: Uy — Uy, is the projection map defined by

Ly ifyl=
i) = {0 otherwise,
for y € U, homogeneous. Since F'({A)) is homogeneous, F’ sends each generator
morphism in 4 to a homogeneous module. Moreover, since the compositions and the
tensor products of homogeneous objects in M are also homogeneous, the image by F’
of each morphism in .4 is homogeneous.

We prove ]:(Fg,)(l) C }"’(Fg,)(l). For x € U}, a finite linear combination of homoge-
neous elements, it is easy to check that

(41) A(x) =D Aj(x),
JEZ
42)  F(A)x) = (Zlg,¢7'1A)(x) C (Z Z[qvq_l]Aj)(x) = F'((A)(x).

JEZ

(In fact, (41) is true for all x € Uy. However, (42) is not, since ZjeZ Zlq.q A
consists of finite linear combinations of A; for j € Z.)
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Note that each (A) in a diagram of B € Fé is contained in a (A)["](E(m)), in a
(AYM(FM)Y orina (A)[”](Ut;)) for m,n > 0. By (42), we can prove that
FUMWHEM™) 1) ¢ F(MHE™) ),
FUAHFE) 1) € F (A E) ),
for m,n > 0, by using induction on . For y € U2, we have
FUANG) = (Zlg.q7"180) (») = F'(AD ().
Thus, we have F(B)(1) C F'(B)(1), which completes the proof.

5.5 The subset l"g",’ cr s"

In this section, we define the subset Fg C Fé:,.

In what follows, we color each edge of a diagram of B € I'), with d,w,k or & as
follows. First, we color the output edges in by of (D*!)’s, (®;)’s, and ((7(?) ’s with
d,w, and k, respectively. Then, we color the edges below as in Figure 30(a). See
Figure 30(b) for an example of G € F; with the coloring.

x J x X
YA
x J X o o x
Sy P
%] %] %]
(a) (b)

Figure 30. (a) How to color the edges (b) An example of the coloring

For g > 0, let fg,’ C fg, be the subset consisting of b = (by,d, w, k, o, b3, bs) such
that
(C4x) d and k are the identity morphisms in A,

(Caq) in (Aok)(b), there is no (ad) (resp. (ad)) with the d —colored left (resp. right)
input edge, ie, the first / input edges of b3 = idfl R(Y)®" @ (U;VO)‘Z’” are
not colored by d,

(Cy) there is no (Y) with both the left and the right input edges colored by d.
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See Figure 31 for an example of b3 00 0(d @ W ® k)oby.
Set I} =«(y) c T},
" __ =~ /
g =AMTg) CTy.

~ - @ *..? }bl
. e

o[ K o,

Figure 31. An example of b3 00 0(d ® w ® k) ob; for (by,d, w,k,0,bs,bs) € I“g

5.6 Proof of F/(T})(1) C F/(T})(1)

Similarly to Section 5.3, we define a preorder <’ on I‘é, and prove the following two
lemmas, which imply }“’(Fé)(l) C F(T)(1).

Lemma 5.6 For B <" B' in Ty, we have F'(B)(1) C F'(B')(1).
Lemma 5.7 For each element B € Fg,, there exists B’ € Fg, such that B <’ B'.

The preorder <" on Iy is generated by binary relations =; for i =9,...,13 on I.
In the present case, we divide the definitions of the binary relations into three. Cor-
respondingly, the proof of Lemma 5.6 is divided into these of Lemmas 5.9, 5.11
and 5.14.

For B € Fz:” let N;(B) > 0 be the number of the (i) ’s colored by d (ie, the number
of the (i)’sin by), Ni(B) > 0 be the number of (A)’s colored by k, Nag(B) > 0 the
number of the (ad)’s with d—colored left input edges and the (ad)’s with d —colored
right input edges, and Ny (B) > 0 the number of the (Y)’s with both the left and the
right input edges d—colored. For example, for G € I'; as in Figure 30(b), we have

Ny(G) =2, Np(G) =1, Na(G) = 1, and Ny(G) = 1.

Note that for B € Ty, we have B € Ty if and only if Ny(B) = Ng(B) = Nu(B) =
Ny (B) =0. By using induction on Nu4(B), Ny(B), Ni(B) and N (B), Lemma 5.7
follows from Lemmas 5.8, 5.10, 5.12 and 5.13.
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5.6.1 Binary relation =¢ Let v>; fori =1,..., 8 be the local moves on diagrams
of morphisms in A as depicted in Figure 32, where in each relation, the outsides of
the two rectangles are the same. For B, B’ € Fé, we write B =¢ B’ if there exists
B” € Hom(A) such that either B »>1 B” or B »>, B”, and there exists a sequence
from B” to B’ in Hom(A) of moves ~; fori =3,...,8.

Figure 32. Local moves ~>; fori =1,...,8

Lemma 5.8 For B € ng with Naq(B) > 0, there exists B’ € Fg, such that B =9 B’
and Nad(B) > Nad(B/).

Proof We can transform B into B’ satisfying the conditions in the lemma as follows.
Since N,q(B) > 0, there exists B” obtained from B by applying »>; or ~>,. There
isan (g) in B”, and we continue the transformation as follows.

