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Homotopy normal maps

MATAN PREZMA

A group property made homotopical is a property of the corresponding classifying
space. This train of thought can lead to a homotopical definition of normal maps
between topological groups (or loop spaces).

In this paper we deal with such maps, called homotopy normal maps, which are
topological group maps N ! G being “normal” in that they induce a compatible
topological group structure on the homotopy quotient G==N WD EN �N G . We
develop the notion of homotopy normality and its basic properties and show it is
invariant under homotopy monoidal endofunctors of topological spaces, eg localiza-
tions and completions. In the course of characterizing normality, we define a notion
of a homotopy action of a loop space on a space phrased in terms of Segal’s 1–fold
delooping machine. Homotopy actions are “flexible” in the sense they are invariant
under homotopy monoidal functors, but can also rigidify to (strict) group actions.

55P35, 18D10; 18G55, 55U10, 55U15, 55U30, 55U35

1 Introduction

Homotopy normality is an attempt to derive a homotopical analogue for the inclusion of
a normal subgroup via classifying spaces. An inclusion of topological groups N ,!G

is the inclusion of a normal subgroup if and only if it is the kernel inclusion of some
group map G ! H . Since any map is, up to homotopy, an inclusion, one needs to
consider all group maps N ! G . Such a map should then be “homotopy normal”
if BN ! BG is the map from the homotopy fiber to the total space for some map
BG Ü W . There is another angle from which this notion makes sense. To every group
map N ! G; one can associate the Borel construction EN �N G DW G==N , which
is the “correct” quotient in the homotopical world. We note that such an extension
BG Ü W induces a loop space structure on G==N , and a loop map structure (up to
map equivalence) on G!G==N , providing a second analogy to the group theoretic
notion: a group inclusion N ,!G is the inclusion of a normal subgroup if and only
if G=N admits a group structure for which the natural quotient map G!G=N is a
group map.
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Let f W X ! Y be a pointed map of connected spaces. Consider the Puppe–Nomura
sequence [16]

�X !�Y !�Y==�X !X ! Y;

where we denote �Y==�X WD hfib.f /.

The following is essentially taken from Farjoun and Hess [9, Section 5].

Definition 1.1 A loop map �f W �X!�Y is homotopy normal if there exist a con-
nected space W with a map � W Y !W , so that

X
f // Y

� // W

is a homotopy fibration sequence. The map � W Y !W is called a normal structure.

Remarks 1.2 (a) We see that a loop map �f W �X ! �Y is homotopy normal
if and only if f W X ! Y admits a structure of a homotopy principal fibration, ie
equivalent to a principal fibration. In particular, the homotopy fiber of such a loop map
has the structure of a double loop space.

(b) If �f W �X ! �Y is homotopy normal, the group map �0.�f /W �0.�X /!

�0.�Y / is normal in the sense of [9], ie underlies a crossed module structure on the
corresponding groups. Whitehead showed [23] that crossed modules correspond to
connected 2–types. We note that if a discrete group map N ! G is normal (in the
sense of [9]) and BG!W its normal structure then W is the corresponding connected
2–type.

Example 1 If F ! E ! B is a fibration sequence, the map �1F ! �1E is a
homotopy normal map of discrete groups. It is also true that any homotopy normal
map of discrete groups is of this form (see Brown, Higgins and Sivera [3, Section 2.6]
and Loday [13, Corollary 1.5]).

Example 2 Any double loop map �2f W �2X ! �2Y where X;Y are simply
connected spaces is homotopy normal: take W D hfib.X!Y /; W is then a connected
space which extends the Puppe–Nomura sequence.

Example 3 Let F be a pointed connected space. Then the universal fibration in
Gottlieb [11], F ! Baut�.F /! Baut.F / induces a homotopy normal map �F !

�Baut�.F /. This map may be viewed as a universally initial homotopy normal map
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in the following sense: for every homotopy normal map �F !�X there exist a loop
map �X !�Baut�.F / and a homotopy commutative triangle

�F //

%%

�Baut�.F /

�X:

OO�
�
�

The dashed arrow is obtained as follows. Assume F!X!W is a homotopy fibration
sequence giving a normal structure on �F !�X . By [11], there exists a “classifying
map” cW W ! Baut.F / such that X !W is obtained as a homotopy pullback

X //

��

W

c
��

Baut�.F / // Baut.F /:

This can be extended to a homotopy commutative diagram

F

'

��

// X //

��

W

c
��

F // Baut�.F / // Baut.F /

and looping down X ! Baut�.F / gives the desired map.

Main results

Given a group map N ! G , each level of the bar construction Bar�.G;N / D

fG � N kgk�0 (see May [14, Section 7]) admits an action of G , namely the one
induced from the group inclusions s0W G!G�N , s1s0W G!G�N 2 , etc. Similarly,
in any simplicial group �� , �0 acts on each level via degeneracies (as above) and
endows �� with a structure of �0 –simplicial set.

The following is the main theorem in [9, Section 4], rephrased.

Theorem 1.3 A map of discrete groups f W N !G is homotopy normal if and only
if there exists a simplicial group �� , with an isomorphism �0 ŠG which extends to a
G –equivariant isomorphism of simplicial sets

Bar�.G;N /! ��:
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The main goal of this work is to describe a generalization of Theorem 1.3 that charac-
terizes all normal maps �X !�Y . Our strategy is as follows.

In Section 3 we define a homotopical analogue to the bar construction Bar�.�Y; �X / in
the case of loop maps �X!�Y . In the degenerate case of �Y '�, Bar�.�; �X /D

Bar�.�X /, and one recovers Segal’s 1–fold delooping machine (Definition 2.2)
for �X .

Next, in Section 5 we define the notion of a homotopy action of a loop space on a
space. We study its basic properties and establish a weak equivalence between the
category of homotopy actions of a fixed loop space and the category of spaces with
an action of a fixed topological group. The simplicial space Bar�.�Y; �X / admits
a canonical homotopy action of �Y . A homotopy action of �Y is also defined for
any simplicial loop space �� satisfying �0 ' �Y . Using this setup we can state a
homotopical analogue of Theorem 1.3.

Theorem A A loop map �f W �X ! �Y is homotopy normal if and only if there
exists a simplicial loop space �� with �0 ' �Y (as loop spaces), and such that
the canonical homotopy actions of �Y on �� and on Bar�.�Y; �X / are weakly
equivalent.

