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Local Floer homology and infinitely many simple Reeb orbits

MARK MCLEAN

Let Q be a Riemannian manifold such that the Betti numbers of its free loop space
with respect to some coefficient field are unbounded. We show that every contact form
on its unit cotangent bundle supporting the natural contact structure has infinitely
many simple Reeb orbits. This is an extension of a theorem by Gromoll and Meyer.
We also show that if a compact manifold admits a Stein fillable contact structure then
there is a possibly different such structure which also has infinitely many simple Reeb
orbits for every supporting contact form. We use local Floer homology along with
symplectic homology to prove these facts.

53D10, 53D25, 53D40

1 Introduction

In this paper we are interested in contact manifolds that are the boundary @M of
certain symplectic manifolds M called Liouville domains, which will be defined later
on. We are interested in the Reeb orbits of such contact manifolds. Let ˛M be a
supporting contact form on @M . A Reeb orbit of period T > 0 is a smooth map
oW S1 DR=T Z! @M such that the vector d=dt.o.t// is in the kernel of d˛M and
d=dt.o.t//.˛M /D 1. Such an orbit is simple if the map o is injective. Suppose we
choose a trivialization � of the canonical bundle of M up to homotopy and a class
b 2 H 2.M;Z=2Z/. Then for every coefficient field K we can define a graded K
vector space SH�.M;K/ called symplectic homology depending on � and b . The
trivialization � tells us how to grade the group SH�.M;K/. The differential used
to define symplectic homology involves counting solutions to a certain differential
equation called the perturbed Cauchy–Riemann equation. Each solution has a sign C
or � and we count the solutions with sign. Different choices of the class b will
give different choices of sign, and hence the differential changes when b changes.
Symplectic homology is an invariant of M up to deforming M through Liouville
domains (assuming we do not change .�; b/). There is also another invariant �.M /

called the growth rate. The main theorem in this paper is the following:
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Theorem 1.1 Suppose that @M has only finitely many simple Reeb orbits. Then:

(1) There is a constant C such that the rank of SHk.M;K/ is bounded above by C

for all k 62 Œ1� n; n� where n is half the dimension of M ;

(2) �.M /� 1.

This is true with respect to any coefficient field K and any choice of � and b .

We do not require a genericity assumption here. These simple Reeb orbits can be very
degenerate. We prove this theorem by using work by Ginzburg and Gürel [10]. First
of all we associate two Floer homology groups CH�. / and SH�. / to each Reeb
orbit. Next we show that SH�. / is bounded above by CH�. /˚ CH��1. /. We
then put a bound on the rank of CH�. / by using work from [10]. It turns out that
SH�.M;K/ is bounded above by the sum of SH�. / over all Reeb orbits plus the rank
of H n��.M / and this gives us our result.

For a compact Riemannian manifold Q, we define its unit disk bundle D�Q to be the
set of cotangent vectors of length less than or equal to 1. This is naturally a Liouville
domain. Its boundary S�Q is a contact manifold called the unit cotangent bundle.
By using the results of Salamon and Weber [19], Abbondandolo and Schwarz [1] or
Viterbo [23] we get that SH�.D�Q;K/DH�.Q

S1

;K/ where QS1

is the free loop
space of Q. Hence we get the following corollary:

Corollary 1.2 Suppose Hk.Q
S1

;K/ is unbounded for k > n. Then every contact
form supporting the contact structure on S�Q has infinitely many simple Reeb or-
bits. For instance if Q is simply connected and its cohomology ring has at least two
generators over Q then S�Q has this property when KDQ (see Vigué-Poirrier and
Sullivan [22]).

This is an extension of a theorem by Gromoll and Meyer [11]. This corollary will also be
proven in Hryniewicz and Macarini [12] using similar methods. The main difference is
that they use contact homology which is the equivariant version of symplectic homology.
One can ask if other contact manifolds have infinitely many Reeb orbits.

Theorem 1.3 In each even dimension greater than 6 there is a Liouville domain M

diffeomorphic to the ball such that SH�.M;Q/ has infinite rank in each degree.

We prove this theorem in Section 5. The connected sum M # N of two Liouville
domains M and N is a new Liouville domain which is obtained by attaching a special
1–handle called a Weinstein 1–handle joining both. By Cieliebak [6], we have that
SH�.M # N;K/D SH�.M;K/˚ SH�.N;K/.
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Local Floer homology and infinitely many simple Reeb orbits 1903

By Theorems 1.3 and 1.1 we get the following corollary:

Corollary 1.4 Let N be any Liouville domain of dimension greater than 6 with trivial
first Chern class. The boundary @N admits a (possibly different) contact structure with
the property that every supporting contact form has infinitely many simple Reeb orbits.
This new contact structure is homotopic to the old one through hyperplane fields.