(e1) If the (g) is connected to the left (resp. right) output edge of a (D*!), then we
apply ~>3 (resp. »>4). If the new (l_/; ) is connected to the left (resp. right)
input edge of a (i), then we apply ~>s5 (resp. »>¢), otherwise we put its edge
into the k —part.

(g2) If the (&) is connected to an output edge of a (u}, then we apply ~>7. Then,
for each new (g), we continue the transformation similarly. If there appears
(g) o (U;), then we apply ~>g.

For example, see Figure 33, where a dotted circle with a number i attached is a place to
where we apply ~>;. It is easy to check that the procedure terminates, and the result B’
is contained in I'y. One can check that Nyg(B') = Naa(B) —1. O

Lemma 5.9 For B =9 B’ in I'y, we have F'(B)(1) C F'(B')(1).
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Figure 33. Binary relation =¢

Proof It is enough to prove that, for C ~>; C’ with j € {1, ..., 8} in the sequence
of the local moves from B to B’, we have F/'(C)(1) C F'(C")(1).

Consider the case j = 1. The case j = 2 is similar. Recall from Section 5.4 that the
image by F’ of each morphism in .4 is homogeneous. This implies that, for each
b € Homu (I, A®"), 1 >0, the VAS g~ !]-submodule F'(b)(1) of U®l is generated
by homogeneous elements of U®l Thus, the case j = 1 follows from

> ad(@)D] 4+ D) (DD @x) U D] L ®---® T
Cx®U)®"
C Y (e®idy,)(ULD] -+ Dy L(DLD)"®@x)QUIDY L ®---@UID) ..

for m,n > 0 and x € Uj, homogeneous, where we set D¥! =" D; , ® D}, for
1 <i <n. Here, we use from [23, Lemma 5.2] the identities

Zad(D’i ®x)® D =x® K*™,
Z ad(D/ D} ® x) = g™ x
for x € Uy homogeneous.
The cases j = 3,4 follow from
(e ®idy,) o (UNH®2DE) = U = (idy, ®e) o (U))®*DE!).
The other cases j =5, 6,7, 8 are clear. Hence we have the assertion. O
5.6.2 Binary relation = ¢ Let »»; fori =9,..., 16 be the local moves as depicted

in Figure 34, where in each relation, the outsides of the two rectangles are the same.
Here, the bottom lines in »> 5 is the bottom lines of the morphisms. For B, B’ € Fg,,
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we write B = ¢ B’ if there exist B” € Hom(A) such that B »>¢ B” and there is a
sequence from B” to B’ in Hom(A) of moves ~>; for i =3,...,8,10,...,16.

Figure 34. Local moves ~»; fori =9,...,16

Lemma 5.10 For B € Ty with Ny(B) > 0 and Nay(B) = 0, there exists B’ € T,
such that B =19 B’, Ny(B) > Ny (B’), and Ny(B') = 0.

Proof We can transform B into B’ satisfying the conditions in the lemma as follows.
Since Ny (B) > 0, there exists B” obtained from B by applying ~>g¢. For each (g)
in B”, we continue the transformation as in (¢1) and (£2) in the proof of Lemma 5.8.
For the (n) in B”, we continue the transformation as follows.

(n1) Ifthe (n) is connected to the left (resp. right) input edge of a (u), then we apply
~v>10 (resp. »>11).

(n2) If the (n) is connected to the bottom of the diagram, then we replace the (n)
with (quvo) by using ~>1,.

(n3) If the (n) is connected to the right (resp. left) input edge of an (ad) (resp. (ad)),
then we apply ~>13 (resp. »>14). Then, there appear an (1) and an (e). For
the (), we continue the transformation similarly. Consider the (g). Since
Naa(B”) =0, it is not colored by d, ie, it is colored by w or k. By Condition A
in the definition of f’g, the () cannot be connected directly to any output edge
of the (®;)’s. Hence the (¢) is connected to either an output edge of a (A)
or the output edge of a ((7;). If the (e) is connected to the left (resp. right)
output edge of a (A), then we apply »> 15 (resp. »>1¢). If the (&) is connected
toa (ﬁ;), we apply ~>g.

For example, see Figure 35. It is easy to check that the procedure terminates, and
the result B’ is contained in T'y. One can check that Ny (B’) = Ny(B) — 1 and
Nad(B/):Nad(B)ZO- o
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L2 S
Figure 35. Binary relation =1
Lemma 5.11 For B =1 B’ in Ty, we have F'(B)(1) C F'(B')(1).

Proof It is enough to prove that, for C ~>; C’ with j € {9,..., 16} in the sequence
of the local moves from B to B’, we have F'(C)(1) C F'(C")(1).

The case j =9 follows from Lemma 3.8.

The case j = 15, 16 follow from

(770 ; —
(e ®idy,) o Ag)(FPULEM™) = {F( ORE™ itk =m—1,

otherwise,
FOUIEM if k =0,

dy, @e)o A (FOTYEM) =
((idy, ®e) o Ag)( q ) 0 otherwise,

respectively, for k,/,m > 0.