As often happens, Theorem 1.3 is a special case of Theorem A in that it is precisely its
�0 statement. One consequence of Theorem A is the fact that homotopy normal maps
are invariant under homotopy monoidal functors.

Definition 1.4 A functor LW Top! Top is called a homotopy monoidal (HM) functor
if it preserves homotopy equivalences, contractible spaces and finite products up to
homotopy. The last condition can also be formulated as follows: for every pair of
spaces X;Y , the canonical map L.X �Y /

'
!LX �LY is a homotopy equivalence.

Let L be an HM functor and �f W �X!�Y a loop map. It is implicit in Bousfield [2]
and Farjoun [7] and can be proved also by using the delooping theorem of Segal [20]
that L.�X / always has the homotopy type of a loop space and L.�f / is always
equivalent to a loop map.

Remark 1.5 Although HM functors preserve the property of having (the homotopy
type of) a loop space, they do not commute with the functor �W Top�! Top� .

Using the fact that homotopy actions of loop spaces can be described in terms of
maps between finite products of spaces we show that HM functors preserve homotopy
normality.
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Theorem B Let �f W �X ! �Y be a homotopy normal map. If LW Top! Top is
an HM functor, then L.�f /W L�X !L�Y is a homotopy normal map.

This, in turn, gives an immediate proof of a theorem due to Dwyer and Farjoun [5,
Section 3] which we restate.

Theorem C Let f W X ! Y be a map of pointed connected spaces and pW E! B

be a homotopy principal fibration of connected spaces. If L†f is the localization
functor by †f W †X !†Y , then L†f .p/W L†fE!L†fB is a homotopy principal
fibration.

Remark 1.6 In what follows, we use L to denote an arbitrary HM functor. The
notation L reflects the special case of localization by a map.

Refer to related work of Farjoun and Hess [8] on homotopy (co)normal structures in
a category with a class of weak equivalences and some additional structure, called a
twisted homotopical category.

Acknowledgements This paper is based on the author’s PhD thesis at the Hebrew
University of Jerusalem. The author would like to express deep thanks to his advisor,
Emmanuel Dror Farjoun for his continuous guidance, discussions and encouragement.
The author would also like to thank the Hebrew University of Jerusalem for support of
his studies. Special thanks are extended to David Blanc and James Stasheff for helpful
suggestions and conversations.

2 Preliminaries

Throughout this paper, topological spaces or spaces will mean topological spaces of the
homotopy type of CW complexes. We denote the corresponding category by Top. Thus,
by Whitehead’s theorem, every weak equivalence is in fact a homotopy equivalence.
All mapping spaces will be taken with the compact-open topology. The path space PX

of a pointed space X is the space of maps f˛W I ! X j ˛.0/ D �g; a loop space is
understood to be a space of the form �X WD f˛W I ! X j ˛.0/D �D ˛.1/g, where
X is a pointed connected space and a loop map is a map of the form �f W �X !�Y

where f W X ! Y is a pointed map. The following is a well-known fact, essentially
contained in Kan [12] and Milnor [15].
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Theorem 2.1 If X is a (pointed) connected space, then there exists a topological
group G , with X

'
! BG . Moreover, one can construct G functorially in X , ie if

�f W �X!�Y is a loop map, there is a commutative diagram

�X //

'

��

�Y

'

��
G // H

with the vertical arrows being homotopy equivalences, and the bottom arrow being a
topological group map.

A map E ! B is a (Serre) fibration if it has the right lifting property with respect
to all inclusions of the form Dn ,!Dn � I that include the n–disc Dn as Dn � f0g.
A fibration sequence is a sequence of the form F ! E

p
! B , where pW E ! B is

a fibration and either .B; b0/ is pointed and F D p�1.b0/ or F D p�1.b/ for some
b 2 B and B is connected. A sequence X ! Y !Z is called a homotopy fibration
sequence if there is a commutative diagram

X //

'

��

Y //

'

��

Z

'

��
F // E // B

with vertical arrows being homotopy equivalences and the bottom being a fibration
sequence. A homotopy fibration sequence X ! Y !Z is called a homotopy principal
fibration sequence if there is a connected space B and a map Z ! B , called the
classifying map such that Y ! Z ! B is a homotopy fibration sequence. In that
case, X ' �B and there is a principal fibration sequence G ! E ! E=G , and a
commutative diagram

X //

'

��

Y //

'

��

Z

'

��
G // E // E=G

with all vertical maps being homotopy equivalences and the left vertical map being
equivalent to a loop map �B!�BG .

As usual, we denote by � the category of finite ordinals Œn�D .0; : : : ; n/ with ordinal
maps between them. Given a category C , a simplicial object in C is a functor �op! C ,
and we denote it by X� with Xn for its value on Œn�.

Of special importance to this paper are simplicial objects in Top, namely simplicial
spaces. If X is a space, we shall denote the constant simplicial space on it by X
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when there is no risk of confusion. An equivalence of simplicial spaces (or: simplicial
equivalence) is a simplicial map f W X�! Y� such that, fnW Xn! Yn is a homotopy
equivalence for each n. Similarly, a (homotopy) fibration sequence of simplicial spaces
is a diagram of simplicial spaces F�!E�! B� which is a level-wise (homotopy)
fibration sequence.

We will often use a particular class of simplicial spaces introduced in a preprint of Se-
gal [20] and originally called “group-like special �–spaces”. Influenced by the Rezk’s
terminology [19], we call them reduced Segal spaces; these are defined as follows.

Definition 2.2 (cf [20]) (a) A reduced Segal space is a simplicial space B� such
that

(i) B0 ' �;

(ii) for each n� 1, the maps pnW Bn! B1 � � � � �B1 (called Segal maps) induced
by the maps

ik W Œ1�! Œn� .1� k � n/

0 7! k � 1; 1 7! k;

are homotopy equivalences;

(iii) the monoid structure on �0.B1/ admits inverses (ie is a group).

(b) We say that B� is a reduced Segal space for �X if it comes equipped with a ho-
motopy equivalence jB�j

'
!X ; if B� and B0� are reduced Segal spaces for �X , a map

(respectively equivalence) between them is a simplicial map (respectively equivalence)
B�! B0� which makes the triangle of loop maps below commutative.