Proof of Corollary 1.4 Let M be a Liouville domain as in Theorem 1.3 of the same
dimension as N . Then SH�.M # N;Q/ is infinitely generated in each degree. Also
@.M # N / is diffeomorphic to @.N / and this diffeomorphism preserves the homotopy
type of the contact plane field within the space of hyperplane fields (see the paper by
the author [14, Lemma 2.18]). Hence by Theorem 1.1 we get that @.M # N / must
have infinitely many Reeb orbits for any supporting contact form.

Note While writing this paper I found out that Macarini and Hryniewicz were writing
a similar paper using contact homology instead of symplectic homology. Even though
the results are similar, I think that writing a version of this paper from the perspective
of symplectic homology is interesting in its own right.

Acknowledgements I would like to thank Viktor Ginzburg for his useful comments.
The author was partially supported by NSF grant DMS-1005365.

2 Definition of our Floer homology groups

2.1 Symplectic homology

Symplectic homology in Viterbo’s work [24] was used to study Reeb orbits on the
boundary of Liouville domains. In this section we will define this invariant. A Liouville
domain is a compact manifold M with boundary and a 1–form �M satisfying:

(1) !M WD d�M is a symplectic form;

(2) The !M –dual of �M is transverse to @M and pointing outwards.

The boundary @M is a contact manifold with contact form ˛M WD �M j@M . Two
Liouville domains are deformation equivalent if there is a smooth family of Liouville
domains joining them together. Let N be a Liouville domain with c1.N /D0. We make
some additional choices � WD .�; b/ for N . The element � is a choice of trivialization
of the canonical bundle of N up to homotopy and b is an element of H 2.N;Z=2Z/.
We will assume that @N has discrete period spectrum PN �R (the set of periods of
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Reeb orbits of .@N; ˛N /). For each pair of numbers c < d where c; d 2 Œ�1;1�

we will define a symplectic homology group SH.c;d �� .N;K; �/. When c D �1 and
d DC1 then it is an invariant up to Liouville deformation.

To every Liouville domain N we can form its completion yN by attaching a cylindrical
end Œ1;1/�@N to @N and extending �N by rN d˛N where ˛N D �N j@N and rN is
the coordinate parameterizing Œ1;1/ called the cylindrical coordinate. A Hamiltonian
H W S1� yN !R is said to be admissible if H.t;x/D �rN .x/ near infinity where � is
a constant called the slope of H . We sometimes view H as a family of Hamiltonians
Ht W

yN ! R where t 2 S1 . We have an S1 family of vector fields XHt
and it has

an associated flow ˆt
XHt

(a family of symplectomorphisms parameterized by t 2R
satisfying @=@tˆt

XHt
D XHt

where we identify S1 D R=Z). A 1–periodic orbit
oW S1! yN is a map which satisfies o.t/Dˆt

XHt
.x/ for some x 2 yN . We say o is

nondegenerate if Dˆ1
XHt
W Tx
yN ! Tx

yN has no eigenvalue equal to 1. Firstly, we can
perturb H slightly so its slope � is not in the period spectrum PN . This means all of
its 1–periodic orbits sit inside some compact subset of yN . We then perturb H again by
a C1 small amount so all of its 1–periodic orbits are nondegenerate and so that it still
remains admissible (see Salamon and Zehnder [20, Theorem 9.1]). Because we have a
trivialization � of the canonical bundle of N , this gives us a canonical trivialization
of the symplectic bundle TN restricted to an orbit o (up to homotopy). Using this
trivialization, we can define an index of o called the Robbin–Salamon index (this is
equal to the Conley–Zehnder index taken with negative sign). We will write i.o/ for
the index of this orbit o. For a 1–periodic orbit o we define the action AH .o/ as

AH .o/ WD �

Z 1

0

H.t; o.t//dt �

Z
o

�N :

Choose a coefficient field K and an S1 family of almost complex structures Jt

compatible with the symplectic form. We assume that Jt is convex with respect to this
cylindrical end outside some large compact set (ie � ıJt D dr ). We also say that Jt

is admissible if such a condition holds. Let

CFd
k .H;J; �/ WD

M
o

Khoi

where we sum over 1–periodic orbits o of H satisfying AH .o/� d whose Robbin–
Salamon index is k . We write

