Volume 12, issue 3 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Modular isogeny complexes

Charles Rezk

Algebraic & Geometric Topology 12 (2012) 1373–1403
Bibliography
1 M H Baker, E González-Jiménez, J González, B Poonen, Finiteness results for modular curves of genus at least 2, Amer. J. Math. 127 (2005) 1325 MR2183527
2 M Behrens, T Lawson, Isogenies of elliptic curves and the Morava stabilizer group, J. Pure Appl. Algebra 207 (2006) 37 MR2244259
3 T Kashiwabara, $K(2)$–homology of some infinite loop spaces, Math. Z. 218 (1995) 503 MR1326982
4 N M Katz, B Mazur, Arithmetic moduli of elliptic curves, Annals of Math. Studies 108, Princeton Univ. Press (1985) MR772569
5 B Poonen (mathoverflow.net/users/2757), Supersingular elliptic curves and their “functorial” structure over $F_p^2$, MathOverflow (2010)
6 S B Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970) 39 MR0265437
7 D Quillen, Finite generation of the groups $K^{i}$ of rings of algebraic integers, from: "Algebraic $K$–theory, I: Higher $K$–theories (Proc. Conf., Battelle Memorial Inst., Seattle, WA, 1972)" (editor H Bass), Lecture Notes in Math. 341, Springer (1973) 179 MR0349812
8 C Rezk, Rings of power operations for Morava $E$–theories are Koszul arXiv:1204.4831
9 C Rezk, The congruence criterion for power operations in Morava $E$–theory, Homology, Homotopy Appl. 11 (2009) 327 MR2591924
10 L Solomon, The Steinberg character of a finite group with $BN$–pair, from: "Theory of Finite Groups (Symposium, Harvard, Cambridge, MA, 1968)", Benjamin (1969) 213 MR0246951
11 N P Strickland, Finite subgroups of formal groups, J. Pure Appl. Algebra 121 (1997) 161 MR1473889
12 N P Strickland, Morava $E$–theory of symmetric groups, Topology 37 (1998) 757 MR1607736