�jB�j //

' ##

�jB0�j

'{{
�X

Remark 2.3 By [20, 1.5], it follows that if B� is a reduced Segal space for �X

there is a natural homotopy equivalence B1
'
!�jB�j. Thus, a reduced Segal space

for �Y can equivalently be defined as a reduced Segal space B� equipped with a loop
equivalence B1

'
! �X . The diagram of Definition 2.2(b) should then be changed

accordingly.

For a topological group G and aW X �G!X a right action of G on a space X which
we denote by x 7! xg for x 2X and g 2G , the bar construction (cf [14, Section 7])
is the simplicial space Bar�.X;G/, consisting of

Algebraic & Geometric Topology, Volume 12 (2012)
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(1) for every n� 0, Barn.X;G/ WDX �Gn

together with

(2) face maps d
.n/
i � di W Barn.X;G/! Barn�1.X;G/ for every n� 1 and every

0� i � n given by

di W .x;g1; : : : ;gn/ 7!

8<:
.x �g1;g2; : : : ;gn/ if i D 0;

.x;g1; ::;gi�1;gi �giC1;giC2; : : : ;gn/ if 1� i < n;

.x;g1; : : : ;gn�1/ if i D n;

(3) degeneracy maps si W Barn.X;G/! BarnC1.X;G/ for every n� 1 and every
0� i � n given by

si W .x;g1; : : : ;gn/ 7! .x;g1; : : : ;gi ; e;giC1; : : : ;gn/:

3 The homotopy power of a map

Given a fibration pW E! B , one can define a simplicial space Pow�.E! B/, called
the power of p, by Pown.E ! B/ D E �B E � � � �B E .nC 1 times/ with face and
degeneracies being the obvious projections and diagonals. In [13], it is shown that
for (E nonempty and) B connected, jPow�.E ! B/j ' B . We note that for a
nonconnected space B , jPow�.E! B/j is homotopy equivalent to the disjoint union
of connected components of B intersecting the image of p .

Here, we wish to construct such a power space for an arbitrary map f W X ! B by
means of homotopy pullbacks, thus turning it to a homotopically invariant construction.

We define the n–th homotopy power of f W X ! B to be

hPown.X ! B/D map

 �Œn�0 X
;

�Œn� B

� �� f��

!
D holim

 
X X � � � X

B
�� �� ��

!
;

with �W �Œn�0 ! �Œn� being the inclusion of the 0–skeleton into the topological n–
simplex.

This clearly yields a functorial construction over �op , and we define:

Definition 3.1 The homotopy power of a map f W X ! B , denoted hPow�.X ! B/,
is the simplicial space with hPown.X ! B/ on level n, and face and degeneracies
given by the functorial construction above.
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Note that for a fibration pW E ! B one gets an equivalence of simplicial spaces
hPow�.E! B/' Pow�.E! B/.

Remark 3.2 When calculating the homotopy power of a map f W X ! B we will
often use a slightly different but equivalent construction. We first replace f by an
equivalent fibration pW Ef ! B , ie one for which there is a commutative triangle

X

f

��

' // Ef

p
~~

B

and then take the power of p , as in [13]. This construction is functorial as well. We
also note that if X!B is a pointed map, hPow�.X!B/ naturally becomes a pointed
simplicial space.

4 The homotopy bar construction

Consider a topological group G acting on a space X and the corresponding (homo-
topy) principal fibration G ! X ! X==G . One has the “usual” bar construction
Bar�.X;G/D fX �Gkgk�0 with jBar�.X;G/j DX==G . On the other hand, we can
resolve X==G by taking homotopy powers of the map qW X !X==G .

Proposition 4.1 Let G act on X as above. Then there are simplicial equivalences

Bar�.X;G/ // hPow�.X !X==G/:oo

Proof Replacing qW X !EG �G X by the fibration pW EG �X !EG �G X and
taking the pullback, we get hPow1.X ! X==G/ D .EG �X / �X==G .EG �X / Š

EG �G �X , since EG �X is a free G –space. In general,

hPown.X !X==G/D .EG �X /�X==G � � � �X==G .EG �X /ŠEG �X �Gn;

and the obvious map EG � X � Gn ! X � Gn defines a simplicial equivalence
hPow�.X !X==G/! Bar�.X;G/. Taking (for example) Milnor’s join construction,
we have a natural base point for EG and hence a canonical map X�Gn!EG�X�Gn ,
which in turn defines another simplicial equivalence.

In light of the last proposition, we define:

Definition 4.2 Given a (homotopy) principal fibration sequence �Y !X
q
!Q, the

homotopy bar construction Bar�.X; �Y / is the homotopy power hPow�.X !Q/.
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Remark 4.3 In the case of a loop map �f W �Y !�Z , Bar�.�Z; �Y / is the ho-
motopy power of the map qW �Z!�Z==�Y WD hfib.f /. If �Z'�, Bar�.�; �Y /

becomes the power of the map PY ! Y which is a reduced Segal space for �Y . Put
differently, one can recover Segal’s delooping machine by using homotopy powers.

It is useful to have the following property.

Proposition 4.4 Let f W X ! B be any pointed map. The canonical map induces an
equivalence of simplicial spaces �.hPow�.X ! B//' hPow�.�X !�B/.

The proof is essentially the fact that given a pointed diagram A!X  Y , we have a
weak equivalence � holim.A!X  Y /' holim.�A!�X  �Y /.

4.1 From homotopy normality to a simplicial loop space structure on the
homotopy bar construction

Let �f W �X ! �Y be a homotopy normal map. We form the Puppe–Nomura
sequence

�X
�f // �Y

q // �Y==�X // X // Y
� // W:

Then by [16] there is a commutative triangle in which the vertical arrow is a homotopy
equivalence

�Y
q //

�� %%

�Y==�X

��
�W:

Passing to (homotopy) powers, we get an equivalence of simplicial spaces

hPow�.�Y !�W /' hPow�.�Y !�Y==�X /

and, by Proposition 4.4, an equivalence of simplicial spaces

�.hPow�.Y !W //' hPow�.�Y !�Y==�X /:

Using the argument above and Definition 4.2 we have just proved the following result.

