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Spectral rigidity of automorphic orbits in free groups
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It is well-known that a point T 2 cvN in the (unprojectivized) Culler–Vogtmann Outer
space cvN is uniquely determined by its translation length function k � kT W FN !R .
A subset S of a free group FN is called spectrally rigid if, whenever T;T 0 2 cvN

are such that kgkT D kgkT 0 for every g 2 S then T D T 0 in cvN . By contrast to
the similar questions for the Teichmüller space, it is known that for N � 2 there does
not exist a finite spectrally rigid subset of FN .

In this paper we prove that for N � 3 if H �Aut.FN / is a subgroup that projects to
a nontrivial normal subgroup in Out.FN / then the H –orbit of an arbitrary nontrivial
element g 2 FN is spectrally rigid. We also establish a similar statement for F2 D

F.a; b/ , provided that g 2 F2 is not conjugate to a power of Œa; b� .

20E08, 20F65; 57M07, 57M50, 53C24

1 Introduction

The phenomenon of marked length spectrum rigidity plays an important role in Rie-
mannian geometry and adjacent areas. If M is a closed manifold with a Riemannian
metric � of negative (but not necessarily constant) curvature, the associated marked
length spectrum is the function `�W G!R, where G D �1.M / and where for 
 2G

`�.
 / is the shortest length with respect to � among all free homotopy representatives
of 
 . It is easy to see that `�.
 /D `�.
�1

1


1/ for all 
; 
1 2G . Thus `� may be also

viewed as a function from the set of conjugacy classes in G to R. One can also think
of `� as the “translation length” function on G . Namely, let X D . �M ; d�/, where d�
is the distance function on �M corresponding to the lift z� of � to �M . Then the natural
action of G on �M by covering transformation is an action of G by isometries on X

(and thus can be thought of as a representation G! Isom.X // and for every 
 2G

we have
`�.
 /D inf

x2X
d�.x; 
x/D min

x2X
d�.x; 
x/

is the translation length of 
 as the isometry of X .
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The Marked Length Spectrum Rigidity Conjecture (MLSRC) states that knowing the
function `� uniquely determines the isometry type of .M; �/. More precisely, the
conjecture says that if �; �0 are two smooth negatively curved Riemannian metrics on
M such that `� D `�0 then there exists an isometry from .M; �/ to .M; �0/ which is
isotopic to the identity. This conjecture is known to hold in some special cases (more
on this below), but is still open in full generality.

There are also various generalizations of MLSRC to other contexts, such as allowing
more general types of metrics on M . There are also generalizations with the set-up
where, given two representations � W G! Isom.X1/ and �2W G! Isom.X2/ with the
same marked length spectrum `�1

D `�2
W G!R (where X1 and X2 are required to

satisfy various kinds of negative or non-positive curvature conditions). Then the desired
conclusion of MLSRC is that there exists an isometry X1!X2 conjugating �1 to �2 .
MLSRC is known to hold for surfaces, including various generalizations of the types
of metrics � included under consideration (see Croke [17], Otal [51] and Croke, Fathi
and Feldman [20]). There are also a number of known results establishing versions
of MLSRC for representations �1W G ! Isom.X1/ and �2W G ! Isom.X2/ where
X1;X2 are allowed to be higher dimensional, but there are more significant restrictions
on the geometry of X1;X2 than in the results about MLSRC for surfaces (see, for
example, Croke, Eberlein and Kleiner [19], Hersonsky and Paulin [34], Kim [47; 48;
49] and Dal’Bo and Kim [25]). However, the original version of MLSRC is still mostly
open (except for rather special classes of metrics) in dimensions bigger than two. We
refer the reader to the survey by Croke [18] for a more extended discussion on the
topic.

In any context where MLSRC is known to hold, it is natural to ask if there are smaller
subsets of G such that knowing the restriction of the marked length spectrum to such a
subset uniquely determines the entire marked length spectrum. Namely, for a given
class of length functions `W G!R where MLSRC is known to hold, say that a subset
S �G is spectrally rigid if whenever `; `0 are two length functions from the class in
question such that `jS D `0jS then `D `0 . For closed surfaces with metrics of constant
curvature �1 the situation is particularly well-behaved. Thus it is known (see, for
example, Fathi, Laudenbach and Poenaru [27]) that if † is a closed oriented surface of
genus � 2, then there exist elements h1; : : : ; h6g�5 2G D �1.†/ such that whenever
�1; �2 are two points in the Teichmuller space T .†/ (that is, marked hyperbolic metrics
on †) such that `�1

.hi/D `�2
.hi/ for i D 1; : : : ; 6g�5 then `�1

D `�2
and �1 D �2

in T .†/. Thus the subset fh1; : : : ; h6g�5g � G is “spectrally rigid” with respect to
the class of hyperbolic metrics on †. We believe that looking for “small” spectrally
rigid sets in other situations, where MLSRC is known to hold, is an interesting general
problem worthy of further study.
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If G is a finitely generated group acting by isometries on an R–tree X , there is also a
naturally associated translation length function k � kX D `X W G!R, where for g 2G

`X .g/D inf
x2X

dX .x;gx/D min
x2X

dX .x;gx/:

It is well-known (see Culler and Morgan [22], Paulin [52] and Chiswell [10]) that under
some mild extra assumptions (which are satisfied, in particular, for the Outer space
context discussed below), MLSRC holds, that is, knowing the function `X uniquely
determines X and the action of G on X (up to a G –equivariant isometry).

For a free group FN (where N � 2) the Culler–Vogtmann Outer space cvN is an
analog of the Teichmuller space of a hyperbolic surface. The space cvN consists
of minimal free discrete isometric actions of FN on R–trees, considered up to FN –
equivariant isometry. Every element T 2 cvN arises as the universal cover of a finite
graph � , whose fundamental group is identified with FN via a particular isomorphism,
where edges of � are given positive real lengths and their lifts to T are given the same
lengths. There is an important subset, CVN � cvN , consisting of all T 2 cvN such that
the quotient metric graph T=FN has volume 1. The space CVN is the projectivized
Culler–Vogtmann Outer space, which was introduced by Culler and Vogtmann [23],
before the introduction of cvN . Both cvN and CVN play an important role in the
study of Out.FN /. We say that a subset R � FN is spectrally rigid if whenever
T1;T2 2 cvN are such that kgkT1

DkgkT2
for every g 2R then T1DT2 in cvN . As

noted above, RD FN is spectrally rigid. Moreover, for every T 2 cvN the translation
length function k � k is constant on every conjugacy class in FN . Thus if R is chosen
to consist of representatives of all conjugacy classes in FN , then R is spectrally rigid.

A surprising result of Smillie and Vogtmann [54] shows that there does not exist a
finite spectrally rigid subset of FN , where N � 3. A result of Cohen, Lustig and
Steiner [13] establishes the same fact for N D 2. In particular, it is proved in [54]
that for any finite subset R� FN , where N � 3, there exists a one-parametric family
.Tt /t2Œ0;1� of distinct points of CVN such that for every t 2 Œ0; 1� the length functions
k � kT0

and k � kTt
agree on R. A similar statement follows from the recent work of

Duchin, Leininger, and Rafi for flat metrics on surfaces of finite type [26]. Moreover,
the paper [26] gives a complete characterization of when a set of simple closed curves
on a finite type surface is spectrally rigid with respect to the space of flat metrics on
that surface.

In view of the results of [13; 54] it becomes interesting to look for infinite but “sparse”
spectrally rigid subsets of FN . The study of this topic was initiated by Kapovich in [38].
Namely, it is proved in [38] that if AD fa1; : : : ; aN g is a free basis of FN then almost
every trajectory of the simple non-backtracking random walk on FN with respect to
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A yields a spectrally rigid subset of FN . Recently Brian Ray [53] proved that for any
� 2 Aut.FN / (where N � 1) and for any g 2 FN the set h�ig D f�n.g/W n 2 Zg is
not spectrally rigid in FN . Ongoing work of Ray (unpublished) also shows that for any
finite collection H1; : : : ;Hm � FN of finitely generated subgroups of infinite index in
FN (where N � 2) the set H1[ : : :[Hm is not spectrally rigid in FN .