CF.c;d �
k

.H;J; �/ WD CFd
k .H;J; �/=CFc

k.H;J; �/:

As a vector space, CF.c;d �
k

.H;J; �/ does not depend on J or b , but the differential
will. We need to define a differential for the chain complex CFd

k
.H;J; �/ such that
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the inclusion maps CFc
k
.H;J; �/ ,! CFd

k
.H;J; �/ for c < d are chain maps. This

makes CF.c;d �
k

.H;J; �/ into a chain complex as well.

We will now describe the differential

@W CFd
k .H;J; �/! CFd

k�1.H;J; �/:

We consider curves uW R � S1 �! yN satisfying the perturbed Cauchy–Riemann
equations

@suCJt@tuDr
gt H;

where rgt is the gradient associated to the S1 family of metrics gt WD!. � ;Jt . � //. For
two 1–periodic orbits o�; oC , let xU .o�; oC/ denote the set of all curves u satisfying
the perturbed Cauchy–Riemann equations such that u.s; � / converges to o˙ as s!

˙1. This has a natural R action given by translation in the s coordinate. Let
U.o�; oC/ be equal to xU .o�; oC/=R. For a C1 generic admissible complex structure
we have U.o�; oC/ is an i.o�/� i.oC/� 1 dimensional manifold (see Floer, Hofer
and Salamon [8]). There is a maximum principle to ensure all elements of U.o�; oC/

stay inside a compact set K (see Oancea [17, Lemma 1.5] or Abouzaid and Seidel [4,
Lemma 7.2]). Hence we can use a compactness theorem (see for instance Bourgeois,
Eliashberg, Hofer, Wysocki and Zehnder [5]) to ensure if i.o�/� i.oC/ D 1, then
U.o�; oC/ is a compact zero dimensional manifold. The class b 2 H 2.N;Z=2Z/
enables us to orient this manifold (see Abouzaid [3, Section 3.1]). Let #U.x�;xC/

denote the number of positively oriented points of U.x�;xC/ minus the number of
negatively oriented points. Then we have a differential given by

@W CFd
k .H;J; �/ �! CFd

k�1.H;J; �/;

@ho�i WD
X

i.o�/�i.oC/D1

#U.o�; oC/hoCi:

By analyzing the structure of 1–dimensional moduli spaces, one shows that @2D 0 and
one defines HF�.H; �/ as the homology of the above chain complex. The homology
group HFd

� .H; �/ depends on H and � but is independent of J up to canonical
isomorphism. We define HF.c;d �� .H; �/ as the homology of the chain complex

CFd
� .H;J; �/=CFc

�.H;J; �/:

If we have two nondegenerate admissible Hamiltonians H1 < H2 , then there is a
natural map

HF.c;d �� .H1; �/ �! HF.c;d �� .H2; �/:
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This map is called a continuation map. This map is defined from a map C on the chain
level by

C W CFd
k .H1;J1; �/ �! CFd

k .H2;J2; �/;

@ho�i WD
X

i.o�/Di.o�/

#P .o�; oC/hoCi;

where P .o�; oC/ is a compact oriented zero dimensional manifold of solutions of the
following equations: Let Ks , s 2R be a smooth nondecreasing family of admissible
Hamiltonians equal to H1 for s� 0 and H2 for s� 0 and Js;t a smooth family of
admissible almost complex structures joining J1;t and J2;t . The set P .o�; oC/ is the
set of solutions to the parameterized Floer equations

@suCJs;t@tuDr
gt Ks;t

such that u.s; � / converges to o˙ as s!˙1. For a C1 generic family .Ks;Js/ this
is a compact zero dimensional manifold. Again the class b 2H 2.N;Z=2Z/ enables
us to orient this manifold. If we have another such nondecreasing family admissible
Hamiltonians joining H1 and H2 and another smooth family of admissible almost
complex structures joining J1 and J2 , then the continuation map induced by this
second family is chain homotopic to the map induced by .Ks;Js/. The composition
of two continuation maps is a continuation map. If we take the direct limit of all these
maps with respect to admissible Hamiltonians H ordered by < such that H jN < 0,
then we get our symplectic homology groups SH.c;d �� .N; �/. We will write SH#

�.N; �/

for SH.0;1/� .N; �/.