Theorem 4.5 If �f W �X ! �Y is homotopy normal, there are natural simplicial
equivalences Bar�.�Y; �X / // �.hPow�.Y !W //:oo

Notation 4.6 (cf Theorem 4.5) (1) For a homotopy normal map �f W �X !�Y

and a given normal structure � W Y !W , we denote by Q� the simplicial loop space
�.hPow�.Y !W //.
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(2) The equivalences given in Theorem 4.5 will be denoted

�W Bar�.�Y; �X / // Q� W�:oo

Remark 4.7 Notice that the maps

�0W �Y // Q0 W�0oo

are loop maps by construction, but for n� 1, the maps

�nW Barn.�Y; �X / // Qn W�noo

need not be loop maps. This means that we have, in general, two different loop
space structures on �Y � .�X /n . The nontrivial one is given by the equivalence
Barn.�Y; �X /'Qn .

5 Homotopy actions

By Remarks 1.2(a) a homotopy normal map is a loop map with its underlying map having
the structure of a principal fibration (of connected spaces). Furthermore, Theorem 1.3
involves (strict) group actions. Hence, characterization and invariance of homotopy
normal maps under HM functors should include characterization and invariance of
group actions “up to homotopy” to some extent. Given an action of a topological
group G on a space X and an HM functor LW Top! Top, we would like to construct
a canonical “action” of LG (not a group, not a loop space) on LX . In other words, we
would like to have a homotopical notion of an action of (a space of the homotopy type
of) a loop space on a space, invariant under HM functors. One approach we wish to refer
the reader to is that of A1–actions introduced by Nowlan [17] and recently used by
Stasheff [21]. For our purpose, we could not use A1–actions since it is not clear they
are invariant under HM functors. As demonstrated in Section 5.2, homotopy actions can
be rigidified into (strict) group actions. This rigidification gives in fact a “proxy action”
on X in the sense of Dwyer and Wilkinson [6] so all the homotopically-invariant
information (eg homotopy fixed points) is preserved. Homotopy actions have more
flexibility than proxy actions since the object which “acts” need not be a topological
group but rather a loop space.

5.1 Definition and basic properties

If a topological group G acts on a space X , one has a simplicial fibration sequence
of the form X ! Bar�.X;G/ ! B�G , where the maps X ! Barn.X;G/ and
Barn.X;G/! BnG are given by sn � � � s0 and projection respectively.
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Under realization, this becomes a (homotopy) fibration sequence X !X==G! BG

with a connected base space, ie an “action up to homotopy” in the sense of Dror,
Dwyer and Kan [4]. The above simplicial fibration sequence is trivial in each level
X!X�Gn!Gn , and hence constitutes a useful resolution. We note also that for all n,
the map d1d2 � � � dnW Barn.X;G/! Bar0.X;G/ is the projection on X and the map
d0d0 � � � d0W Barn.X;G/! Bar0.X;G/ is given by .x;g1; : : : ;gn/ 7! x � .g1 � � �gn/.

As we saw, the simplicial spaces Bar�.X;G/ and B�G can be relaxed to their “ho-
motopy versions”, namely Bar�.X; �Y / and Bar�.�; �Y / (which is a reduced Segal
space for �Y when BG ' Y ).

Definition 5.1 We say that a space S of the homotopy type of a loop space, homotopy
acts on a space X , if there exist a simplicial map

A�
� // B�

such that

(1) A0 'X ;

(2) B� is a reduced Segal space for S ;

(3) for every n, the maps

An

d1���dn��n //
d0���d0��n

// A0 �Bn

are homotopy equivalences.

Maps are defined as follows.

Definition 5.2 Given two homotopy actions of S on X and on X 0 , represented by
A�! B� and A0�! B0� respectively, a map between them is a commutative square

A� //

��

B�

'

��
A0�

// B0�

such that the map B�!B0� is an equivalence of reduced Segal spaces (see Definition 2.2).

Notation 5.3 We denote by Toph�Y the category of homotopy actions of (spaces of
the homotopy type of) �Y on spaces.
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Remark 5.4 If S ! S 0 is a loop equivalence and S homotopy acts on X , then S 0

homotopy acts on X , since a reduced Segal space B� for S induces a reduced Segal
space for S 0 simply by composing the map B1

'
! S with S

'
! S 0 (see Definition 2.2).

We will need a generalization of Definition 5.1 as follows.

Definition 5.5 A homotopy action of �Y on a simplicial space X� is a map of
bisimplicial spaces A��!B�� such that for each n, A�n!B�n is a homotopy action
of �Y on Xn and for every map � W Œn�! Œm� in �, ��W B�m!B�n is an equivalence
of reduced Segal spaces for �Y ; maps and equivalences are defined in the obvious way.

Observation 5.6 If a topological group G acts on a space X , the simplicial map
pW Bar�.X;G/! B�.G/ is a homotopy action of G on X . To see this, note that
B�.G/ is a reduced Segal space for G and the maps .d1 � � � dn/�pnW Barn.X;G/!

Bar0.X;G/�Bn.G/ are the identity maps X �Gn! X �Gn . One can verify that
the maps .d0 � � � d0/�pnW Barn.X;G/! Bar0.X;G/�Bn.G/, ie the action of Gn

on X (arising from multiplying n elements in G and then act on X ) multiplied by the
projection pn , are homeomorphisms.

Nowlan [17] defined an action of an A1–space on a topological space. The difference
between this approach and ours is essentially the difference between the approaches of
Stasheff [22] and Segal [20] to the characterization of loop spaces.

It is commonly said that in every fibration sequence, the loop space of the base “acts”
on the fiber. We wish to demonstrate how a homotopy action interprets this statement.

Theorem 5.7 Given a fibration sequence F
i
! E

p
! B with B pointed connected,

there is a homotopy action of �B on F , represented by � W A�! B� , such that the
map j�jW jA�j ! jB�j is equivalent to pW E! B .

Proof Consider the commutative square

F //

��

E

��
� // B:

Taking homotopy powers in each row produces a simplicial map

� W A� WD hPow�.F !E/! hPow�.�! B/DW B�:

By Remark 4.3, B� is a reduced Segal space and thus jB�j 'B . Since B is connected,
it follows from Section 3 that jA�j ' E . To see that � W A� ! B� is a homotopy
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action, we first replace i W F !E and �! B by equivalent fibrations ev1W Fi!E

and ev1W PB ! B , where PB is the path space and Fi � F � EI is the space
f.f; ˛/j˛.0/ D i.f /g. Taking �0W Fi ! PB to be �0.f; ˛/ D p ı ˛ we obtain the
commutative square

(�)

Fi
ev1 //

�0

��

E

p

��
PB

ev1 // B;

and taking powers (ie fiber products) of the rows, we obtain a simplicial map we denote
as � W A�! B� .