In the present paper we obtain a very different class of examples of spectrally rigid
subsets of free groups from those constructed in [38]. We say that a subgroup H �

Aut.FN / (where N � 2) is ample if the image of H in Out.FN / contains an infinite
normal subgroup of Out.FN /. It is well-known (see Zimmermann [56] and Culler [21])
that every finite subgroup of Out.FN / comes from a group of simplicial automorphisms
of a finite connected graph without degree-one vertices and with fundamental group
FN . From here it is not hard to show that for N � 3 every nontrivial normal subgroup
of Out.FN / is infinite. For the case N D 2 the group Out.F2/ possesses a unique
nontrivial finite normal subgroup, namely the center Z.Out.FN // which is a cyclic
group of order 2 generated by the “hyper-elliptic involution” of F2DF.a; b/, a 7!a�1 ,
b 7! b�1 .

Our main result is:

Theorem A Let N � 2 and let H �Aut.FN / be an ample subgroup. Let g 2FN be
an arbitrary nontrivial element; in the case N D2 we also assume that g2F2DF.a; b/

is not conjugate to a nonzero power of Œa; b� in F2 .

Then the orbit Hg D f�.g/ W � 2H g is a spectrally rigid subset of FN .

Theorem A applies, for example, to the cases where H D Aut.FN / (with N � 2) or
where H � Aut.FN / is the Torelli subgroup (with N � 3), that is, H is the set of all
elements of Aut.FN / that act as the identity map on the abelianization ZN of FN .
Theorem A also immediately implies that for N � 3 any Aut.FN /–invariant subset of
FN with more than one element is spectrally rigid in FN .

For F2DF.a; b/ it is well-known that for every � 2Aut.F2/ the element �.Œa; b�/ is
conjugate to Œa; b�˙1 in F2 , which easily implies that Aut.F2/Œa; b� is not spectrally
rigid in F2 . However, as Theorem A shows, this example is essentially the only
obstruction for spectral rigidity of an Aut.FN /–orbit of a nontrivial element in the
case N D 2.

As noted above, for any T 2 cvN k �kT is a class function and thus it can be viewed as
a function on the set CN of all the conjugacy classes of elements of FN . The notion of
a spectrally rigid set also naturally translates to subsets of CN . However, the results of
Brian Ray about finitely generated subgroups of FN mentioned above, and the results
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of [38] about random walk trajectories are more naturally formulated in the setting of
subsets of FN . For that reason we adhere to that setting in this paper.

The first step in the proof of Theorem A is to establish Theorem 3.4 which says that
the set PN of all the primitive elements in FN is a spectrally rigid subset in FN

for every N � 2. Recall that an element g 2 FN is primitive if it belongs to some
free basis of FN . Thus PN D Aut.FN /g where g 2 FN is any primitive element.
Theorem 3.4 is derived from the results of Francaviglia and Martino [29] about extremal
Lipschitz distortions between two arbitrary points in cvN . A key fact there is that for
any T;T 0 2 cvN the “extremal Lipschitz distortion” D.T;T 0/ WD supg2FN ;g¤1

kgkT 0
kgkT

is actually a maximum which is realized by an element g from some finite subset
UT �FN depending only on T . Moreover, the explicit description of elements of UT

in [29] shows that they are all primitive, so that UT � PN . From here it is easy to see
that if kgkT D kgkT 0 for every g 2 PN then D.T;T 0/DD.T 0;T /D 1 and hence
T D T 0 in cvN . A more careful version of the above argument yields the following
“relative rigidity” result:

Theorem B Let T 2 cvN be arbitrary. There exists a finite set S (depending on T )
of primitive elements in FN with the following property: Whenever T 0 2 cvN is such
that kgkT 0 D kgkT for every g 2 S then T D T 0 in cvN .

In fact, the proof of Theorem B shows that we can take S D UT .

After Theorem 3.4 is established, we derive Theorem A from Theorem 3.4 using the
machinery of geodesic currents on free groups, and particularly exploiting the geometric
intersection form between trees and currents, constructed by Kapovich [36] and by
Kapovich and Lustig [40]. A geodesic current is a measure-theoretic analog of the
notion of the conjugacy class in a (word-hyperbolic) group. Geodesic currents were
introduced and studied by Bonahon [6; 7] in the context of hyperbolic surfaces and the
Teichmuller space, where they turned out to be quite useful. A geodesic current on a
free group FN is a positive Radon measure � on @2FN D @FN � @FN � diag which
is “flip”-invariant and FN –invariant. The space Curr.FN / of all geodesic currents on
FN comes equipped with a natural weak–� topology making it into a locally compact
space, and with a natural left Out.FN /–action by linear transformations. The theory
of geodesic currents on free groups has been actively developed in the last several
years by Kapovich [35; 36; 37; 38] and Kapovich–Lustig [39; 40; 42; 41] (see also
Bestvina and Feighn [3], Clay and Pettet [11], Hamenstädt [32], Francaviglia [28] and
Kapovich and Nagnibeda [44; 45; 46] for other recent applications of currents). The
space Curr.FN / turns out to be a natural counterpart for the Outer space cvN , and,
more generally, the closure cvN of cvN . The closure cvN of cvN (with respect to
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equivariant Gromov–Hausdorff convergence topology) is known to consist of all the
minimal very small isometric actions of FN on R–trees. The Outer space cvN is an
open Out.FN /–invariant dense subset of cvN . It is again well-known that any point
T 2 cvN is uniquely determined by its translation length function k � kT W FN !R.

The interaction between cvN and Curr.FN / is given by the geometric intersection
form

h� ; �iW cvN �Curr.FN /!R�0;

constructed by Kapovich and Lustig [40]. The intersection form has a number of useful
properties, such as being continuous, Out.FN /–invariant, R�0 –linear with respect
to the second argument and R�0 –homogeneous with respect to the first argument.
Another key property of the intersection form, relating it to marked length spectra, is
that for every T 2 cvN and every g 2 FN ;g ¤ 1 we have

hT; �gi D kgkT

where �g 2 Curr.FN / is the so-called “counting” current defined by g . This last
property is crucial in deriving Theorem A from Theorem 3.4.

As noted above, the first step in the proof of Theorem A is establishing Theorem 3.4,
which is accomplished via analyzing extremal Lipschitz distortion between arbitrary
points in cvN . After that the proof of Theorem A (for N � 3) proceeds as follows. It
is known (see Kapovich and Lustig [39]) that for N � 3 there exists a unique minimal
closed nonempty Out.FN /–invariant subset of the space P Curr.FN / of projectivized
geodesic currents: this subset MN , called the minimal set, is exactly the closure in
P Curr.FN / of the set of projective classes Œ�a� for all the primitive elements a 2 FN .
Now let H � Aut.FN / be an ample subgroup and let g 2 FN be a nontrivial element.
First, using a powerful recent result of Handel and Mosher [33] we conclude that H

contains a “fully irreducible” (also known as “iwip”, which stands for “irreducible
with irreducible powers”) element  2 H . Then, using the assumption about H

being ample, and the dynamics of the action of fully irreducible automorphisms on
P Curr.FN /, we conclude that the closure in P Curr.FN / of the orbit H Œ�g� contains
the minimal set MN . Then, using the intersection form h� ; �i mentioned above, we
conclude that for T 2 cvN knowing all the translation lengths k�.g/kT D hT; ��.g/i,
where � 2H , allows us to recover kakT D hT; �ai for all primitive elements a 2 FN .
Finally, by applying Theorem 3.4 we conclude that the set f�.g/ W � 2H g is spectrally
rigid in FN .

The proof in Kapovich [38] that a random trajectory of the simple non-backtracking
random walk on FN yields a spectrally rigid subset of FN , was also based on using
geodesic currents and the geometric intersection form. A key fact in that proof was that
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the R�0 –linear span of the set of counting currents �wn
, where .wn/n�1 is a random

trajectory of the walk, is dense in Curr.FN /. A similar line of reasoning cannot be
used to prove Theorem A. Indeed, if A is a free basis of FN and v is a freely reduced
word over A, such that every freely reduced word of length 2 over A occurs in v
as a subword, then v cannot be a subword of a cyclic word representing a primitive
element in FN . This implies that v has “weight 0” (see Kapovich [36] for the relevant
terminology) in any finite linear combination of counting currents of primitive elements.
Hence, by continuity, v has “weight 0” in every current from the closure Z of the
linear span of the counting currents of all primitive elements, and hence Z is a proper
subset of Curr.FN /.