The other cases j = 10, ..., 14 are clear. Hence we have the assertion. O

5.6.3 Binary relation =; for i = 11,12,13 Let =; for i = 11,12,13 be the
binary relations on Fz:’ defined by the local moves on diagrams as in Figure 36, where
in each relation, the outsides of the two rectangles are the same. It is easy to check that
Fé, is closed under =>; for i = 11,12, 13.

Figure 36. Local moves =; for i = 11,12, 13

Lemma 5.12 For B € Fg, with Nj(B) > 0, Ny(B) = Ny(B) = 0, there exists
B € Fg, such that B =; B’ with i € {11,12}, Ng(B) > N;(B’), and Ny (B’') =
Ny(B') =0.
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Proof The condition N;(B) > 0 implies that there is a (i) colored by d in b,. Since
Naa(B) = 0, the output edge of the (i) is connected to an input edge of a (Y). (Note
that each straight segment in b3 is connected to the left input edge of an (ad) or the
right input edge of an (ad) in b4.) Moreover, Ny (B) = 0 implies that the other input
edge of the (Y') is colored by w or k. Thus, we can apply =; with i € {11,12} to B
and denote the result by B" € I'y. Since Ny(B') = Ny(B)—1 and =; preserves N

and Ny, we have the assertion. O

Lemma 5.13 For B € T, with Ny(B) > 0, Ng(B) = Nua(B) = Ny (B) = 0, there
exists B’ € I'y such that B =13 B', Nx(B) > Ni(B'), and Ny(B') = Nu(B') =
Ny(B')=0.

Proof The conditions Ny (B) > 0 imply there exists B’ obtained from B by apply-
ing =13. Since Ni(B’) = Ni(B) —1 and =3 preserves N, Ny and Ny, we
have the assertion. |

Lemma 5.14 For B =; B’ in I'y with i € {11,12,13}, we have F'(B)(1) C
F'(B)(1).

Proof Consider the case i = 11. The case i = 12 is similar. We can prove the assertion
by two steps as in Figure 37, ie, for C =5 C’ in I'y, we have F'(C)(1) C F'(C')(1)
by (21) and (42), and we have

Figure 37. Graphical proof of the case i = 11

Z ad((UqODi,i T ;,,i(D/iDl)m)(l) ® x)
® Uy D)+ Dy a (DL DY) @ Ug DY 8- @ U Dy
Cx®Uy D) Dy o (DY D)"@UZ D] L ®---@ U7 Dy 4.
for m,n > 0 and x € Uy homogeneous.

The case =13 follows from A(U qo ) C ((7;)@’2. Hence we have the assertion. O
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5.7 Expansion of the elements in I';

In the next section, we prove JF’ (Fg)(l) C (U;")g’g , which completes the proof of
the sequence (40). Before that, we expand the elements in Fg into “homogeneous”
elements.

First of all, we define notation. For m > 0,n > 1, set
Tm,n) ={(i1,....in) | i1, in = 0,i1 + -+ ipn = m}.
Fori= (iy,...,iy) € Z(m,n), set
E'= @)®"(EM @@ E™) C (Uz,9)®".
Fl=O)®"(FW - FiM) c (Uzy)®".
(E'Y =(EW)®...@ (E() c Hom4(I, A®™),
(Fiy=(FW)®...® (Fn) € Homu(I, A®").
Clearly, we have B
E'=F(E)), F=F(F)Q).

We use the following lemma.

Lemma 5.15 Form >0, n > 1, we have
Fao(Em™)myc > FUEH)Q).
i€Z(m,n)
F(a o (FM)ymy e Y F(F))Q).

i€Z(m,n)

Proof The assertion follows from (9) and (10), by using induction on n > 1. O

Let B =bgobyobyoby with b = (b1, by, b3, by) € T By the condition (Cgi) in
the definition of Fg,’ , we can write b, o by = 0 o b; with 0 € Hom(Ag) and

15

(43) 51 _ (Dj:1>®l1 ® (® ((A>[mp,np]) ° (@sp>) ® (qu)®l3v
p=1
for [1,05,13>0, s1,...,8, >0, my,...,my,,ny,...,n;, > 1. Note that

[2 12

(® (<A>["’ﬂ’"p])o<@s,,>) = (Usphahh@((A)melo(Fen)) @ ((A) o £60))).

p=1 p=1
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For i, € Z(sp,mp) and 1, € Z(sp,np), p=1,...,15, set

@4) by (i1, .., 1)
1)

_(p*hel g (®(<{sp}q!> ® (Fr) <E"Tv>)) ® (T9)25,

p=1

In other words, b 1,10, ..., ’le,) is obtained from b 1 by replacing the (A) [mﬂ]o(i (sp))
with a (Fir), and the (A)"rlo (EGP)) with a (E‘l’) for p=1,...,[5; see Figure 38.

e ’
_ N I N--gQd.0o--- ~ o
b1=| | |/\/\ | | | - | || | | |=b1(11,11 ..... i, 17,)
Sp Fom || Fom
Fliw.o.1)| |[FYw.0mp)| |ECr.1.0)| |EUp.1.np))
AETLA BT |
Flgure 38. How t0 obtain El(il,Tl,...,ilz,le) with i, =
(((p,0,1): - - -+ L(p,0,mp)) €L(Sp.Mp), Ty = (i(p,1,1): - - -+ L(p,1,np)) EL(Sp. 11p)

for p=1,...,1;