Also we will write SH� instead of SH.�1;1/� . If we wish to stress which coefficient
field we are using, we will write SH#

�.M; �;K/ if the field is K for instance. We
will write SH�d

� instead of SH.�1;d �� . We will suppress the term � from the notation
when the context is clear. Also from now on whenever we have a Liouville domain or
symplectic manifold then we will assume that we have chosen such a pair �D .�; b/.

2.2 Growth rates

In order to define growth rates, we will need some linear algebra first. Let .Vx/x2Œ1;1/
be a family of vector spaces indexed by Œ1;1/. For each x1 � x2 we will assume
that there is a homomorphism �x1;x2

from Vx1
to Vx2

with the property that for all
x1 � x2 � x3 , �x2;x3

ı �x1;x2
D �x1;x3

and �x1;x1
D id. We call such a family of

vector spaces a filtered directed system. Because these vector spaces form a directed
system, we can take the direct limit V WD lim

�!x
Vx . From now on we will assume Vx

Algebraic & Geometric Topology, Volume 12 (2012)
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is finite dimensional. For each x 2 Œ1;1/ there is a natural map

qx W Vx! lim
�!

x

Vx :

Let aW Œ1;1/! Œ0;1/ be a function such that a.x/ is the rank of the image of the
above map qx . We define the growth rate as

�..Vx// WD lim
x

log a.x/

log x
2 f�1g[ Œ0;1�:

If a.x/ is 0 then we define log a.x/ as �1. If a.x/ was some polynomial of degree
n with positive leading coefficient, then the growth rate would be equal to n. If a.x/

was an exponential function with positive exponent, then the growth rate would be 1.

We defined SH��� .N / for a Liouville domain N (whose boundary had discrete period
spectrum). For �1 � �2 , there is a natural map SH��1

� .N / ! SH��2
� .N / given

by inclusion of the respective chain complexes. This is a filtered directed system
.SH��� .N // whose direct limit is SH�.N /.

Definition 2.1 We define the growth rate �.N; �/ as

�.N; �/ WD �.SH��� .N; �//:

We also have the following theorem due to the author [16, Theorem 2.4].

Theorem 2.2 Let N1;N2 be two Liouville domains such that �N1 is symplecto-
morphic to �N2 where the symplectomorphism pulls back b2 2 H 2.N2;Z=2Z/ to
b1 2H 2.N1;Z=2Z/ and �2 to �1 where �2 and �1 are trivializations of the canonical
bundle. Then �.N1; .�1; b1//D �.N2; .�2; b2//.

Hence we will just write �. yN ; d�N ; .�; b// for the growth rate of .N; �N /. We will
sometimes just write �. yN / if the context makes it clear that d�N is our symplectic
form and .�; b/ is our associated trivialization and homology class.

2.3 Local Floer homology

In this section we mildly generalize the notion of local Floer homology as defined in
[10]. All the lemmas in this section and properties proved are almost exactly the same
as ones proved in [10]. Usually local Floer homology is defined for isolated 1–periodic
orbits (see [10]). In our case we will define it for isolated families of 1–periodic orbits
which are all contained inside some compact set and such that they have the same
action. Let .Q; !Q/ be a symplectic manifold and H W S1�Q!R a Hamiltonian. Let
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F �Q be a set of fixed points of �1
H

inside Q. We say that they are isolated if there
is some open neighbourhood NF of F whose closure is compact such that any fixed
point of �1

H
inside the closure of NF is contained inside F . We call NF an isolating

neighbourhood. Note that the orbits starting inside F can exit this neighbourhood, we
just require that they start at F .

Let F be a set of fixed points of �1
H

which is isolated and such that the associated
orbits have the same action. We will now define a Floer homology group HF�.Ht ;F/
called Local Floer homology. We need a lemma first.

Lemma 2.3 Let Gn
t be a sequence of time dependent Hamiltonians which C1 con-

verge to Ht . Let J n
t be a sequence of compatible almost complex structures C1

converging to a compatible almost complex structure Jt . Let V be any open subset
containing F whose closure is compact. Let U 0 � NF be an open subset such that
the flow �t

Ht
.U 0/ is well defined for all 0� t � 1 (ie none of these points flow off to

infinity). Then for large enough n, we have:

(1) All 1–periodic orbits o.t/ of Gn
t starting inside NF must satisfy o.t/��t

Ht
.U 0/

for 0� t � 1;

(2) If uW R � S1 ! V is a Floer trajectory with respect to .Gn
t ;J

n
t / connecting

orbits of Gn
t starting inside NF then u.s; t/ � �t

Ht
.U 0/ for all 0 � t � 1 and

s 2R.

