Volume 12, issue 2 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 17
Issue 6, 3213–3852
Issue 5, 2565–3212
Issue 4, 1917–2564
Issue 3, 1283–1916
Issue 2, 645–1281
Issue 1, 1–643

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
The link concordance invariant from Lee homology

John Pardon

Algebraic & Geometric Topology 12 (2012) 1081–1098
Abstract

We use the knot homology of Khovanov and Lee to construct link concordance invariants generalizing the Rasmussen s–invariant of knots. The relevant invariant for a link is a filtration on a vector space of dimension 2|L|. The basic properties of the s–invariant all extend to the case of links; in particular, any orientable cobordism Σ between links induces a map between their corresponding vector spaces which is filtered of degree χ(Σ). A corollary of this construction is that any component-preserving orientable cobordism from a Kh–thin link to a link split into k components must have genus at least k2. In particular, no quasi-alternating link is concordant to a split link.

Keywords
Khovanov homology, link concordance, link cobordism, Rasmussen s-invariant, slice genus
Mathematical Subject Classification 2010
Primary: 57M25, 57M27, 57Q60
References
Publication
Received: 25 July 2011
Revised: 9 February 2012
Accepted: 14 February 2012
Published: 7 May 2012
Authors
John Pardon
Department of Mathematics
Stanford University
450 Serra Mall
Building 380
Stanford CA 94305
USA
http://math.stanford.edu/~pardon/