By Lemma 5.15, we have

FBMC > Flbsobsoooby(ir1i.....i5.1,))(1).
(45) ip€Z(sp,mp)
p€EL(sp,np)
p=1,...0

5.8 Proof of F'(I'})(1) C (quev)®g

We prove the inclusion F'(I'g)(1) C (U;V)@’f. Let B = byq 0 b3 0byoby with
(b1,b2,b3,b4) € Ty such that by o by = 0 0 by with 0 € Hom(Ag) and b; as in
(43). By (45), it is enough to prove

(46) F'(bgobsoooby(iy.y,....i5.1,))(1) C (U)®S,
for i, € Z(sp,mp),1p € L(sp,np), p=1,....,1.
We prove (46). First, we study .7-"’([93 oo ob (i1, 11, ... ,ilz,le))(l). Fix

ip = (i(p,0,1): -+ L(p.0mp)) € L(pmp), Ty = (i(p,1,1)s -+ i(p,1,n)) € L(Sps11p),
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for p=1,...,/,. Onadiagram of 51 (i1,11,....i5,1,), we color the output edge of the
(ﬁ("(l’ﬂ’”)) (resp. (E("(ﬁ’l"ﬂ))) with alabel (p,0,1) (resp. (p,1,u))fort=1,...,mp
(resp. u=1,...,np), p=1,...,/[5; see Figure 39(a). We also color the output edges
of the (U;’) ’s in 51 (i1, 11, ...,i;,17) with symbols ki, ..., k;, from the left to right;
see Figure 39(b). Let P be the set of the all labels, ie, set

Pz{(p,O,t)|lftfmp,lfpflz}u{(p,l,uﬂlfufnp,lfpflz}
Utky.. .. k).

Fip.0.1)|  |Fip.omp)| |EGp..0)|  |EUw.1.np)

‘(p,O,l) ‘(p,O,mp) (Pvl,l) ‘(Pvl’np) Tkl Tkz Tkl?’
(@) (b)

Figure 39. How to color the output edges of 51 (1,19, ... Vi, 11,)

In what follows, since ]-'/(((_/qo))(l) = F'(EOY))(1) = l_/qo, we identify (l_/qo) with
(E©) and set i, =0for j=1,...,13; see Figure 40. We call the diagram of (X @)
for i > 0 with X € {E, F} an X-box.

| FO | [Ex |
Tk,- A

Figure 40. How to treat the j—th (qu) for j=1,...,1

}a oby(iy,1i,. .., i,.1,)
(oS N

7 0
FE-FE ¢l

Oo---0o o 0

P —

Iy Is ls
Figure 41. How to arrange the diagram of b3 oo o gl (i, 1,00 0,,17,)
After we color the edges, we arrange the diagram of b3 o0 o 51 (1,19, ...,0,,17,)

keeping b3 so that each X-box is connected to b3 directly without any crossings as
in Figure 41, where we set b3 = idﬁ’l4 R(Y)®5 ((_/(}WO)@I6 , and the floating boxes
is the diagrams of ({sp}4!) for p =1,...,/5. Here, by the condition (C,q) in the
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definition of F’ !, the first /4 input edges of b3 are connected to X-boxes, and by the
condition (Cy) at least one of the input edges of each (Y) in b3 is connected to an
X-box. Note that there are five cases as depicted in Figure 42(c1)—(c5), how a (Y) is
connected to the X—boxes and the (D*!)’s

Thus, we have

47) byoooby(iy,Ty,....i,.1,)

I
® {Sp}q X(la(l))> R ® ( (l“(l4>)> RZ® (Uev0>®l6

for a(l),...,a(ly) € P, Xi,...,X;, € {E, F}, and Z € (Y)®'s o Hom4(I, A®?/5).

For j =1,...,14, we call the label a(j) isolated. We say the labels a and b as in
Figure 42(c1)—(c5) are adjacent to each other.

(xjy| [(5) il [adny] T [ A (X"

(c1) (c2) (c3)

,""m'"‘x ,”"m

L[] ) [(xiey

=ar= -l
ey (c5)

Figure 42. The (Y)’s in b3, where X;, X, € {E, F} and a,b € P

Note that the identity (47) implies

48) F'(b3oooby(iy,1y,. .. i,Z,le))(l)
( H{Sp}q ) U®l4 ®,F/(Z)(1) ® (UCV0)®I6)

Let us consider )" z; ® --- ® z;, € F/(Z)(1). If the m—th § /) (from the left in b3)
is as in (c1), then we can assume z,, € Y(UOX(I“) ® U°X i) ). By Lemma 3.9, we
have

(49) V(02X @ UXXI) € (tmin(ia. ip)}g) ™" - T2,
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where ({min(i, j)}4) ™! -ﬁ;v C U;V ®z14.4-11 Q(q). For example, we have
Y(OLED @UJF®) = ({2}) 'Y (U2 @ UL FD)
C ({2 U
If the m—th and the n—th (Y)’s are as in (c2), then we can assume
Y im®@mey VOIX @UIDL) @Y (U)X @ U DY).