In Section 6 we discuss a number of open problems motivated by the results of this
paper, including questions about spectral rigidity properties of subgroups of Out.FN /,
questions about spectral rigidity with respect to the closure cvN of cvN , and other
problems.
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2 Preliminaries

2.1 Graphs and graph-related conventions

Convention 2.1 (Graphs) A graph is a 1-complex. The set of 0–cells of a graph
� is denoted V� and its elements are called vertices of �. The closed 1-cells of a
graph � are called topological edges of �. The set of all topological edges is denoted
Etop�.

The interior of every topological edge is homeomorphic to the interval .0; 1/ � R
and thus admits exactly 2 orientations (when considered as a 1-manifold). We call a
topological edge endowed with the choice of an orientation on its interior an oriented
edge of �. The set of all oriented edges of � is denoted E�. For an oriented edge
e 2E� changing its orientation to the opposite produces another oriented edge of �
denoted e�1 and called the inverse of e . Thus �1W E�!E� is a fixed-point-free
involution.

For every oriented edge e of � there are naturally defined (and not necessarily distinct)
vertices o.e/ 2 V�, called the origin of e , and t.e/ 2E�, called the terminus of e ,
satisfying o.e�1/D t.e/, t.e�1/D o.e/.
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An orientation on a graph � is a partition E� D EC� tE��, where for every
e 2E� one of the edges e; e�1 belongs to EC� and the other edge belongs to E��.

Definition 2.2 (Paths) A simplicial path or edge-path 
 of simplicial length n� 1

in � is a sequence of oriented edges


 D e1; : : : ; en

such that t.ei/D o.eiC1/ for i D 1; : : : ; n�1. We say that o.
 / WD o.e1/ is the origin
of 
 and that t.
 /D t.en/ is the terminus of 
 . We also regard 
 D v 2 V� as an
simplicial path in � of simplicial length 0 with o.
 /D t.
 /D v . A simplicial path
is called reduced if it does not contain a back-tracking, that is a subpath of the form
ee�1 , where e 2E�.

2.2 Outer space

The Culler–Vogtmann Outer space, introduced by Culler and Vogtmann in a seminal
paper [23], is a free group analogue of the Teichmüller space of a closed surface of
negative Euler characteristic. We briefly review some basics definitions and facts about
the Outer space, and refer the reader to [23] and to Bestvina and Feighn [2], Bridson
and Vogtmann [8], Guirardel [31] and Vogtmann [55] for more detailed background
information on the topic.

Definition 2.3 (Non-projectivized Outer Space) Let FN be a finitely generated free
group of rank N � 2.

The non-projectivized outer space cvN consists of all minimal free and discrete iso-
metric actions of FN on R–trees. Two such trees T1;T2 are considered equal in cvN

if there exists an FN –equivariant isometry between them. The space cvN is endowed
with the equivariant Gromov–Hausdorff convergence topology.

For T 2 cvN and c > 0 denote by cT 2 cvN the tree that coincides with T as a
topological space and has the same F –action, but where the metric is multiplied by c .

A basic fact in the theory of Outer space states that every T 2 cvN is uniquely
determined by its translation length function k�kT W FN !R, where for every g 2FN

kgkT D min
x2T

dT .x;gx/

is the translation length of g .
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Proposition 2.4 Let T1;T2 2 cvN be such that k�kT1
Dk�kT2

, that is kgkT1
DkgkT2

for every g 2 FN . Then there exists an FN –equivariant isometry between T1 and T2 ,
so that T1 D T2 in cvN .

Proposition 2.4 is a special case of a much more general fact. Thus it is known (see
Paulin [52]) that for a finitely generated group G any minimal irreducible (without a
global fixed end) isometric action of G on an R–tree T is uniquely determined (up to
a G–equivariant isometry) by the translation length function k � kT W G!R for this
action.

Note that kgkT D khgh�1kT for every g; h 2 FN . Thus k � kT can be thought of as a
function on the set of conjugacy classes in FN . The space cvN comes equipped with
a natural right Out.FN /–action by homeomorphisms. At the length function level, if
� 2 Out.FN /, T 2 cvN and g 2 FN we have

kgkT� D k�.g/kT :

It is known that the equivariant Gromov–Hausdorff topology on cvN coincides with the
pointwise convergence topology at the level of length functions. Thus for Tn;T 2 cvN

we have limn!1 Tn D T if and only if for every g 2 F we have limn!1 kgkTn
D

kgkT .

Definition 2.5 (Projectivized Outer Space) Denote by CVN the subset of cvN

consisting of all T 2 cvN such that the quotient graph T=FN has volume 1.

The space CVN is a closed Out.FN /–invariant subset of cvN and it is called the
projectivized Outer Space of FN .

It is known that CVN is Out.FN /–equivariantly homeomorphic to cvN = �, where
T1 � T2 if there is c > 0 such that T2 D cT1 in cvN . This fact justifies the term
“projectivized Outer Space”. For T 2 cvN we denote by ŒT � the �–equivalence class
of T and call ŒT � the projective class of T .

Points of cvN have a more explicit combinatorial description as “marked metric graph
structures” on F :

Definition 2.6 (Metric graph) A metric graph is a graph � endowed with a metric
structure L, that is, a function LW E�! .0;1/ such that for every e 2E� we have
L.e/D L.e�1/. The number L.e/ is called the length of e with respect to L.

For a metric graph .�;L/ its volume is defined as

volL.�/D
1

2

X
e2E�

L.e/D
X

e2EC�

L.e/;
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where E�DEC�tE�� is any orientation on �.

Definition 2.7 (Marking) Let FN be a free group of finite rank N � 2. A marking
or a marked graph structure on FN is an isomorphism ˛W FN ! �1.�/ where � is a
finite connected graph with the first Betti number equal to N and such that � has no
degree-1 and no degree-2 vertices.

Definition 2.8 (Marked metric graph) A marked metric graph or a marked metric
graph structure on FN consists of a marking ˛W FN ! �1.�/ on FN together with a
metric graph structure L on � .

Convention 2.9 Let .̨ ;L/ be a marked metric graph structure on FN , where ˛WFN!

�1.�;p/ is a marking and where L is a metric structure on � .

Then .˛;L/ defines a point T 2 cvN as follows. Topologically, let T D z� , with an
action of FN on T via ˛ . We lift the metric structure L from � to T by giving
every edge in T the same length as that of its projection in � . This makes T into
an R–tree equipped with a minimal free and discrete isometric action of FN . (The
assumption that � has no degree-1 vertices guarantees that the action of FN on T

is minimal). Thus T 2 cvN and in this situation we will sometimes use the notation
T D .˛;L/ 2 cvN . Note that T=F D � .

Moreover, it is not hard to see that every point of cvN arises in this fashion and that
CVN is exactly the set of all those T D .˛;L/ 2 cvN where .˛;L/ is a marked metric
graph structure on FN with volL.�/D 1.

For this reason we will also think of elements T 2 cvN as metric graphs, and the
default assumption will be that every vertex of T has degree � 3.

The following useful proposition is an immediate corollary of the definitions:

Proposition 2.10 Let T 2 cvN be realized by a marked metric graph structure
.˛W FN ! �1.�/;L/ on FN , so that T D .z�; dL/. Let g 2 FN ;g ¤ 1. Let 
g

be the unique immersed circuit in � obtained by reducing and cyclically reducing the
edge-path ˛.g/ in � .

Then kgkT is equal to the L–length of 
g .

The Outer space cvN has a natural closure cvN with respect to the equivariant Gromov–
Hausdorff convergence topology (or, equivalently, with respect to the length function
topology). It is known (see Bestvina and Feighn [2], Cohen and Lustig [12] and
Guirardel [30]) that cvN consists precisely of (the FN –equivariant isometry classes of)
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all the very small minimal isometric actions of FN on R–trees. The Out.FN /–action
on cvN naturally extends to an action on cvN by homeomorphisms. Moreover, the
projectivization CVN of cvN is compact and contains (a copy of) CVN as an open
dense Out.FN /–invariant subset. The space CVN is sometimes called the Thurston
compactification of CVN .