Let us show that the maps

A1

d1���dn��1 //
d0���d0��1

// A0 �B1

are homotopy equivalences. We have a commutative cube

A1

d1

��

�1

��

d0 // Fi

��

��
B1

��

// PB

��

Fi
//

��
E

��
PB // B:

We want to show that the left-hand and upper faces are homotopy cartesian squares,
which follows directly from the cartesian-ness of the lower, right-hand and outer faces
using the fact that a square is cartesian if and only if the comparison map between
homotopy fibers of rows/columns is a homotopy equivalence; see Goodwillie [10, 1.18].

One proceeds similarly to show that the maps .d0 � � � d0/� �n and .d1 � � � dn/� �n

.n> 1/ are homotopy equivalence. Thus, � W A�! B� is a homotopy action.

Lastly, since the equivalences jPow�.Fi!E/j 'E and jPow�.PB! B/j ' B are
natural, and in light of (�) the map j�jW jA�j ! jB�j is equivalent to pW E! B .

The importance of Theorem 5.7 can be seen, for example, from the fact that it allows
one to classify fibrations using homotopy actions.

Homotopy actions arise in our context in the following form.
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Corollary 5.8 If �f W �X !�Y is a loop map, then �f induces a homotopy action
of �X on �Y , natural in f .

Proof This follows from Theorem 5.7 if we consider the homotopy fibration sequence
�Y !�Y==�X!X . Alternatively, if we (functorially) rigidify �f W �X!�Y to a
topological group map G!H as in Theorem 2.1, then as we saw, Bar�.H;G/!B�G

is a homotopy action.

Finally, let us see that homotopy actions are invariant under HM functors.

Proposition 5.9 If A�! B� is a homotopy action of �Y on X, and LW Top! Top
is an HM functor, then LA�!LB� is a homotopy action of L�Y on LX .

Proof LB� is a reduced Segal space for LB1 . In particular, LB1 is of the homotopy
type of a loop space. Applying L to the structure maps of the homotopy action yields
the structure maps for LA�!LB� , and L preserves homotopy equivalences.

For the sake of completeness, we wish to define a map between homotopy actions of two
non–homotopy equivalent loop spaces. The simplicity of the definition demonstrates
the “flexibility” of homotopy actions. For example, it allows one to talk about the
category of all homotopy actions.

Definition 5.10 Given two homotopy actions of �Y on X and of �.Y 0/ on X 0 ,
represented by A� //B� and A0�

//B0� , a map between them is a commutative
square of simplicial spaces

A� //

��

B�

��
A0�

// B0�:

Such a map will be called an equivalence if both vertical maps are simplicial equiva-
lences.

5.2 A weakly inverse correspondence with group actions

Our goal here is to establish a weakly inverse correspondence between the cate-
gory TopBG of spaces over BG and the category Toph�Y of homotopy actions of �Y

where Y ' BG . Since TopBG is Quillen equivalent to the category of G –spaces, we
obtain a correspondence between homotopy actions and group actions which may be
referred to as a “rigidification” of the homotopy action. Our functors will be weak
inverses in the following sense.
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Definition 5.11 Maps f W X ! Y and f 0W X 0! Y 0 are called weakly equivalent if
there is a zigzag of commutative squares with all horizontal arrows being homotopy
equivalences

X

f

��

' // X1

��

� � �
'oo ' // Xn

��

X 0
'oo

f 0

��
Y

' // Y1 � � �
'oo ' // Yn Y 0:

'oo

Similarly, simplicial maps f W X�! Y� and f 0W X 0�! Y 0� are called weakly equivalent
if there is a zigzag of commutative squares as above, but with objects being simplicial
spaces and maps being simplicial maps. The number of squares involved in such a
zigzag is said to be its length. In particular, maps are called equivalent if they are
weakly equivalent via a zigzag of length 1.

Definition 5.12 Let G be a topological group, �Y a loop space and Y ! BG a
fixed homotopy equivalence.

(1) The functor P W TopBG! Toph�Y is defined as follows. Given a map E! BG ,
let X be its homotopy fiber. Thus, there is a commutative square

X //

��

E

��
PBG

ev1 // BG:

Then P.E! BG/ is the map hPow�.X !E/! hPow�.PBG! BG/, which is a
homotopy action of �Y by Theorem 5.7.

(2) The functor RW Toph�Y
! TopBG is defined as follows. Given a homotopy action

� W A�! B� of �Y on X , R.A�! B�/ is the composition

jA�j
j�j
! jB�j

'
! Y

'
! BG;

where the second map comes from the fact that B� is a reduced Segal space for �Y

(see Definition 2.2).

Proposition 5.13 The functors above satisfy the following properties.

(a) If E! BG is in TopBG , then P.E! BG/ is a homotopy action of �Y on
X WD hfib.E! BG/.

(b) If � W A�!B� is a homotopy action of �Y on X , then R.A�!B�/ is a space
over BG with X as its homotopy fiber.
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Proof (a) This follows from Theorem 5.7.

(b) Given a homotopy action � W A� ! B� of �Y on X , define a simplicial map
i W A0 ! A� by in D sn�1 � � � s0 . Choose b0 2 B0 and endow Bn with a basepoint
sn�1 � � � s0.b0/. By definition, the map .d1 � � � dn/��nW An!A0�Bn is a homotopy
equivalence and hence the map �nW An ! Bn is equivalent to the trivial fibration
A0 �Bn! Bn . We now claim that

A0
in
!An

�n
! Bn

is a homotopy fibration sequence. To see this, note that by simplicial identities, the
composite

A0

.d1���dn��n/ıin // A0 �Bn

equals 1A0
� .�n ı in/ and, since B0 is contractible, �n ı in D sn�1 � � � s0 ı �0 is

null-homotopic. Hence, in is equivalent to the fiber inclusion A0 ! A0 � Bn . It
follows that the sequence A0!A�! B� is a homotopy fibration sequence in each
level and so A0! jA�j ! jB�j is a homotopy fibration sequence by Puppe [18]. By
definition, A0 'X , and we are done.

