Volume 12, issue 2 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
A second order algebraic knot concordance group

Mark Powell

Algebraic & Geometric Topology 12 (2012) 685–751
Bibliography
1 R C Blanchfield, Intersection theory of manifolds with operators with applications to knot theory, Ann. of Math. 65 (1957) 340 MR0085512
2 S E Cappell, J L Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. 99 (1974) 277 MR0339216
3 A J Casson, C M Gordon, Cobordism of classical knots, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 181 MR900252
4 J C Cha, K E Orr, L(2)–signatures, homology localization and amenable groups, Comm. Pure and Appl. Math. 65 (2012) 790
5 T D Cochran, S Harvey, C Leidy, Knot concordance and higher-order Blanchfield duality, Geom. Topol. 13 (2009) 1419 MR2496049
6 T D Cochran, S Harvey, C Leidy, Derivatives of knots and second-order signatures, Algebr. Geom. Topol. 10 (2010) 739 MR2606799
7 T D Cochran, S Harvey, C Leidy, Primary decomposition and the fractal nature of knot concordance, Math. Ann. 351 (2011) 443 MR2836668
8 T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and L2–signatures, Ann. of Math. 157 (2003) 433 MR1973052
9 T D Cochran, K E Orr, P Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004) 105 MR2031301
10 T D Cochran, P Teichner, Knot concordance and von Neumann ρ–invariants, Duke Math. J. 137 (2007) 337 MR2309149
11 P M Gilmer, Slice knots in S3, Quart. J. Math. Oxford Ser. 34 (1983) 305 MR711523
12 N Higson, G Kasparov, Operator K–theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc. 3 (1997) 131 MR1487204
13 C Kearton, Cobordism of knots and Blanchfield duality, J. London Math. Soc. 10 (1975) 406 MR0385873
14 T Kim, Filtration of the classical knot concordance group and Casson–Gordon invariants, Math. Proc. Cambridge Philos. Soc. 137 (2004) 293 MR2092061
15 R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, 88, Princeton Univ. Press (1977) MR0645390
16 C F Letsche, An obstruction to slicing knots using the eta invariant, Math. Proc. Cambridge Philos. Soc. 128 (2000) 301 MR1735303
17 J Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229 MR0246314
18 J Levine, Knot modules. I, Trans. Amer. Math. Soc. 229 (1977) 1 MR0461518
19 M Powell, A second order algebraic knot concordance group, PhD thesis, Edinburgh University (2011) arXiv:1109.0761v1
20 A Ranicki, The algebraic theory of surgery. I Foundations, II Applications to topology, Proc. London Math. Soc. 40 (1980) 87, 193 MR560997
21 A Ranicki, Exact sequences in the algebraic theory of surgery, 26, Princeton Univ. Press (1981) MR620795
22 A Ranicki, Algebraic and geometric surgery, , Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (2002) MR2061749
23 A Ranicki, Blanchfield and Seifert algebra in high-dimensional knot theory, Mosc. Math. J. 3 (2003) 1333 MR2058802
24 B Stenström, Rings of quotients : An introduction to methods of ring theory, 217, Springer (1975) MR0389953