By Lemma 3.10, we have
50 S Y@OX @UIDL) @ YUK @ U2DY)

C ({min(ig, i)} ™' - (U7 ®2.
Similarly, for (c3), (c4), (c5), we have
G Y V(O UMD ® Y (UDL ® UXX™)

C ({min(iq, ip)}4) ™" - (US)®2,
520 Y Y0P, @ UK @ Y (ULX™ © U2 DY)

C (fmin(ia, ip)}g)) " - (USH®?,
53) Y Y0P, @ XX @ YU DY @ UXXI™)

C (fmin(ia, ip)}g)) " - (USH®?,
respectively.

Let 73/% denote the set of unordered pairs {a, b} of mutually adjacent elements a,b € P.
By the above inclusions (49)—(52), we have

IETIEERS () § (ORI R
{a,b}eP?
Thus, by (48), we have
. F'(b3oo oby(iy,y, ... ,il,Tl))(l) cl- (U®’4 ® (U)®5 @ (US0)®')
( ) (U®l4 ® (UeV)®15+l6)

where we set

1=(1’[{sp}q!)-( I ({min(ia,ib)}q!)—l)e@(q).

p=1 {a,b}eP?
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Let us study f’(b@(Ug{; ® (ﬁ;")‘x’lS"'lﬁ). Since the first /4 input edges of b4 are
connected to the left (resp. right) input edges of the (ad)’s (resp. {ad)’s), and the next
5 + Il input edges of b4 go down to the edges of the (u)’s and to the right (resp. left)
input edges of the (ad)’s (resp. (ad)’s), by Proposition 2.2, (resp. Corollary 2.3) we
have

(55) .7:/([)4)(U®l4 ® (UGV)®15+1(,) C (UeV)®g
By (54) and (55), we have
F'(bsobyooobi(ir.Ty. ... i, 1,))(1) C I-(U)®E.
Thus, for the proof of (46), it is enough to prove
(56) 1€Zlg.q"].

For k > 1, let 4 (g) be the k—th cyclotomic polynomial in ¢. For f (q) €Zlg.q7 ],

/(q) # 0, let di(f(q)) be the largest integer i such that f(g) € P} Y @DZlq.q -1
Since both ]_[p2=1 {sp}q! and [ (a.b}eP? {min(i,, ip)}4! are products of the cyclotomic
polynomials, in order to prove (56), it is enough to prove

57) dk( H{sp}q!) > dk( [T iminGa.in)lq! )

p=1 {a,b}eP?
for k> 1.
We prove (57). Fix k > 1. Since we have

1 if k|,
0 otherwise,

di(itg) = dilg' — 1) = {
for i > 0, it follows that
dr({itg) = i/ k].
This identity and s, = Z;";’l i(p,0.0) = ZZ’;I i(p,1,u) iMply

dic({sp}q!) Z dic({i(p,0.0}q"):

t=1

di({sp}q!) Z dic ($i(p,1,m) Hq!)-

u=1
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Thus, we have

123 b mp
dk( H{sp}q!) > Z(de iponta) + 3 dillinmnla! ))/

p:l = u=1

= de {la}q
acpP
S di(tialgltislg) + Y dk({ic}q!))/z

{a,b}eP? ¢€Piso
> Y di(tialginle))/2

{a,b}eP?

=dk( I {ia}q!{ib}q!)/z

{a,b}eP?

= a( T minGain)le)

{a,b}eP?

|
~—

where Piso C P denotes the subset consisting of isolated labels. This completes the
proof.

6 Completions

In this section, we define the completion (ﬁqu)A®n of (quv)@” , and prove Theorem 1.2.

6.1 Filtrations of U 4 With respect to ad and ad

For a subset X C U qu, let (X )igear denote the two-sided ideal of l_]qe" generated by X .
Set

Ap = (Uz 4> e?)ideal,

— < Z (UZ,qE(pf) > ﬁqev)> ’ C}/} — < Z (UZ,q F&) U;v)> ,
ideal ideal

p'=p p'=p
Cp :< Y KUz EP >KU;V)>_ . G :< > K(Ug FP) >Kl7;V)>_ :
p'=p ideal p'=p ideal

for p > 0. For X = A4,C, C',C,C’, the Xp, p = 0, form a decreasing filtration
of U", ie, we have X, D X4 for p > 0.
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Lemma 6.1 [23, Proposition 5.5]
(i) For p >0, we have Cp = CIQ.
(i) For p =0, we have Cy, C Ap.
(iii) If p =0 is even, then we have Cy,, = Ap.
Lemma 6.2
(i) For p >0, we have ép = 51;.
(i) For p > 0, we have 521, CAp.
(i) If p > 0 is odd, then we have Cy, = A,.

Proof The proof is almost the same as that of Lemma 6.1. |

For p > 0, set
Gp:Cp+Cp:C1;+C1;

Corollary 6.3 For p >0, we have G, = 4.

Proof For p >0, by Lemma 6.1(ii) and Lemma 6.2(ii), we have G, C 4.
If p >0 is even, then by Lemma 6.1(iii), we have G5, D C, = Ap.
If p >0 is odd, then by Lemma 6.2(iii), we have G, D 52,, =Ap.