Theorem 5.14 The functors RW Toph�Y // TopBGoo WtP of Definition 5.12 consti-
tute a weakly inverse correspondence in the sense that

(i) RP.E! BG/ is weakly equivalent to E! BG ;

(ii) PR.A�! B�/ is weakly equivalent to A�! B� .

Theorem 5.14 establishes a “rigidification theorem”, which we wish to state separately.

Theorem 5.15 Given a homotopy action of �Y on X , represented by � W A�! B� ,
there is a topological group G with BG ' Y and a space X 0 ' X together with a
(strict) action of G on X 0 such that the simplicial map � is weakly equivalent to the
simplicial map Bar�.X 0;G/! B�.G/.

The proof of Theorem 5.14 will require some technical preparation.

Definition 5.16 If A� is a simplicial space, the simplicial path space on A� , de-
noted PA� , is the simplicial space defined by PAnDAnC1 with face maps di WD diC1

and degeneracy maps si WD siC1 .
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Observation 5.17 Let A� be a simplicial space and let A0 denote the constant
simplicial space. There are simplicial maps �W A0! A� and �W PA�! A0 defined
on level n via the maps ŒnC 1�! Œ0� and Œ0� ,! Œn�(0 7! 0), respectively. PA� is
simplicially homotopy equivalent to the constant simplicial space A0 ; in particular,
jPA�j ' A0 . In addition, the face map d0W AnC1 ! An defines a simplicial map
PA�!A� .

In addition, we will need the following result.

Lemma 5.18 Let � W A�!B� be a homotopy action. Then for each n� 0, the square

AnC1
//

��

jPA�j

��
An

// jA�j

is homotopy cartesian.

Proof From the axioms of a homotopy action, there is a commutative square with
horizontal maps homotopy equivalences

AnC1

d0

��

.d0���d0/��nC1 // A0 �BnC1

1�d0

��
An

.d0���d0/��n // A0 �Bn:

Since B� is a reduced Segal space, by [20, 1.6], for each k � 0, the square

(1)

BkC1
//

d0

��

jPB�j

��
Bk

// jB�j

is homotopy cartesian.

Thus, the homotopy fiber of d0W BnC1!Bn is (canonically) equivalent to B1 . The
homotopy fiber of d0W AnC1!An is therefore homotopy equivalent to B1 , which is
also the homotopy fiber of jPA�j ! jA�j. It follows that the square

AnC1
//

d0

��

jPA�j

��
An

// jA�j

is homotopy cartesian.
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Proof of Theorem 5.14 (i) Given, without loss of generality, a fibration sequence
X!X=G!BG , the map hPow�.X!X=G/!hPow�.�!BG/ obtained just as in
Theorem 5.7 has X as a homotopy fiber in each level. Since jhPow�.X!X=G/j'

X=G and jhPow�.�!BG/j'BG , the map jhPow�.X!X=G/j!jhPow�.�!BG/j

is equivalent to X=G!BG .

(ii) Given a homotopy action � W A�! B� , B� is a reduced Segal space, and thus by
[20, Proposition 1.6], for each k � 0, the following square is homotopy cartesian:

(2)

BkC1
//

d0

��

jPB�j

��
Bk

// jB�j

By Lemma 5.18, the same holds for A� , ie for each k � 0, the square

(3)

AkC1
//

d0

��

jPA�j

��
Ak

// jA�j

is homotopy cartesian. We construct a map A�! hPow�.jPA�j ! jA�j/ by induction
on n. For nD 0, the map A0! jPA�j is the realization of �W A0! PA� defined in
Observation 5.17. For nD 1, consider the commutative square

(4)

A0
//

��

jA�j

��
jPA�j // jA�j:

Since (2) is homotopy cartesian for k D 0, the map A1 ! A0 �
h
jA�j
jPA�j is a

homotopy equivalence, and the map A1 ! hPow1.jPA�j ! jA�j/ is obtained by
composing the last map with A0 �

h
jA�j
jPA�j ! jPA�j �

h
jA�j
jPA�j induced by (3).

Let us define the map for nC 1: the square (2) with index n is homotopy cartesian,
and thus there is a homotopy equivalence AnC1! An �

h
jA�j
jPA�j. Using the map

An! hPown.jPA�j! jA�j/ that was defined, we get a natural homotopy equivalence
AnC1 ! hPow�.jPA�j ! jA�j/. It is clear from the construction that one gets a
simplicial map A� ! hPow�.jPA�j ! jA�j/. Similarly, there is a simplicial map
B�! hPow�.jPB�j ! jB�j/. The zigzag of commutative squares

A0
' //

��

jPA�j //

��

jPB�j

��

B0
'oo

��
jA�j

' // jA�j // jB�j jB�j
'oo
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induces a zigzag of commutative simplicial squares

A�
' //

��

hPow�.jPA�j ! jA�j/

��

hPow�.A0! jA�j/
'oo

��
B�

' // hPow�.jPB�j ! jB�j/ hPow�.B0! jB�j/:
'oo

Note that by Proposition 4.1, there is also a square

hPow�.A0! jA�j/

��

Bar�.X;G/

��

oo

hPow�.B0! jB�j/ B�.G/oo

for a topological group G with BG ' jB�j.

6 An invariant characterization of normality

Theorem 1.3 characterizes homotopy normal maps of discrete groups in terms of a
simplicial group, equivariantly equivalent to the bar construction. By analogy, the mere
fact that the homotopy bar construction Bar�.�Y; �X / is simplicially equivalent to a
simplicial loop space �� with �0 '�Y , is a necessary but not sufficient condition for
a loop map �f W �X !�Y to be homotopy normal.

In both simplicial spaces Bar�.�Y; �X / and Q� (see Notation 4.6), the map sn�1� � � s0

is a loop map, therefore it induces a homotopy action of �Y on Qn and Barn.�Y; �X /

(see Corollary 5.8).

We begin with the following.

Proposition 6.1 Let �f W �X ! �Y be a homotopy normal map and Q� its cor-
responding simplicial loop space. For each n, the homotopy actions induced by
the loop maps Q0 ! Qn and �Y ! Barn.�Y; �X / are equivalent via the map
�W Q�! Bar�.�Y; �X /, defined in Notation 4.6.