3 Extremal Lipschitz distortions and rigidity of the set of
primitive elements

For N � 2 we denote by PN the set of all primitive elements in FN .

Notation 3.1 Let T 2 cvN and T 0 2 cvN . Denote

(}) D.T;T 0/ WD sup
g2FN ;g¤1

kgkT 0

kgkT
:

Notation 3.2 (Almost simple curves) Let T 2 cvN and let � D T=FN be the
quotient metric graph, with the metric structure L coming from T . Thus FN is
naturally identified with �1.�/ via an isomorphism ˛W FN ! �1.�/ and T D .˛;L/
in cvN .

Let UT � FN be the set of all elements of FN corresponding (under ˛ ) to the closed
curves 
 in � of one of the following types:

(1) 
 is a nontrivial simple closed circuit in � ;

(2) 
 D 
1
2 is a concatenation of two nontrivial simple closed circuits 
1 , 
2 ,
each beginning and ending at a common vertex v , and such that 
1 , 
2 do
not contain any common topological edges. We refer to such 
 as figure-eight
curves in T=FN .

(3) 
 is a “barbell” circuit, that is 
 D 
1ˇ
2ˇ
�1 where 
i is a nontrivial simple

closed circuit at a vertex vi of � with v1 ¤ v2 , where ˇ is a simple edge-path
from v1 to v2 in � and where 
1; ˇ; ˇ2 do not have any common topological
edges. We refer to such 
 as barbell curves in T=FN .

Note that, by construction, every element of UT is primitive in FN and the set UT is
finite. Moreover #UT �K.N / for some constant K.N / depending only on N . We
call elements of UT almost simple curves for T=FN .

We need the following fact established by Francaviglia and Martino in [29]:
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Proposition 3.3 Let T;T 0 2 cvN be arbitrary. Then

D.T;T 0/D max
g2UT

kgkT 0

kgkT
:

Thus we see that the supremum in the definition of D.T;T 0/ in .}/ is a maximum and
it is achieved on one of elements from the finite subset UT � PN .

Proposition 3.3 quickly implies that the set of all primitive elements is spectrally rigid:

Theorem 3.4 Let N � 2. Then the set P of all primitive elements in FN is spectrally
rigid in FN .

Proof Let T;T 0 2 cvN be such that kgkT D kgkT 0 for every g 2 PN .

Then

D.T;T 0/D sup
g2FN ;g¤1

kgkT 0

kgkT
D max

g2UT

kgkT 0

kgkT
D 1

since UT � PN . Similarly,

D.T 0;T /D sup
g2FN ;g¤1

kgkT

kgkT 0
D max

g2UT 0

kgkT

kgkT 0
D 1

so that

inf
g2FN ;g¤1

kgkT 0

kgkT
D sup

g2FN ;g¤1

kgkT 0

kgkT
D 1:

Thus kgkT D kgkT 0 for every g 2 FN and hence T D T 0 in cvN , as required.

We now state a more precise (compared to Proposition 3.3) statement summarizing
some of the results of Francaviglia and Martino [29]:

Proposition 3.5 Let T;T 0 2 cvN be arbitrary. Let L WDD.T;T 0/. Then there exists
an FN –equivariant L–Lipschitz map f W T ! T 0 with the following properties:

(1) On each edge e of T the map f is a linear map with constant stretch De � 0

(note that, because of FN –equivariance, De1
DDe2

whenever e1 and e2 are in
the same FN –orbit of edges of T ).

(2) There exists h 2 UT such that for every edge e in the axis Ah of h in T we
have De D L and the restriction of f to Ah is injective (so that f jAh

is an
L–homothety).

We can now establish Theorem B from the Introduction:
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Theorem 3.6 Let T;T 0 2 cvN be such that kgkT D kgkT 0 for every g 2 UT . Then
T 0 D T in cvN .

Proof Let T;T 0 2 cvN be such that kgkT D kgkT 0 for every g 2 UT . Hence by
Proposition 3.3 D.T;T 0/D 1. Let f W T ! T 0 be an FN –equivariant 1–Lipschitz
map provided by Proposition 3.5. In particular, De � 1 for every edge e of T .

We claim that De D 1 for every edge e of T . Indeed, suppose not, so that there exists
an edge e0 of T with De0

< 1. Let y0 be the edge of T=FN which is the projection of
e0 to T=FN . Then there exists an immersed circuit 
0 in T=FN passing through the
edge y0 such that 
0 is an almost simple curve in FN =T . Let g0 2 FN correspond
to 
0 , so that g0 2UT . The fact that De0

< 1 and that De � 1 for every edge e of T

implies that kg0kT 0 < kg0kT . Again, this contradicts our assumptions on T;T 0 and
the fact that g0 2 UT .

We now claim that f is injective. Indeed, suppose not. Then there exist two distinct
oriented edges e1; e2 of T with a common initial vertex v such that f “folds” a
non-degenerate initial segment of e1 and a non-degenerate initial segment of e2 . Let
y1;y2 be the edges of T=FN which are the projections of e1 and e2 respectively to
T=FN . From the definition of an almost simple curve for T=FN it follows that there
exists an immersed circuit 
 in T=FN containing y�1

1
y2 as a subpath such that 
 is an

almost simple curve in T=FN . Thus 
 corresponds to g 2 UT . By FN –equivariance
of f we may assume that e�1

1
e2 is a subpath of the axis of g in T . Since De D 1

for every edge e of T and since f folds nondegenerate initial segments of e1 and
e2 , it follows that kgkT 0 < kgkT . This contradicts the fact that g 2 UT and that by
assumption kgkT D kgkT 0 . Hence f is injective as claimed.

Thus the map f is injective and is isometric on every edge of T . Therefore f W T !T 0

is an isometric embedding. Since the actions of FN on T and T 0 are minimal, it
follows that f .T /D T 0 , so that f W T ! T 0 is an FN –equivariant isometry. Hence
T D T 0 in cvN , as required.

4 Geodesic currents

4.1 Basic facts

We will only state a few basic facts and definitions about currents, and refer the reader
to Martin [50], Kapovich [35; 36; 37] and Kapovich and Lustig [39; 40; 42] for more
detailed background information regarding geodesic currents.
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For the free group FN define its “double boundary” @2FN as

@2FN WD @FN � @FN � diagD f.�; �/ 2 @FN � @FN W � ¤ �g:

The space @2FN comes equipped with a natural topology, inherited from @FN�@FN ,
and a natural translation action of FN by homeomorphisms. There is also a natural
“flip” map @2FN ! @2FN , .�; �/ 7! .�; �/, interchanging the two coordinates on
@2FN .

Recall that a geodesic current on FN is a positive Radon measure � on @2FN which is
FN –invariant and flip-invariant. Here the “flip” map @2FN!@2FN , .X;Y / 7! .Y;X /

interchanges the two coordinates of @2FN . The space Curr.FN / of all geodesic
currents on FN comes equipped with a natural weak–� topology and a natural left
Aut.FN /–action by R�0 –linear homeomorphisms. The group of inner automorphisms
of FN is contained in the kernel of this action, and hence the Aut.FN / action naturally
factors through to the action of Out.FN / on Curr.FN /.

Every nontrivial element g 2 FN defines a counting current �g 2 Curr.FN /, which
turns out to depend only on the conjugacy class Œg� of g in FN . Although the
explicit definition of �g is not directly relevant for this paper, we briefly recall one
of the equivalent definitions of �g here. Suppose first that g 2 FN is a nontrivial
element which is not a proper power in FN . There are two well-defined distinct “poles”
g1;g�1 2 @FN where

g1 D lim
n!1

gn; g�1 D lim
n!1

g�n

where the convergence is understood in the sense of the standard hyperbolic compacti-
fication FN [ @FN of FN . Then .g�1;g1/ 2 @2FN . Let Œg� denote the conjugacy
class of g in FN . Then

�g WD

X
h2Œg�[Œg�1�

ı.h�1;h1/:

Now if g 2FN is an arbitrary nontrivial element, g can be uniquely written as gD gm
0

where m� 1 and g0 2 FN is not a proper power. Then �g is defined as �g WDm�g0
.