Thus, we have the assertion. O

Corollary 6.4 The filtrations {Ap}p>0,1Cp}p=0. {ép}pzo, {Gp}p>0 are all cofinal
with each other.

6.2 Filtrations of U;V and (queV)m with respect to Y

For p >0, let ), be the two-sided ideal in U;V generated by the elements in

S V@EN @by Y V(@ TOED),

p'zp p'zp
S YOFP 0Ty, Y ¥(T,eTFP).
p'zp p'zp

Lemma 6.5 For p >0, we have J, C Gp.
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Proof It is enough to prove that all the generators of ), are contained in G),.
By (18), (20), and (25), we have
Y(WUPEP Uy c Y (UQEP) > K'UY)K'UY € Cp+Cp C Gy,
i=0,1
YU, UYEP) =" KT(ST OPEP) e KT
i=0,1
c Y KUMUMEP) > K'US) € Cp+Cp C Gy,
i=0,1
for p’ > p. Similarly, we have
Y(OLFP) @ Uy) € Cp+Cp C Gy,
Y (U ® ULFPY) c €+ C) C Gy,

for p’ > p. Hence we have the assertion. |

Let (VP )p be the two-sided ideal in ((7(1‘“)®2 generated by the elements in
YWPEP) @UD,) @Y (U, ® U'D/,
Y VOIE Ui D)@Y (Uy ® Uy DY),
p'zp
Y Y(OFP @UIDL)®Y (U ® UYDL)
q q + q q + /s
p'zp
770 = (p) 770 y/ 770 /! r7
Y YWEP) @UIDL) QY (U)DL ®Ty),
p'zp
770 -(p)) 70 ny/ > 770 N/ r7
S Y@OFP) @UDL) @Y (UL DL Uy).
p'zp
Y(UD, @ UPEP) @Y (U, ® U’ D",
Z(qﬂ:@q )Y (Ug ®@U, Dy),
p'zp
Y' 79D’ _Oﬁ(p’) Y 7 779 p”
Z (Uq + ® Uq )® (Uq ® Uq :l:)?
p'zp
> YU, ®UIEP) @Y (UL DL @ Uy)
q % q q~ =+ q)
p'zp
Y YD, @UYFP) @Y (UYDL @ Uy).
p'zp

Note that these sets are all contained in ((7(}“)®2 by Lemma 3.10.
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6.3 Filtrations of (ﬁ;V)em

For n>1 and a filtration {X}},>¢ of (7;", define a filtration {X,S”)},,zo of ((7;")‘8’” by
n —_— . —_— .
Xp(n) — Z(U;V)®]—l ® Xp ® (quV)®n—j'
j=1
For n > 1, define the filtration {(yD)I(,”)},,ZO of (U;V)‘X’” by
(yD)](Jn) — { Z (U;V)@i—l ® y/ ® (U;V)®j—i—l ® y// ® ((7qu)®n—j)
1<i<j=<n
Y yey'e (yD)p}
4 { Z (U;V)@i—l ® y// ® ((7;\/)@]—1'—1 ® y/ ® (U;v)@)n—j‘
1<i<j<n
Y yey'e (yD)p}
n —_— —_—
@ w0 @ Ty ey e 9P,
k=1

n
+ {Z(U;V)tx)k—l ® y//y/ ® (quV)®l’l—k ‘ Zy/ ®y// c (yD)p}
k=1

Lemma 6.6 Forn>1,p >0, we have (V?) ¢ GEZ)/M'

Proof It is enough to prove that all the generators of (V?) p are contained in Gﬁ)/z I

We prove

Y VOPEP @UID )@Y (U)D" ® Uy CG .
p'zp

Similarly for the other generators of (J)? )p. For p >0, let us assume a weaker
inclusion

(58) Y YWEP D)@Y (D' ®U) C G,
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Then, similarly to (34), for p’ > p, we have

Y YOEP @UID)@Y(U)D" @ Uy)

=Y YWEP @ D'UH)QYUD" ® Uy
Y Y(TPEP) 1y @ UQ) (Y ((TYEP )y ® D') < TP)

® (U >Y(D"®Uy)Y (U @ Uy)

cy Y((OPEP) 1y ®@ UMY (UPEP)) ) ® D) ® Y (D" ® Up)Y (U ® Uy)

- ¥

pi+py=p'

>

pi+pr=p

c 2

pi+py=p'
< 2
pi+pi=p
C
pi+p5=p
1 2

Y(OLEPY @ UHY(UEP? @ DY@ Y (D" Up)Y (U2 ® Uy)
(Vp - Y (UEPY ® D)) @ (Y (D" & Ug)- UY")

I (FOPEPD @ D)@ ¥ (D" 0Ty - Ty)

@) -2
ypﬁ GP&
2) () ) 2) )
GP’l 'GP’Z = Z GmaX(p’l,p’z) = GLP’/2J C GLp/ZJ'
P +p5=p

Here, the first inclusion follows from Lemma 3.7 and the fifth from (58).