Proof of Lemma 2.3 We identify S1 DR=Z. Suppose for a contradiction there is a
subsequence ni , a sequence of orbits oi of G

ni

t starting inside NF and a sequence
of points ti 2 S1 so that oi.ti/ 62 �

ti

Hti

.U 0/. By passing to a subsequence we can
assume ti converges to some point t 2 S1 and the starting point oi.0/ converges to
some point p in the closure of NF . Hence oi converges to some orbit o of Ht in
the C 0 sense and so oi.ti/ converges to o.t/. Because o is an orbit starting at p which
is contained inside the closure of NF , we have p 2 F . Hence o.t/ 2 �t

Ht
.U 0/ for

all t 2 Œ0; 1�, which is impossible because oi.ti/ 62 �
ti

Ht
.U 0/ for all i . Hence for large

enough n we have shown all 1–periodic orbits o.t/ of Gn
t starting inside NF must

satisfy o.t/� �t
Ht
.U 0/ when 0� t � 1.

Suppose for a contradiction there is a sequence of Floer trajectories

ui W R�S1
! V

with respect to .Gni

t ;J
ni

t / connecting orbits of G
ni

t starting inside U 0 and a sequence
of points .si ; ti/ such that ui.si ; ti/ 62 �

ti

Ht
.U 0/. We can also assume u.si ; 0/ is

contained inside NF . The point is that if ui.si ; 0/ was not contained inside this open
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set for infinitely many i then we know ui.s; 0/ 2NF for s large enough (because ui

converges to orbits starting inside NF ), so by continuity of ui we could find another
sequence of points .s0i ; t

0
i/ with t 0i D 0 and ui.s

0
i ; t
0
i/ 2NF n�

ti

Ht
.U 0/.

We would like to use a compactness argument (such as in [5]) to say that these Floer
trajectories must converge to some Floer trajectory of energy 0 but the problem is that
the Hamiltonian H could be degenerate. So instead we will do the following: First
of all after shifting in the s coordinate, we may as well assume that si D 0 for all i

and after passing to a subsequence we can assume that ti converges to t 0 and ui.0; 0/

converges to some point p . We have that p is contained in the closure of NF . We can
view the maps ui as a sequence of holomorphic sections of a C1 converging family
of Hamiltonian fibrations (see McDuff and Salamon [13]) whose fibre is Q. These
fibrations converge to H which is the Hamiltonian fibration over R�S1 associated
to Ht . Hence by using a compactness result such as the one by Fish in [7], we have
that for every compact subsurface S of R�S1 , ui jS converges in the Gromov sense
to some nodal curve uW S 0!H . Some of the components of this nodal curve could
be holomorphic maps into the fibres of H (bubbles) and others are multisections. Also
these bubbles have energy 0 and hence must be points inside the fibres. There is at
most one multisection zuS and this must be a section because our nodal curve intersects
each fibre with multiplicity 1. By viewing R� S1 as a union of compact surfaces
f�i � s � ig we get after passing to a subsequence and using the above compactness
argument a section zu of H . We view this section zu as a map uW R�S1!Q satisfying
the Floer equations. This section has the property that u.0; 0/D p . The map u has
zero energy and hence @u=@s D 0 and @u=@t D XHt

. This means that u.0; t/ is an
orbit of H starting at p but this is impossible because u.0; t 0/ 62 �1

Ht0
.U 0/. Hence for

large enough n, u.s; t/� �t
Ht
.U 0/ for all s 2R and 0� t � 1.

We will now define HF�.Ht ;F/. We choose some relatively compact open set W

containing all the orbits starting at F and an isolating neighbourhood NF for F
whose closure is a subset of W . We perturb Ht very slightly to H 0t so that all of its
orbits are nondegenerate. Choose a regular S1 family of compatible almost complex
structures Jt . By the above lemma we can ensure that all orbits starting inside NF
are contained inside W and the Floer trajectories with respect to .H 0t ;Jt / connecting
them inside W are also contained inside W (this is because we can choose U 0 so
that [t2Œ0;1��

t
Ht
.U 0/�W ). Also if a Floer trajectory connecting these orbits breaks

then each component must converge to an orbit starting at NF by this lemma because
we can choose U 0 so that its closure is contained in NF . Hence we have a well
defined differential on the Floer chain complex generated by these orbits. We define
HF�.Ht ;F/ to be the homology of the Floer complex defined using these orbits and
Floer trajectories.
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Lemma 2.4 We have that HF�.Ht ;F/ does not depend on the choice of .H 0t ;Jt / or
isolating neighbourhood as long as the perturbation H 0t is sufficiently small. This also
means that if we have some symplectomorphism � from some neighbourhood NF
to another isolating neighbourhood N 0F 0 coming from some Hamiltonian Kt so that
��Kt DHt then HF�.Ht ;F/D HF�.Kt ; �.F//.