We summarize the following basic facts about counting currents (see Kapovich [36]):

Proposition 4.1 Let N � 2 and let g 2 FN , g ¤ 1. Then

(1) We have �g D �g�1 .

(2) For every n 2 Z, n¤ 0, we have �gn D jnj�g .

(3) For every h 2 Œg� we have �g D �h . Thus �g depends only on the conjugacy
class of g , so we also use the notation �Œg� WD �g .
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(4) For every � 2 Out.FN / we have ��Œg� D ��.Œg�/ .

The scalar multiples of counting currents are called rational currents. An important
basic fact states that the set RN WD fr�gjr � 0;g¤ 1;g 2FN g of all rational currents
is dense in Curr.FN /. The space Curr.FN / has a natural projectivization P Curr.FN /

consisting of all equivalence classes Œ�� where �2Curr.FN /, �¤0. Here two currents
�1; �2 are equivalent if there exists r > 0 such that �2 D r�1 . The equivalence class
Œ�� is also called the projective class of �. The space P Curr.FN / is compact and it
inherits a left action of Out.FN / by homeomorphisms. A basic fact about geodesic
currents states (see Kapovich [36]):

Proposition 4.2 Let N � 2 and let g; h2FN be nontrivial elements. Then Œ�g�D Œ�h�

in P Curr.FN / if and only if there exist u 2 FN , m; n 2 Z such that Œg�D Œum� and
Œh�D Œun�.

4.2 The geometric intersection form

A key object connecting the Outer space and the space of geodesic currents is the
so-called geometric intersection form, constructed by Kapovich and Lustig [40]:

Proposition 4.3 Let N � 2. There exists a unique continuous map

h � ; � iW cvN �Curr.FN /!R�0

with the following properties:

(1) hT; c1�1Cc2�2iDc1hT; �1iCc2hT; �2i for any T 2cvN , �1; �22Curr.FN /,
c1; c2 � 0.

(2) hcT; �i D chT; �i for any T 2 cvN , � 2 Curr.FN / and c � 0.

(3) h�T; ��i D hT; �i for any T 2 cvN , � 2 Curr.FN / and � 2 Out.FN /.

(4) hT; �gi D kgkT for every T 2 cvN and g 2 FN ;g ¤ 1.

The value hT; �i is called the geometric intersection number of T 2 cvN and � 2
Curr.FN /.

4.3 The minimal set

Definition 4.4 (Minimal set MN ) Let N � 2. Denote by MN the closure in
P Curr.FN / of the set

fŒ�g� W g 2 FN is primitiveg:
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It is easy to see that MN �P Curr.FN / is a closed Out.FN /–invariant subset. It turns
out (see Kapovich and Lustig [39]) that for N � 3 this is the minimal such subset:

Proposition 4.5 Let N � 2. Then:

(1) (Martin [50]) For every element Œ�� 2MN the subset Out.FN /Œ�� is dense in
MN .

(2) (Kapovich–Lustig [39]) Let N�3. Then MN�P Curr.FN / is the unique min-
imal closed Out.FN /–invariant nonempty subset. This means that whenever
Z�P Curr.FN / is a closed Out.FN /–invariant nonempty subset then MN�Z .

For N � 3 part (1) of Proposition 4.5 follows directly from part (2). For N D 2 part
(1) of Proposition 4.5 follows from the results of Reiner Martin [50] who showed that
M2 is homeomorphic to the circle and that the action of Out.F2/DGL.2;Z/ on M2

can be identified with the standard action of GL.2;Z/ on S1 D @H 2 .

The conclusion of part (2) of Proposition 4.5 is false for N D 2. Indeed, for F2 D

F.a; b/, it is easy to see that �g for g D Œa; b� is a fixed point for the action of
Out.F2/ on Curr.F2/ and hence Œ�g� is fixed by the action of Out.F2/ on P Curr.F2/.
However, we will see later that a weaker version of Proposition 4.5 is true for N D 2

and that version will be sufficient for our purposes.

4.4 Consequences of spectral rigidity of the set of primitive elements

Recall that PN denotes the set of all primitive elements in FN .

A key tool in proving our main results is the following:

Proposition 4.6 Let N � 2, let H � Aut.FN / and let g 2 FN ;g ¤ 1. Suppose that
the closure of the set H Œ�g� in P Curr.FN / contains the set MN .

Then
Hg D f�.g/j� 2H g � FN

is a spectrally rigid subset of FN .

Proof Let T;T 0 2 cvN be such that k�.g/kT D k�.g/kT 0 for every � 2 H . We
need to show that T D T 0 in cvN .

Let Z be the closure of the set H Œ�g� in P Curr.FN /. By assumption we have
MN �Z . Hence for every primitive element a 2 FN there exists a sequence �n 2H

and a sequence cn � 0 such that

lim
n!1

cn�n�g D lim
n!1

cn��n.g/ D �a in Curr.FN /:
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Proposition 4.3 then implies that

kakT D hT; �ai D hT; lim
n!1

cn��n.g/i D lim
n!1

cnhT; ��n.g/i D

lim
n!1

cnk�n.g/kT D lim
n!1

cnk�n.g/kT 0 D lim
n!1

cnhT
0; ��n.g/i D

hT 0; lim
n!1

cn��n.g/i D hT
0; �ai D kakT 0 :

Thus kakT D kakT 0 for every primitive element a 2 FN . Theorem 3.4 now implies
that T D T 0 in cvN .

4.5 Stable and unstable currents

Let N � 2. An element � 2Out.FN / is called fully irreducible or iwip (for “irreducible
with irreducible powers”) if there is no integer n � 1 such that �n preserves the
conjugacy class of a proper free factor of FN .

For an element � 2 Out.FN / the conjugacy class Œg�, where g 2 FN , g ¤ 1, is
periodic if there exists n� 1 such that �nŒg�D Œg�. An element � 2Out.FN / is called
atoroidal if � does not have any periodic conjugacy classes.

It is well-known that all non-atoroidal iwips in Out.FN / come from homeomorphisms
of compact surfaces with a single boundary component:

Proposition 4.7 (Bestvina and Handel [5]) Let N � 2 and � 2Out.FN / be an iwip.
Then the following hold:

(1) The automorphism � is not atoroidal if and only if there exists an isomorphism
˛W FN ! �1.†/, where † is a connected compact surface with exactly one
boundary component, such that � is induced by a homeomorphism of †.

(2) Let � 2 Out.FN / be a non-atoroidal iwip, let † be as in (1) and let Œh� be the
conjugacy class in FN given by the boundary of †.
Then the only periodic conjugacy classes of � in FN are those of the form Œhm�,
where m 2 Z;m ¤ 0. The conjugacy class Œh� is called the peripheral curve
of � . (Note that for an non-atoroidal iwip � the peripheral curve Œh� is defined
uniquely up to inversion. Namely, if Œg� is a periodic conjugacy class of � such
that g 2 FN is not a proper power then Œg�D Œh˙1�.)

(3) Let N D 2 and F2DF.a; b/. Let uD Œa; b� 2F2 . Let � 2Out.F2/ be an iwip.
Then � is not atoroidal and Œu� is the peripheral curve of � .

For an element � 2 Out.FN / a current � 2 Curr.FN / is called an eigencurrent of
� if � ¤ 0 and �� D �� for some � � 0. In that case the number � is called the
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associated eigenvalue of � for � . Thus for � 2 Curr.FN /, �¤ 0 is an eigencurrent
of � if and only if Œ�� 2 P Curr.FN / is a fixed point of � . If Œ�� 2 P Curr.FN / is a
fixed point of � , we also refer to the eigenvalue of � for � as the eigenvalue of Œ��
for � , and we sometimes refer to Œ�� as an eigencurrent of � .

Recall that MN � P Curr.FN / is a closed Out.FN /–invariant subset. As proved by
Reiner Martin [50], if � 2Out.FN / is an iwip, then � has the “North-South” dynamics
on the minimal set MN � P Curr.FN / and, moreover, if � is an atoroidal iwip, then
� has the “North-South” dynamics on P Curr.FN /. We only need the following weak
version of Martin’s result:

Proposition 4.8 (Stable and unstable eigencurrents of iwips. Martin [50]) Let N � 2

and let � 2 Out.FN / be an iwip.

