Volume 12, issue 2 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
On symplectic uniruling of Hamiltonian fibrations

Clément Hyvrier

Algebraic & Geometric Topology 12 (2012) 1145–1163
Abstract

Under certain conditions of technical order, we show that closed connected Hamiltonian fibrations over symplectically uniruled manifolds are also symplectically uniruled. As a consequence, we partially extend to nontrivial Hamiltonian fibrations a result of Lu [Math. Res. Lett. 7 (2000) 383–387], stating that any trivial symplectic product of two closed symplectic manifolds with one of them being symplectically uniruled verifies the Weinstein Conjecture for closed separating hypersurfaces of contact type. The proof of our result is based on the product formula for Gromov–Witten invariants of Hamiltonian fibrations derived by the author in [arXiv 0904.1492].

Keywords
Hamiltonian fibration, Gromov–Witten invariant, symplectic uniruledness, Weinstein Conjecture
Mathematical Subject Classification 2010
Primary: 53D45, 57R17
Secondary: 55R10
References
Publication
Received: 6 April 2011
Revised: 17 February 2012
Accepted: 28 February 2012
Published: 22 May 2012
Authors
Clément Hyvrier
Mathematics Department
Uppsala Universitet
Box 480
SE-75106 Uppsala
Sweden