Note that these groups do depend on the choice of trivialization of the canonical bundle
and of the choice of class b 2H 2.W;Z=2Z/. But in the cases that we will use, the
neighbourhood W is homotopic to a 1–complex so b must be zero.

Proof of Lemma 2.4 Let .H 00;J 00t / be another pair and let N 0F another neighbour-
hood. Let .Ks;Ys/ be a smooth family of pairs parameterized by s 2 R such that
.Ks;Ys/D .H

0;Jt / for s very negative and .Ks;Ys/D .H
00;J 00t / for s very positive.

Choose any relatively compact open set W containing the orbits starting at F . If
the perturbations H 00 and H 0 are small enough, then the Floer trajectories u.s; t/ for
.H 0;Jt / and .H 00;J 00t / are contained inside an arbitrarily small open subset containing
the orbits by Lemma 2.3. Also if Ks is sufficiently C1 close to H for all s , we get
(by using the same proof as in Lemma 2.3) that the continuation map Floer trajectories
u.s; t/ for .Ks;Ys/ inside W are contained inside an arbitrarily small open subset
containing the orbits. This means our chain complexes are independent of the choice
of isolating neighbourhood and we have well defined continuation maps between them.
Hence we can use continuation arguments (for instance from [20, Section 6]) to prove
invariance of choices of .H 0;Jt / and neighbourhood NF .

Let H s
t be a smooth family of time dependent Hamiltonians parameterized by s 2 Œ0; 1�.

Let F � Q be an isolated set of fixed points of H s
t for every s . If there is some

isolating neighbourhood NF (independent of s ) of these fixed points for each s 2 Œ0; 1�

then we say that .H s
t ;F/ is an isolated deformation.

Lemma 2.5 Suppose we have an isolated deformation .H s
t ;F/. Then

HF�.H 0
t ;F/D HF�.H 1

t ;F/:

Proof of Lemma 2.5 (Sketch) First of all we add a smooth family of constants to
H s

t so that all the orbits starting at F have the same action for each s . By using
similar compactness ideas from Lemma 2.3, we get a well defined continuation map
from HF�.H 0

t ;F/ to HF�.H 1
t ;F/. This is an isomorphism on homology as it has an

inverse and continuation maps are functorial ([20, Section 6]).
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Let V 0 be a symplectic manifold, let V be a codimension 0 connected symplectic
submanifold and let Gt be a Hamiltonian such that �1

Gt
is the identity map on V . We

suppose that V 0 has a trivialization of its canonical bundle. Let p 2 V and consider
the loop

l.s/D �s
Gt
.p/:

The choice of trivialization of the canonical bundle gives us a canonical trivialization
up to homotopy of the symplectic bundle l�.T V 0/ which we view as a map � from
l�.T V 0/ to Cn Š Tl.0/V

0 . Hence we have a loop of linear symplectic automorphisms
of Tl.0/V

0 Š Cn given by � ıD�s
Gt

. This has an associated Maslov index �. We
say that � is the Maslov index of the Hamiltonian loop generated by Gt . If we have
a Hamiltonian Ht defined on V 0 then we can form a new Hamiltonian .H # G/t
by first modifying Ht and Gt so that near t D 0; 1 these Hamiltonians are zero (by
multiplying them by an appropriate function �.t/). We then define .H # G/t to be
H2t for 0� t � 1

2
and G2t�1 for 1

2
� t � 1.

Lemma 2.6 Let F be an isolated set of fixed points of Ht of the same action. Suppose
that we have a family of Hamiltonians Gt such that the time 1 flow is the identity
map on a connected neighbourhood V of our isolated orbits starting at F . Then
HF�.Ht ;F/DHF��2�..H # G/t ;F 0/ where � is the Maslov index of our action Gt .