Then the following holds:

(1) The element � has exactly two distinct fixed points in MN . One of these fixed
points, called the stable eigencurrent of � , and denoted by Œ�C�D Œ�C.�/� 2
MN , has eigenvalue > 1 for � , and the other fixed point, called the unstable
eigencurrent of � and denoted by Œ���D Œ��.�/� 2MN , has eigenvalue < 1

for � . Thus ��C D �C�C for �C > 1 and ��� D 1
��
�� for �� > 1.

(2) If � is both atoroidal and an iwip then for every g 2 FN , g ¤ 1 we have

lim
n!1

�nŒ�g�D Œ�C.�/�; lim
n!1

��nŒ�g�D Œ��.�/�:

(3) If � is an iwip which is not atoroidal and if Œu� is the peripheral curve for � then
for every nontrivial g 2 FN such that g is not conjugate to um , m 2Z we have

lim
n!1

�nŒ�g�D Œ�C.�/�; lim
n!1

��nŒ�g�D Œ��.�/�:

(4) For any � 2Out.FN / the element �0 WD ����1 is again an iwip and Œ�C.�0/�D
�Œ�C.�/�, Œ��.�0/�D �Œ��.�/�.

5 Spectrally rigid automorphic orbits

5.1 Finding an iwip in an ample subgroup

Lemma 5.1 Let N � 2 and let H � Out.FN / be an infinite normal subgroup. Then
H contains an iwip element � .
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Proof By a result of Handel and Mosher [33] either H contains an iwip or there exist
a subgroup H1 of finite index in H and a proper free factor B of FN such that every
element of H1 leaves the conjugacy class of B invariant.

Suppose that the latter case occurs, so that some subgroup H1 of finite index in H

preserves the conjugacy class of a proper free factor B of FN .

It is well known (see, for example, Bridson and Vogtmann [9]) that Out.FN / is virtually
torsion-free and hence there are no infinite torsion subgroups in Out.FN /. Thus if
we show that every element of H1 has finite order, this will imply that H1 is finite,
yielding a contradiction with the assumption that H is infinite and that H1 has finite
index in H .

Note that if � 2Out.FN / is arbitrary, then �H1�
�1 leaves the conjugacy class Œ�.B/�

invariant. Since H is normal in Out.FN /, it follows that �H1�
�1 has finite index

in �H��1 DH and hence H� WDH1\ �H1�
�1 has finite index in H1 . Thus every

element of H1 has a positive power belonging to H� . Similarly, for any finite collection
of elements �1; : : : ; �m 2 Out.FN / the subgroup

H�1;:::;�m
WDH1\ �1H1�

�1
1 \ : : :\ �mH1�

�1
m

has finite index in H1 . Moreover, every element of H�1;:::;�m
leaves invariant each of

the conjugacy classes ŒB�; Œ�1.B/�; : : : Œ�m.B/� and every element of H1 has a positive
power that belongs to H�1;:::;�m

.

Let  2H1 be arbitrary. Choose a free basis AD fa1; : : : ; aN g of FN such that for
some 1 � k � N � 1 the set fa1; : : : ; akg is a free basis of B . Let ‰ 2 Aut.FN /

be a lift of  to Out.FN /. Since  preserves the conjugacy class of B , for every
n 2 Z the cyclically reduced form of ‰n.a1/ over A does not involve a˙1

N
. For each

mD 2; : : : ;N � 1 let �m be the automorphism of FN induced by the permutation of
A which interchanges am and aN and leaves the other elements of A fixed. Thus
�m.B/ is generated by a subset of A that does not involve am . Let n� 1 be such that
‰n belongs to H�2;:::;�N�1

. Then the image ‰n.a1/ is a freely reduced word over
A whose cyclically reduced form does not involve a˙1

2
; : : : ; a˙1

N
, so that ‰.a1/ is

conjugate to a˙1
1

in FN . By taking a larger finite collection of automorphisms � of
FN we can find a positive power ‰ which sends every ai to a conjugate of ai in FN ,
where i D 1; : : : ;N .

Moreover, by considering the automorphisms � of FN corresponding to all the el-
ementary Nielsen transformations on A, we can find an even bigger positive power
‰M of ‰ with the property that ‰M .u/ is conjugate to u in FN for every freely
reduced word u of length � 2 over A. It is well known and easy to see that this
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implies that ‰M is an inner automorphism of FN , so that  M D 1 in Out.FN /. Thus
we have shown that every element of H1 has finite order in Out.FN /, which, since
Out.FN / is virtually torsion-free, implies that H1 is finite. However, this contradicts
the assumption that H is infinite and that H1 has finite index in H .

Thus H contains an iwip element, as required.

Remark 5.2 Note that for N D 2 every automorphism of F2DF.a; b/ has a periodic
conjugacy class - namely the conjugacy class of the commutator Œa; b�. Thus every
iwip � 2 Out.F2/ is toroidal.

For N � 3 it is almost certainly the case that every nontrivial normal subgroup H

of Out.FN / contains an atoroidal iwip (and not just an iwip, as Lemma 5.1 proves).
Such a strengthening of Lemma 5.1 would eliminate the need to consider Case 2 in the
proof of Theorem 5.4 below. However, the presently available tools do not appear to
be sufficient for establishing the existence of an atoroidal iwip in H . Let � 2H be
an iwip whose existence is provided by Lemma 5.1. Suppose that � is toroidal. We
can use then ping-pong considerations for the action of Out.FN / on the free factor
complex FFN (now known to be Gromov-hyperbolic by a result of Bestvina and
Feighn [1])) and choose a conjugate  D ����1 2H such that for all sufficiently large
n � 1 the subgroup � D h�n;  ni �H is free of rank two and that every nontrivial
element of � is again an iwip. One would then like to argue that (with the appropriate
choices of � and n) the element �n n 2 H is an atoroidal iwip. The difficulty in
proving this statement is that toroidal iwips do not act with “north-south” dynamics on
P Curr.FN /. Instead, a toroidal iwip ˇ has three distinct fixed points in P Curr.FN /:
the stable (expanding) current Œ�C.ˇ/�, the unstable (contracting) current Œ��.ˇ/� and
the current Œ�u� (where u is the peripheral curve for ˇ ) such that �u is fixed by ˇ in the
non-projective sense. To prove that the iwip ˛D�n n is atoroidal we need to show that
there does not exist a nontrivial current in Curr.FN / that is fixed by ˛ . Establishing
this fact requires first proving the following generalized north-south dynamical property
for the action of any toroidal iwip ˇ 2 Out.FN / for N � 3: for any neighborhood
U of Œ�C.ˇ/� in P Curr.FN / and for any open set V in P Curr.FN / containing the
segment between Œ��.ˇ/� and Œ�u� (where u is the peripheral curve for ˇ ) there exists
M � 1 such that for all m�M we have ˇm.P Curr.FN / nV /� U . This statement,
which is most likely true, is not yet proved in the literature and establishing it requires
different arguments than those used by Reiner Martin [50] in the proof of “north-south”
dynamics for the action of atoroidal iwips on P Curr.FN /.
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5.2 The proof of Theorem A for the case N � 3

Lemma 5.3 Let N � 3 and let H � Out.FN / be an infinite normal subgroup. Then
for every nontrivial element g2FN there exists  2H such that  .g/ is not conjugate
to g˙1 in FN .

Proof Let g 2 FN , g¤ 1. Suppose that for every  2H  .g/ is conjugate to g or
g�1 in FN . Thus H Œ�g�D Œ�g�. Hence for every � 2Out.FN / the subgroup �H��1

fixes �Œ�g�D Œ��.g/� in P Curr.FN /. Since H is normal in Out.FN /, it follows that
H fixes �Œ�g�D Œ��.g/� for every � 2 Out.FN /.