Now, we prove

(58). Similar to (35), for b € Uq homogeneous, we have

Z Y(U;E(p)@)D/)@Y(D”@b) - Z(U;E(mbK_|b‘2)|)K|b(2>| ®S_1(b(2))b(1),

with b1y, b(2) € l7q homogeneous such that S_l(b(l))b(z) € ﬁ;".

If |b(2)| € 27Z, then we have

770 - —|b b
(U;E(p)DK by glb) c C, C Gp.

If |b2)| € Z \ 27, then we have

Thus, we have

770 1 —1b b ~
(U E® s gl (z)l)Kl ol - Cp C Gp.

Z(ﬁ;E(P) > K—\b(z)‘)K|b(2)| ® S_l(b(z))b(l) C Gp ® ﬁ;v C G[()Z)

Hence we have

the assertion. O
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6.4 Completions

Let (U V)" denote the completion of U 7 in Uy, with respect to the filtration {Gp}p>o0,
ie, (U ev) is the image of the map

lim(Tg"/ Gp) > Uy
p

induced by the inclusion 17 ' C Uy. Since Gy, = Ap C h? Uy, this map is well-defined.

Let U "V)A®" denote the completion of (U ev)®” in U, &1 with respect to the filtration
{G }p>0 For n = 0, it is natural to set

co _ [2lg.q7"] if p=0,
r 0 if p>0.

Thus, we have .
U ®° =12Zlg.q7"].

6.5 Proof of Theorem 1.2

Let 7" € BT, be a boundary bottom tangle and (T; g1,...,&n) aboundary data for 7.
Let C(T) ={c1,...,c;} be the set of crossings of the diagram of 7' which we fix in
the definition of Jz. We fix this notation in this section.

By Proposition 3.11, we have
M[gl ,,,,, gn])7®g(Jf,s) c (quV)®n’
forseS (T) In this section, we prove Theorem 1.2, ie,

Z /’L[gl ,,,,, gn]f]®g(‘]i",s) c (U;V)’\®I’l.
seS(T)

It is enough to prove the following lemma.

Lemma 6.7 For each p > 0, there are only finitely many states s € S (T) such that
M[glwsgn]f'@g(JiS) ¢ G}()'l).

Since pulg18 ”](G(g) ) C G for p >0, we have only to prove Lemma 6.7 replacing
plgrs- ’g"]Y®g(J ) ¢ Gp" with Y®g(J ) EG (8) We use the setting in Section 5
with a state s € S (T) treated as a parameter as in the following lemma.
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Lemma 6.8 There is a map B: S(T) — F” s > B¥, satisfying the conditions: For
all s € S(T), we have Y®g(J~ )€ ]-"/(Bs)(l) and we have B = byobzobyob}
with (b%,b,, b3, by) € I‘” such that

by = (DF)EN @ (Oc))) ® - ® (Og(cy,)) ® (T,) B,

for ly,l3 > 0, and [, = [ is the number of the crossings of T, where all parts of B*
except (Ogc)) ® ... ® (®S(C/2)> do not depend on s € S(T).

Proof We can define B as in the lemma by constructing B* as follows. First, we
choose a state x € S(T) and construct By € g so that Y®g( L)€ ]-"(Bx)(l) as
in the proof of Lemma 5.1. For a state s € S (T) let By €'y obtalned from B by
replacing (O (c,)) with (Oy(,)) for p=1,...,/5. By the construction of BY, we have
Y®g(J~ ;) EF(Bg)(1). Second, by Lemma 5 4 and Lemma 5.7, we can transform By
into some Bx € F” by using the preorder < and <’. We have Y®g(J~ L) E ]-"’(Bx)(l)
by Lemma 5.3 and Lemma 5.6. Since < and <’ each does not depend on any (Ox(c,))>
we can obtain the desired B® € 'y from B* by replacing (B (c,)) with (By(,)) for
p= I,..., 12 . O

We fix B: S(T) — Iy, s+ BY =byob3ob;yobi,asinLemma 6.8. For a state
ses (T ), recall from Sectlon 5.7 the expansion of BS First, we write by o b} =0 obs
with 0 € Hom(Ag) and

153
b = (D*) ®’1®(® Arrrel) o (®s<c,,)))®<l7q°)®’3,

for my,...,my,,ny,...,n;, > 1, and then for i, € Z(s(cp), mp), 1, € L(s(cp).np),
p=1,...,15, weset

123
bi(iy. Ty ..., 1) = (D*) ®’1®(® ({s(cp)}q") <Fiv>®<ﬁv>))®<t7;>®’3.

Recall that we have

FBHYDHC Y Flbaobyooobi(iyT.....i5. 1)) ().

%59 ip€Z(s(cp),mp)
p€L(s(cp).np)
p=1,..,0
Let
ip = (i(p,O,l)v e, i(p,O,mp)) e I(S(Cp), mp),
B = (ip1,0) -+ ip1,mp)) €L(5(cp).p),
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for p=1,...,1. Set

N3y, 1y, ..., 0, ) = maxtip,0,iy. ip,1,j) | 1 ST <mp, 1= j <np, 1< p =1},
N*¥ =min{N*(i1.1q,....i;, 1) | ip € Z(s(cp),mp), 1, € Z(s(cp).np), 1 < p <1}.