We will omit the proof of this lemma as the key ideas are contained in Ginzburg [9,
Section 2.3]. This lemma basically says that local Floer homology only depends on
the time 1 flow of our Hamiltonian symplectomorphism locally around F up to some
shift in index. Note that we really need the compactness result of Lemma 2.3 to ensure
that the orbits o.t/ of .H # G/t and Floer trajectories u.s; t/ stay near �t

.H #G/t
.V /.

Lemma 2.7 Suppose that F and F 0 are two isolated fixed point sets of Ht whose
union is also an isolated fixed point set. Then

HF�.Ht ;F [F 0/Š HF�.Ht ;F/˚HF�.Ht ;F 0/:

Proof of Lemma 2.7 We can choose a small isolating neighbourhood of F [ F 0
which is the disjoint union of two isolating neighbourhoods NF and NF 0 . For a small
enough perturbation of Ht we have that all the orbits o.t/ and Floer trajectories u.s; t/

that are used to define HF�.Ht ;F[F 0/ satisfy o.0/;u.s; 0/2NF [N 0F for all s 2R.
Hence there are no Floer trajectories connecting orbits starting inside NF with orbits
starting inside NF 0 . Hence the chain complex defining HF�.Ht ;F [F 0/ is the direct
sum of the chain complexes defining HF�.Ht ;F/ and HF�.Ht ;F 0/. This gives us
our result.
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Let Ht be a time dependent Hamiltonian on Q. The action spectrum of Ht is the set
of action values of all its 1–periodic orbits.

Lemma 2.8 Let c 2R and let F be the set of fixed points of Ht of action c . Suppose
that the action spectrum of Ht is discrete in a neighbourhood of c and F is compact.
Then F is an isolated family of orbits and for ı > 0 small enough,

HF�.Ht ;F/D HF.c�ı;cCı/� .Ht /:

Proof of Lemma 2.8 We can choose ı > 0 small enough so that the only orbits of
action in .c�2ı; cC2ı/ have action exactly c . Any orbit starting at a point near F has
action near c . But this means that this orbit has action c and so this orbit starts inside F .
Hence F is isolated. In order to define HF.c�ı;cCı/� .Ht /, we perturb Ht slightly to
a nondegenerate Hamiltonian H 0t and then build our Floer complex using orbits only
in the action window .c � ı; c C ı/. If we choose a small enough perturbation H 0t
of Ht all of whose orbits are nondegenerate then all the orbits of action .c � ı; cC ı/
are contained inside our isolating neighbourhood NF . Hence the chain complexes
defining HF.c�ı;cCı/� .Ht / and HF�.Ht ;F/ are identical.

A spectral sequence argument gives the following corollary of Lemmas 2.7 and 2.8:

Corollary 2.9 Let H be a Hamiltonian with the property that HF�.H / is well defined
(in our case H will be some admissible Hamiltonian on the completion of a Liouville
domain). Suppose also that the fixed points of H form a disjoint union of isolated
families Fi ; i D 1; : : : ; l . Then the rank of HFk.H / is bounded above by the rank ofLl

iD1 HFk.H;Fi/.

Let p be an isolated fixed point of the Hamiltonian symplectomorphism induced by Ht .
Then by [10], there is an index �Ht

.p/ 2R satisfying:

(1) [10, Property MI1] �kHkt
.p/D k�H .p/;

(2) [10, Property LF5] Let n be half the dimension of our symplectic manifold.
Then HFk.Ht ;p/ is zero if k 62 Œ�Ht

.p/� n; �Ht
.p/C n�.

Lemma 2.10 Suppose we have a neighbourhood of the orbits starting at F which
is symplectomorphic to a product U � V and where the Hamiltonian splits up as
HU CHV , where HU is a Hamiltonian on U and HV is a Hamiltonian on V . Then
HF�.H;F/ D HF�.HU ;F1/˝HF�.HV ;F2/ where F D F1 �F2 . The choice of
trivialization of the canonical bundle and our choice of class b must also split up as a
product.
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The reason why this lemma is true is because we can perturb our Hamiltonian so that it
is still a product and also the choice of almost complex structure can also split up as
a product. This ensures that the chain complex splits up as a tensor product. A very
similar statement is contained in [10, Property (LF4) in Section 3.2].