Proof We do only the case n D 1 since other cases are similar. Write � WD

s0W Q0!Q1 and s WD s0W Bar0.�Y; �X /! Bar1.�Y; �X /. The simplicial equiv-
alence �W Q�! Bar�.�Y; �X / induces a commutative square with vertical arrows
being homotopy equivalences, and with the left vertical arrow being a loop map

Q0

�0

��

� // Q1

�1

��
�Y

s // �Y ��X:
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Finding the dashed arrow

Q1

 //

�1

��

Q1==Q0

d1

���
�
�

�Y ��X c
// �X

will end the proof since the first and second homotopy actions are built out of homotopy
powers of 
 and c , respectively. Both � and s have (spaces of the homotopy type of)
loop spaces as their homotopy fiber, and the Puppe–Nomura sequence will provide
the dashed arrow, once we show that the equivalence between the homotopy fibers
F WD hfib.�/! hfib.s/'�2X is a loop map. To prove the last statement we use the
path-space to model the homotopy fiber. On the one hand, we have the pullback square

�2X //

��

P .�Y ��X /

��
�Y

s // �Y ��X;

and on the other hand, in the pullback square

F //

��

P .Q1/

��
Q0

� // Q1;

all maps are of the homotopy type of loop maps. The map F !�2X is the universal
map to the pullback �2X , obtained from the diagram

F

""   

&&

�2X //

��

P .�Y ��X /

��
�Y // �Y ��X

where the curved maps are F ! Q0 ! �Y and F ! P .Q1/! P .�Y ��X /;
these maps are (of the homotopy type of) loop maps, and thus the map they induce
F !�2X is itself (of the homotopy type of) a loop map.

As we have just seen, the loop maps sn�1 � � � s0W Q0 ! Qn (n D 0 understood as
the identity map) induce homotopy actions of Q0 on Qn . We can pack all the maps
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into one simplicial map Q0!Q� , which will then induce a simplicial object in the
category of homotopy actions. Recalling Definition 5.5, this is a homotopy action
of Q0 on Q� . Similarly, one has a homotopy action of �Y on Bar�.�Y; �X / and
the loop space equivalence Q0'�Y makes the first homotopy action into one of �Y

on Q� (see Corollary 5.8). Note that any simplicial loop space �� with �0 ' �Y

could play the role of Q� in defining these homotopy actions.

Given a loop map �f W �X !�Y and a simplicial loop space �� with �0'�Y , we
call the actions above the canonical homotopy actions of �Y on �� and Bar�.�Y;�X /.
The additional condition for a characterization of normality is that the two are equivalent.

We can now restate and prove Theorem A.

Theorem A A loop map �f W �X ! �Y is homotopy normal if and only if there
exist a simplicial loop space �� with �0 ' �Y (as loop spaces), and such that the
canonical homotopy actions of �Y on �� and on Bar�.�Y; �X / (as above) are
weakly equivalent.

Remark 6.2 The weak equivalence of homotopy actions above implies, in particular,
the equivalence of simplicial spaces Bar�.�Y; �X / and �� .

Proof Assume �f is homotopy normal. We have a commutative square of simplicial
spaces

�Y
� //

1

��

Q�

'

��

// Q�==Q0

d
���
�
�

�Y
s // Bar�.�Y; �X / // Bar�.�Y; �X /==�Y

with ' the simplicial equivalence of Theorem 4.5; the dashed arrow d with d1 (of
Proposition 6.1) as its first component, and the analogous dn as its n–th component.
This gives the desired equivalence of the canonical actions.

Conversely, if we have a zigzag of equivalent homotopy actions (see Definition 5.5), then
taking the homotopy quotient of each homotopy action, we get a zigzag of simplicial
spaces

�0
//

'

��

�� //

'

��

��==�0

'

��
:::

// :::
// :::

�Y //

'

OO

Bar�.�Y; �X /
q //

'

OO

Bar�.�Y; �X /==�Y:

'

OO
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The map q in the bottom row is in fact � W Bar�.�Y; �X /! Bar�.�; �X /, and upon
realization we have a zigzag of equivalent principal fibrations

�0
//

'

��

j��j //

'

��

j��==�0j

'

��
:::

// :::
// :::

�Y //

'

OO

�Y==�X //

'

OO

X:

'

OO

The operation of taking loops commutes with that of realization, and hence j��j '�W

for some connected space W . The map �0!j��j is the realization of a simplicial loop
map �0! �� , hence a loop map itself, and delooping it gives the desired extension
Y Ü W .

As an application of Theorem A we will show that homotopy normal maps are preserved
by HM functors.

Let A�! B� be a homotopy action. From Proposition 5.13 (b), it follows that there
is a homotopy fibration sequence A0

�
! jA�j ! jB�j, where � is the realization of

the simplicial map A0!A� that has as n–th component the map sn�1 � � � s0 . Since
B� is a reduced Segal space, �jB�j ' B1 . We denote by  W B1!A0 the canonical
map from the homotopy fiber of � W A0! jA�j to A0 and endow A0 with a basepoint
via  . Denote by i W B1!A0�B1 the natural inclusion. We shall need the following
technical lemma.

Lemma 6.3 For any choice of homotopy inverse eW A0 � B1 ! A1 for the map
d1 ��1W A1!A0 �B1 , the composite

B1
i
!A0 �B1

e
!A1

d0
!A0

is homotopic to  .

Proof The following square is homotopy commutative:

A1

d1 //

d0

��

A0

��
A0

// jA�j:
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We thus obtain a homotopy commutative diagram of solid arrows

B1
i // A0 �B1

pr //

e

		

)
�

�

A0

B1
//

'c1

��

'c2

OO

A1

d1 //

d0

��

d1��1

OO

A0

�

��

1

OO

B1

 // A0
� // jA�j;

where the map B1!A1 is the canonical map from the homotopy fiber, the map c1 is
the comparison map between the homotopy fibers of d1 and � , which is a homotopy
equivalence, and the map c2 is the comparison map between the homotopy fibers of
d1 and pr, which is again a homotopy equivalence. The lemma now follows from
inverting c2 .

Theorem 6.4 Let �f W �X ! �Y be a loop map and LW Top! Top an HM func-
tor. Then the map L Bar�.�Y; �X / ! L Bar�.�; �X / is weakly equivalent to
Bar�.L�Y;L�X /! Bar�.�;L�X / where the latter is induced from L�f .