Lemma 6.7 follows from (59) and the following two lemmas.
Lemma 6.9 For r > 0, there are only finitely many states s € S(T) such that N® <r.

Lemma 6.10 For s € S(T) and r > 0 such that N* > 2r, we have
F'(bgobyooob(iy, T, ..., i.1,))(1) C G¥),

for all i, € Z(s(cp).mp), Ip € L(s(cp).np), p=1,....15.

Proof of Lemma 6.9 Note that for i = (iy,...,i;) € Z(k,l), k >0,/ > 1, we have
k

<max(ig,...,i).

Thus we have

wd = max{M,@ ‘ 1<p 512} < N°%(i1.,1q,...,i5,1),
mp — Np

forall i, € Z(s(cp).mp), 1, € L(s(cp),np), p=1,...,1>. Hence we have

(60) w® < N°.

It is not difficult to prove that, for r > 0, there are only finitely many states s € S (T )
such that w® < r. This and (60) imply the assertion. O

Proof of Lemma 6.10 The proof is similar to the last step of the proof of Lemma 5.2
in Section 5.8. By replacing s, with s(cp) for p =1,...,/5, we use the notation and
results in Section 5.8.

Fix i, € Z(s(cp).mp) and 1y € L(s(cp), np), for p =1,... /5. Recall that we color
the output edges of b{(i;,1i,...,i},,1;,) with the labels in P as in Figure 39. Note
that

M = N*%(iy,1q,...,i;,7) =max{i, |a € P} > N° > 2r.

Since the filtration {G},>0 is decreasing, it is enough to prove

(61) F'(bgobsooobi(iy, Ty, ..., i1,,11,))(1) C Gfﬁ}m.
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We prove (61). Recall that Pjs, C P denotes the set of isolated labels, and Pﬁ denotes
the set of unordered pairs {a, b} of mutually adjacent labels a,b € P. Set

Py =P\ Pio = Pa.
Set Miso = max{is| a € Piso} and My = max{i,| a € Py}. It is enough to prove
() F(bsobsooobi(ir.T.....ip. 1)) (1) CGE (CGE) ).

(i) F'(baobsooobi(iy.Ty.....ip 1)) CGE) .

Let us prove (i). Recall from (54) that
F'(byoo obi(iyTy.....i1,.1,)) (1) C USH @ (T B!,
Thus, it is enough to prove

(©2) Fba)(Uzg € THH) c G

Recall that the first /4 input edges of b4 are connected to the left (resp. right) input
edges of the (ad)’s (resp. (ad)’s), and the next /s + /4 input edges of b4 go down
to the edges of the (u)’s and to the right (resp. left) input edges of the (ad)’s (resp.
(ad)’s). By the definition of C, and C,, we have

(63) ad(Uz 4 EP @ US') € Cp C Gy,
(64) ad(Uz,q FP ® US') € C) C Gy,
for p > 0. We also have
ad(U ® Uz g EP) Cad(US' ® EP))
(65) Cad(STHEP) @ UY)
Cad(U)EP @ U) C Cp C Gy,
for p > 0. Similarly, we have
(66) ad(US* @ Uz ¢ FP) € C) C G,
for p > 0. Thus, (62) follows from (63)—(66) and the inclusions

(67) pWUz,q ® Gp) = u(Gp ® Uz,4) C Gp,
(68) ad(Uz 4 ® Gp) C Gp, ad(Gp @ Uz4) C Gp.

for p > 0. We have finished the proof of (i).
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Let us prove (ii). Recall from (48) that
(69) F'(b300obl(iy,11,...,i1,,15,))(1)
153
- ( l_[ {s(cp)}q!) . (Ug;“ RF(Z2)1)® (U;VO)®I6),
p=1

where Z € (Y)®'5 o Hom4(I, A®%5). We study F'(Z)(1) by using the following
inclusions (70)—(74) instead of (49)—(53).

For X;, X, € {E, F} and iy, i > 0 for {a,b} € P2, we have
(70) Y(OLX0 @ UXX™) € (tminia. ip)}g) ™" Vimax(iasi)-
We also have
7y Y YOXP @ UDy) @ V(UK @ U2 D]

C (fmin(ia» i) gD ™"+ P ) maxia.in)
72) Y YV(OX @UIDy) @Y (UL DL ® UYX™)

C (fmin(ia» i)D"+ P ) maxia.in)
73) Y YO0y @ UK @ V(UK ® U2 DY)

C (fmin(ia» i) 3D ™" P D maxia.in)
74 Y YO0, UK @Y ({U)DL @ UYK™)

C (fminfia: i) 3D ™" ) maxia,in) -
By the above inclusions (70)—(74), and by Lemmas 6.5 and 6.6, we have

(75) F@mc J] (tminGais)e) G5t a
{a,b}eP?

Thus, by (69), (75) and (56), we have

TS s — P l / 7
F(bsoo obiir T, ...ip, 1)) (1) CUSRE @ Gl5) ) @ (Tl

®ly (Is+1s)
CUzq ®G a2

For the rest of the proof, it is enough to prove the inclusion

) Is+1
(76) FooUzg ® Gl) < Glity oy
which follows from (67) and (68). This completes the proof. O
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