Let ' 2Out.FN / be any atoroidal iwip. Then H fixes 'nŒ�g� for every n� 1. Hence,
by Proposition 4.8, we have H Œ�C.'/� D Œ�C.'/�. By a result of Kapovich and
Lustig [43], for any atoroidal iwip ' the stabilizer of Œ�C.'/� in Out.FN / is virtually
cyclic and contains h'i as a subgroup of finite index. Now choose two atoroidal
iwips '1; '2 2 Out.FN / so that h'1i \ h'1i D f1g. Then, by the above argument, the
intersection of the stabilizers of Œ�C.'1/� and Œ�C.'2/� must be finite and must contain
H , which contradicts the assumption that H is an infinite subgroup of Out.FN /.

The following statement implies Theorem A from the Introduction for the case N � 3:

Theorem 5.4 Let N � 3. Let H � Aut.FN / be an ample subgroup.

Then for every g 2 FN , g ¤ 1, the automorphic orbit

Hg � FN

is a spectrally rigid subset of FN .

Proof Denote by SH �Out.FN / the image of H in Out.FN /. Thus SH is contains an
infinite normal subgroup of Out.FN /, and, without loss of generality we may assume
that SH is an infinite normal subgroup of Out.FN /.

Let g 2FN , g¤ 1 be arbitrary. Let Z be the closure of the set H Œ�g� in P Curr.FN /.
Proposition 4.6 implies that in order to establish that Hg is a spectrally rigid subset of
FN it suffices to establish the following:

Claim We have MN �Z .

Lemma 5.1 implies that SH contains some iwip element � .

Case 1 Suppose first that the iwip � is atoroidal.

By Proposition 4.8 we have

lim
n!1

�nŒ�g�D Œ�C.�/�:
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Therefore Œ�C.�/� 2Z . Recall also that Œ�C.�/� 2MN .

Let � 2Out.FN / be arbitrary. Since SH is normal in Out.FN /, it follows that ����1 2

SH . The element �0 D ����1 is again an iwip. Hence the same argument as above
implies that �C.����1/ 2Z .

Since �C.����1/ D �Œ�C.�/�, we see that �Œ�C.�/� 2 Z for every � 2 Out.FN /.
By Proposition 4.5 the subset Out.FN /Œ�C.�/��MN is dense in MN . Since Z is
closed, this implies that MN �Z , as claimed.

Case 2 Suppose that the iwip � is not atoroidal. Let Œu� be the peripheral curve of
Œ��.

Since HgDH‰.g/ for every ‰2H , Lemma 5.3 implies that, after possibly replacing
g by ‰.g/ for some ‰ 2H , we may assume that Œ�g�¤ Œ�u�. Then Proposition 4.8
implies that

lim
n!1

�nŒ�g�D Œ�C.�/�:

Thus again we see that Œ�C.�/� 2Z .

Let � 2 Out.FN / be arbitrary and let �0 D ����1 . Thus Œ�C.�0/�D �Œ�C.�/� and
�.u/ is the peripheral curve of �0 .

If Œ�g�¤ Œ��.u/� then again Proposition 4.8 implies that limn!1.�
0/nŒ�g�D Œ�C.�

0/�D

�Œ�C.�/�, so that Œ�C.�0/�D �Œ�C.�/� 2Z .

Suppose now that Œ�g� D Œ��.u/�. Then Lemma 5.3 again implies that there is some
 2 SH such that  Œ�g�D Œ� .g/�¤ Œ��.u/�. Note that SH Œg�D SH Œ .g/� since  2 SH .
Proposition 4.8 now implies that

lim
n!1

.�0/nŒ� .g/�D Œ�C.�
0/�:

Thus again Œ�C.�0/�D �Œ�C.�/� 2Z .

We have shown that �Œ�C.�/� 2Z for every � 2 Out.FN /. Since Out.FN /Œ�C.�/�

is dense in MN and the set Z is closed, it follows that MN �Z .

Thus the Claim is verified, which, as noted above, via Proposition 4.6 now implies that
Hg is a spectrally rigid subset of FN .

5.3 The case N D 2

Fix a free basis A WD fa; bg of F2 , so that F2 D F.a; b/.

We need the following weaker version of Proposition 4.5 for the case N D 2:
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Proposition 5.5 Let g 2 F2;g ¤ 1 be such that g is not conjugate to any integer
power of Œa; b�. Let H �Out.F2/ be an infinite normal subgroup. Let Z be any closed
H –invariant subset of P Curr.F2/ such that Œ�g� 2Z . Then M2 �Z .

Proof Let Z be the closure of the set H Œ�g�D fŒ��.g/� W � 2H g in P Curr.F2/.

Lemma 5.1 implies that there exists an iwip element � 2H . Recall that in this case
uD Œa; b� is the peripheral curve for � and, moreover, powers of Œa; b� are the only
periodic conjugacy classes for � in F2 .

Since by assumption g is not conjugate to any integer power of Œa; b�, it follows from
Proposition 4.8 that

lim
n!1

�nŒ�g�D lim
n!1

Œ��n.g/�D Œ�C.�/�:

Therefore Œ�C.�/� 2 Z . For every � 2 Out.F2/ �
0 D ����1 is again an iwip with

Œ�C.�
0/�D �Œ�C.�/�. The subgroup H is normal in Out.FN /, and therefore �0 2H .

Now Proposition 4.8 again implies that Œ�C.�0/� 2 Z . Since Œ�C.�0/�D �Œ�C.�/�,
we have shown that �Œ�C.�/� 2Z for every � 2 Out.F2/. By Proposition 4.5, every
Out.F2/–orbit of a point of M2 is dense in M2 , and therefore M2�Z , as required.

Remark 5.6 Suppose g is conjugate in F2 D F.a; b/ to Œa; b�k for some k 2 Z.
Then Aut.F2/g � F2 is not spectrally rigid.

Indeed, let TA and TB be the Cayley graphs of F.a; b/ with respect to A D fa; bg

and B D fa; abg accordingly. As usual, we give all edges of TA;TB length 1. Then
TA;TB 2 cv2 and TA ¤ TB in cv2 .

It is well-known that for any � 2 Aut.F.a; b//, the element �.Œa; b�/ is conjugate to
Œa; b�˙1 in F.a; b/. It follows that for any free bases A and B of F2 D F.a; b/, and
for any � 2 Aut.F2/ we have k�.g/kA D k�.g/kB D 4jkj. The Cayley graphs TA

and TB of F2 with respect to A and B respectively are both points in cv2 . Thus we
see that for every � 2 Aut.F2/ we have k�.g/kTA

D k�.g/kTB
D 4jkj. Since we

chose A and B so that TA ¤ TB in cv2 , this shows that the orbit Aut.F.a; b//g is
not spectrally rigid in F.a; b/.

It turns out that Remark 5.6 provides the only obstruction to extending Theorem 5.4 to
the case N D 2, and we obtain the conclusion of Theorem A from the Introduction for
N D 2:

Theorem 5.7 Let F2DF.a; b/ and let g 2F2;g¤ 1 be such that g is not conjugate
to a power of Œa; b� in F.a; b/.

Let H � Aut.F2/ be an ample subgroup. Then Hg is a spectrally rigid subset of
F.a; b/.
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Proof Suppose that g 2 F.a; b/, g ¤ 1 is such that g is not conjugate to a power of
Œa; b� in F.a; b/. Let Z be the closure in P Curr.FN / of the set H Œ�g�. Proposition 5.5
implies that M2 �Z . Proposition 4.6 now implies that Hg is a spectrally rigid subset
of F2 .

6 Open problems

One can define a more restrictive notion of spectral rigidity than the one considered
in this paper. Namely, call a subset S � FN strongly spectrally rigid if whenever
T;T 0 2 cvN are such that kgkT D kgkT 0 for every g 2 S then T D T 0 in cvN .

Problem 6.1 For N � 3 is it true that every nontrivial Aut.FN / orbit is strongly
spectrally rigid in FN ? Is it true that for N � 3 the set PN of all the primitive elements
is strongly spectrally rigid in FN ?