Proof Since L�Y ! jL Bar�.�Y; �X /j ! jL Bar�.�; �X /j is the realization
of a simplicial fibration sequence, it is a homotopy fibration sequence, and since
jL Bar�.�; �X /j ' B.L�X / (L Bar�.�; �X / is a reduced Segal space for L�X ),
there is a map 'W L�X ! L�Y , which is the map from the homotopy fiber of
L�Y ! jL Bar�.�Y; �X /j to L�Y .

Abbreviate A� WD Bar�.�Y; �X / and B� WD Bar�.�; �X /. If eW A0 �B1! A1 is
a homotopy inverse to d1��1 , then Le is a homotopy inverse for L.d1��1/, which
is equivalent to L.d1/�L.�1/. By Lemma 6.3, �f is homotopic to the composite

B1
i
!A0 �B1

e
!A1

d0
!A0;

and so L�f is homotopic to the composition Ld0 ıLe ıLi . The last composite is
homotopic to the composite

LB1 ,!LA0 �LB1
Leıw
����!LA1

Ld0
���!A0

(where w is some homotopy inverse for L.A0�B1/!LA0�LB1 ), which is in turn
homotopic to ' by Lemma 6.3 (Leıw is a homotopy inverse for Ld1�L�1 ). It follows
that L�f is equivalent to ' . Thus, the map L�Y !jL Bar�.�Y; �X /j is equivalent
to L�Y !L�Y==L�X and using Proposition 4.1 and Theorem 5.14, we deduce that
L Bar�.�Y; �X /! L Bar.�; �X / is weakly equivalent to Bar�.L�Y;L�X /!

Bar�.�;L�X /.
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Let us rephrase Theorem 6.4. Given a loop map �f and an HM functor L, there are
two homotopy actions: the first is given by applying L to the homotopy action induced
by �f , and the second is the homotopy action induced from L�f . The theorem then
says that the two are weakly equivalent. We note that if we are given a homotopy action
of a loop space on a simplicial space, in which the homotopy actions in each level are
induced by loop maps, an analogous statement holds.

Using the machinery of reduced Segal spaces, one can easily see that applying an HM
functor to a simplicial loop space in every level yields a simplicial space simplicially
equivalent to a simplicial loop space.

Thus, we now know all the ingredients used in Theorem A are invariant under HM
functors and we deduce Theorem B (which we restate for convenience).

Theorem B Let �f W �X ! �Y be a homotopy normal map. If LW Top! Top is
an HM functor, then L.�f / WL�X !L�Y is a homotopy normal map.

Let us demonstrate a use of Theorem B by applying it to prove Theorem C (which we
restate).

Theorem C Let pW E! B be a principal fibration with B connected, f W X ! Y a
map of pointed connected spaces and L†f the localization with respect to its suspension.
Then L†fE!L†fB is equivalent to a principal fibration.

Remark 6.5 Note that if G is the structure group of E!B , L†fG need not be the
structure group of L†fE!L†fB .

Proof of Theorem C Note that �E!�B is homotopy normal. So Lf�E!Lf�B

is homotopy normal. Since for any pointed space A there is a natural equivalence
Lf�A'�L†fA, we get that �L†fE!�L†fB is homotopy normal and thus
L†fE!L†fB is a homotopy principal fibration.

7 Higher normality

As mentioned in Example 2, any double loop map with simply connected underlying
spaces is automatically homotopy normal. However, in the case of a double loop map,
it is more natural to ask when the homotopy quotient admits a natural double loop
space structure.
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Definition 7.1 A 0–homotopy normal map is a pointed map which admits a structure
of a (homotopy) principal fibration of connected spaces. For k � 1, call a k –fold loop
map �kf W �kX !�kY k –homotopy normal if f is 0–homotopy normal.

Thus, if a k –fold loop map �kf is k –homotopy normal, the homotopy quotient
�kY==�kX (which is always a .k�1/–fold loop space) admits a structure of a k –fold
loop space in a natural way.

Remark 7.2 One may wonder about the definition of “1–homotopy normality”.
However, any infinite loop map X ! Y induces a principal fibration sequence of
infinite loop spaces X ! Y ! Y==X . Thus any infinite loop map is “1–normal”
in the naive sense. This is a reflection of the fact that any inclusion map of abelian
(topological) groups is the inclusion of a normal subgroup.

We begin with an extension of Theorem A.

Theorem 7.3 A k –fold loop map �kf W �kX!�kY is k –homotopy normal if and
only if there exists a k –fold simplicial loop space �� with �0 '�

kY , and such that
the canonical homotopy actions of �kY on Bar�.�kY; �kX / and �� are naturally
equivalent.

Proof This is analogous to the proof of Theorem C. If �kf is k –homotopy normal,
then �f is homotopy normal, and looping down its extension Y ! W k times
gives a k –fold loop map equivalent to �kY !�kY==�kX . Taking the (homotopy)
power of that map gives the desired k –fold loop space. Conversely, such a k –fold
loop space gives a (homotopy) principal fibration sequence of k –fold loop spaces
�kX!�kY !j��j, equivalent to the Borel construction, providing the k –homotopy
normality required.

We wish to use the same methods as before to prove invariance of k –homotopy normal
maps under HM functors. For that, we need that k –fold loop spaces are invariant
under these functors. A slight generalization of reduced Segal spaces is the tool needed.

Definition 7.4 Let k be a positive integer. A k –simplicial space is a functor

�op
� � � � ��op

! Top .k times/:

The following is taken from Balteanu et al [1].

Algebraic & Geometric Topology, Volume 12 (2012)
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Definition 7.5 A k –simplicial space X����� is called a reduced Segal k –space if

(1) X0;:::;0 ' �;

(2) the Segal maps induce homotopy equivalences Xp1;:::;pk

'
! .X1;:::;1/

p1���pk ;

(3) the monoid �0.X1;:::;1/ admits inverses (ie is a group).

Building on Segal’s delooping machine, the characterization of k –fold loop spaces
takes the following form.

Theorem 7.6 A space X is of the homotopy type of a k –fold loop space if and only
if there exist a reduced Segal k –space X�;:::;� with X1;:::;1 'X .

Corollary 7.7 Homotopy monoidal endofunctors of spaces preserve k –fold loop
spaces.

Using exactly the same arguments of Theorem C, Theorem 7.3 implies that L preserves
higher homotopy normality.

Theorem 7.8 If �kf W �kX !�kY is k –homotopy normal and LW Top! Top an
HM functor, then L.�kf / is k –homotopy normal.
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