In Kapovich [38] it is proved that for the nonbacktracking simple random walk on
FN almost every trajectory of that walk gives a strongly spectrally rigid subset of FN .
However, the proofs of Theorem 5.4 and Theorem 5.7 in the present paper do not imply
strong spectral rigidity, primarily because our proof of spectral rigidity of the set PN

in Theorem 3.4 only works for the interior points of the Outer space. It was recently
pointed out to us by Jing Tao that for N D 2 the set P2 of all primitive elements
in F2 D F.a; b/ is not strongly spectrally rigid in F2 . She provided the following
example demonstrating this fact:

Example 6.2 (Jing Tao’s example) Consider a graph of groups A with the underlying
graph A consisting of two vertices x0 , x1 and two distinct topological edges e and
f , each with end-vertices x0 , x1 . Thus A is a topological circle subdivided in two
edges. Orient e and f so that both e and f have x0 as the initial vertex and x1 as
the terminal vertex. Define the vertex and edge groups as Ax0

DAx1
DAe D hai and

Af D f1g, with the boundary monomorphisms for the edge e being the identity map
hai ! hai. Identify b with the loop ef �1 . This provides an identification between
F.a; b/ and �1.A;x0/. Note that the graph of groups A gives a very small simplicial
splitting of F.a; b/. Finally, for each t 2 .0; 1/ give the edge e length t and the edge f
length 1� t . Thus for every t 2 .0; 1/ we get a point Tt 2 cv2 given by the Bass–Serre
tree of A with the lifts of e having length t and the lifts of f having length 1� t . By
construction, for any distinct t; t 0 2 .0; 1/ we have Tt ¤ Tt 0 in cv2 , and, moreover,
the projective classes of Tt and Tt 0 are also distinct. It is easy to check that for every
t 2 .0; 1/ and every cyclically reduced word w 2F2 , where all b s occur with the same

Algebraic & Geometric Topology, Volume 12 (2012)



Spectral rigidity of automorphic orbits in free groups 1481

sign, the translation length kwkTt
is equal to the absolute value of the exponent sum on

b in w . Since every primitive element in F.a; b/ has cyclically reduced form where all
occurrences of a have the same sign and all occurrences of b have the same sign (see
for example Cohen, Metzler and Zimmermann [14]), it follows that for any primitive
element w in F.a; b/ the translation length kwkTt

is a constant function of t . Thus
the restriction of k � kTt

to P2 is a function that does not vary with t , which shows that
the set P2 is not strongly spectrally rigid. On the other hand, for every t 2 .0; 1/ we
have kŒa; b�kTt

D 2t � 2, so that knowing of the translation length of Œa; b� is already
sufficient to distinguish Tt from all the other trees in the family. As noted by the
referee, one can also obtain this example geometrically as follows: Identify F2 with
the fundamental group �1.S/ of a torus with a single boundary component, and put a
hyperbolic metric on S making the boundary component totally geodesic. Consider a
measured geodesic lamination .L; �/ on S consisting of one closed geodesic (say the
meridian curve), of weight t , and a geodesic arc with two endpoints on the boundary, of
weight 1� t . Then the tree dual to the lift of this measured lamination to the universal
cover zS of S is exactly the tree Tt described above.

It seems plausible, however, that the case of F2 is special (because of the rather special
nature of primitive elements in F2 ) and that for N � 3 the set PN is strongly spectrally
rigid in FN . Some positive evidence in this direction is provided by the following
observation. Let � 2 Out.FN / (where N � 3) be an atoroidal iwip element and let
T� 2 cvN be the “stable tree” of an atoroidal iwip � 2Out.FN / (in particular T�� D

�T� , where � > 1 is the Perron–Frobenius eigenvalue of a train-track representative
of � ). We can prove that whenever T 0 2 cvN is such that the lengths functions of T�
and of T 0 agree on all primitive elements of FN then T 0 D T� in cvN . Namely, in
this case one can show that the Bestvina–Feighn–Handel “legal” lamination LBFH .�/

of � is contained in the dual algebraic lamination L2.T 0/ of T 0 . This implies, for
instance by the results of Kapovich and Lustig [42], that ŒT� �D ŒT 0� in CVN , and it
is then not hard to deduce that T 0 D T� . We refer the reader to Bestvina, Feighn and
Handel [4], Kapovich and Lustig [42] and Coulbois, Hilion and Lustig [15; 16] for
the background on dual algebraic laminations and on laminations associated to iwip
automorphisms.

Problem 6.3 Let N � 3. Does there exist a subset S � FN such that S is spectrally
rigid but not strongly spectrally rigid?

Problem 6.4 Let N � 2 and let S � PN be an arbitrary subset of the set PN of all
primitive elements in FN . Since S consists of primitive elements, this implies that
fŒ�g� W g 2 Sg �MN .
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Is it true that S is spectrally rigid in FN if and only if the closure of fŒ�g� W g 2 Sg in
P Curr.FN / is equal to MN ?

It is easy to show, using the intersection form, that if the closure of fŒ�g� W g 2 Sg

in P Curr.FN / is equal to MN then S is spectrally rigid. However, the converse
implication appears to be quite difficult. A recent result of Duchin, Leininger and
Rafi [26] establishes a similar statement to that suggested in Problem 6.4 in the context
of singular flat metrics on surfaces.

We have seen in Theorem 5.4 that for N � 3 if H � Aut.FN / is a subgroup that
projects to an infinite normal subgroup of Out.FN / then the Aut.FN /–orbit of every
nontrivial element g of FN is spectrally rigid. In an earlier version of this paper we
conjectured that for every cyclic subgroup H � Aut.FN / and every g 2 FN the orbit
Hg � FN is not spectrally rigid in FN . This conjecture was recently proved by Brian
Ray [53]. This fact and Theorem 5.4 suggest the following:

Problem 6.5 Let N � 3 and let H � Aut.FN / be an arbitrary subgroup. Is it true
that either for every nontrivial g 2 FN the orbit Hg � FN is spectrally rigid or that
for every nontrivial g 2 FN the orbit Hg � FN is not spectrally rigid?

A positive answer to the above question would mean that rigidity or non-rigidity of the
orbit Hg (where g 2 FN ;g ¤ 1) depends only on the subgroup H � Aut.FN / and
not on the choice of a nontrivial element g 2 FN .

Theorem B motivates the following question:

Problem 6.6 (Relatively strongly rigid finite sets) Given T 2 cvN , does there exist
a finite subset S � PN such that whenever T 0 2 cvN is such that kgkT D kgkT 0 for
all g 2 S then T D T 0 in cvN ? What if we just require S to be a finite subset of FN

(and not necessarily of PN )?

As we noted in the introduction, by a result of Cohen–Lustig–Steiner [13], there does
not exist a finite spectrally rigid subset of F2 . However, the argument in [13] involves
looking at trees T 2 cv2 with variable volume of the quotient metric graph T=F2 . On
the other hand, the Smillie–Vogtmann construction (see Culler and Vogtmann [23]) for
N � 3 only uses trees with co-volume 1, that is, points of CVN . In fact, for N D 2

the situation is quite different when restricting trees with quotient graphs of volume
1, that is, to CV2 . Elaborating the arguments from Culler and Vogtmann [24] we can
show that for F2 D F.a; b/ the set S0 WD fa; b; ab; ab�1; Œa; b�g is “CV2 –rigid”, that
is, knowing the k � kT –lengths, for an arbitrary T 2 CV2 , of elements of S0 , uniquely
determines T . This naturally leads to the following question:
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Problem 6.7 Does there exist a finite CV2 –rigid set of primitive elements in F2 ?

The notion of a spectrally rigid set naturally generalizes to the space of currents. Thus
we say that a subset S � Curr.FN / is spectrally rigid if whenever T;T 0 2 cvN are
such that hT; �i D hT 0; �i for every � 2 S then T D T 0 in cvN .

Problem 6.8 Let N � 2. Does there exist a finite spectrally rigid set of currents
S � Curr.FN /?

The original argument of Smillie–Vogtmann [54] about non-existence of a finite spec-
trally rigid set of elements in FN , and the above mentioned result of Brian Ray [53]
about non-rigidity of orbits of cyclic subgroups of Aut.FN / significantly rely on the
fact that (in the language of currents) counting currents of elements of FN never have
full support. Thus it is possible that there may indeed exist a finite spectrally rigid set
of currents containing one or more current with full support. On the other hand, it also
seems plausible that every finite subset S �MN is not spectrally rigid.
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