2.4 Reeb orbit homology theories

Let M be a Liouville domain. We choose some trivialization � of its canonical
bundle. This induces a trivialization �@ of the canonical bundle associated to the
contact distribution on @M . This is because the symplectic complement of the contact
distribution is a symplectic bundle trivialized by the Reeb vector field and the Liouville
vector field. Let  be a (not necessarily simple) Reeb orbit of @M . We view  as
a map from R= lZ to @M so that d=dt. .t// D R where R is the Reeb vector
field. Here l is the length of the Reeb orbit. Note that  .t C c/ is a Reeb orbit for
any constant c 2 R. We assume that  is isolated. This means that there is some
neighbourhood U of  such that there are no Reeb orbits intersecting U n image. /.

We can define an invariant CH�. / as follows: Because d=dt. .t// is in the kernel
of d˛M , we can find a fibration � W N � S1 where N is a small neighbourhood
of image. / and such that d˛M restricted to each fibre is a symplectic form. By
possibly shrinking N and using a Moser theorem, we can assume each fibre is
symplectomorphic to a small ball Bı �R2n�2 of radius ı > 0 and the structure group
is U.n � 1/. Because � is a fibration, we have a vertical tangent bundle (ie the
subbundle of the tangent bundle which is tangent to the fibres of � ). Consider the
vertical tangent bundle restricted to the zero section of � . This is homotopic through
symplectic bundles to the contact distribution. Hence we trivialize � so that the
highest exterior power of the vertical tangent bundle along the zero section coincides
with our trivialization �@ . This choice of trivialization is unique up to homotopy.
Hence � is a product fibration S1 � Bı and d˛M restricted to each fibre is the
standard symplectic form on Bı . The line field spanned by the Reeb vector field gives
us a symplectic connection on this fibre bundle because the Reeb vector field is in
the kernel of d˛M . We define an S1 family of vector fields on Bı as follows: For
t 2 S1 , we have a unique fibre Ft of � which intersects  .t/. Our trivialization
gives us a symplectomorphism Ft Š Bı and a natural projection S1 �Bı � Bı . By
abuse of notation we write d=dt for the vector field on S1 given by .� ı  /�.d=dt/.
Let Ad=dt be the unique horizontal lift of d=dt . We define Vt to be the projection of
�Ad=dt jFt

to Bı . Because i.�Ad=dt/d˛M D 0 we have that Vt is an S1 family of
symplectic vector fields. These also preserve the origin. Because Bı is contractible
and Vt vanishes at the origin, Vt is generated by an S1 family of Hamiltonians H


t

which fix 0. Because the Reeb orbit is isolated, we have that H

t has an isolated fixed
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point at 0 2 Bı . Hence we define CH�. / WD HF�.H

t ; 0/. This is independent of

choice of fibration � because if we had two such fibrations then we can join then via
a smooth family of such fibrations. Associated to this smooth family of fibrations we
have a smooth family of Hamiltonians H s

 with isolated fixed points at 0 and hence by
Lemma 2.5 they all have the same local Floer homology group. We will call CH�. /
the Reeb orbit homology of  .

The problem with Reeb orbit homology is that there is not a very obvious link between
this homology group and symplectic homology. So we now give another Floer homology
group associated to this Reeb orbit which has a slightly more direct relationship with
symplectic homology. Suppose  has length l and let rM be the cylindrical coordinate
in �M . Choose a Hamiltonian Ht on �M so that there is some x > 1 with Ht D h.rM /

near fxg�image. /� Œ1;1/�@M where h0.x/D l and h00.l /> 0. Then H has an
isolated S1 family of fixed points fxg� image. /. If Ht has the above properties then
we say that H is admissible with respect to  . We define Reeb orbit Floer homology
to be HF�.Ht ; fxg � image. //.

Suppose we have another Hamiltonian H 0t which is admissible with respect to  so
that it has an isolated S1 family of fixed points fx0g � image. /. Then there is a
smooth family of Hamiltonians H s

t joining Ht and H 0t which are all admissible with
respect to  . Hence HF�.Ht ; fxg� image. // is equal to HF�.H 0t ; fx

0g� image. //
by Lemma 2.5. Hence this Floer homology group is independent of the choice of
Hamiltonians which are admissible with respect to  . We will call this group the
symplectic homology of  and we will write SH�. /.

3 Symplectic homology of iterates of a Reeb orbit

Let  be a simple Reeb orbit and  k its k –fold iterate. The aim of this section is to
prove the following theorem.

Theorem 3.1 There is some constant C depending on our Reeb orbit  such that the
rank of SH�. k/ is bounded above by C . Also we can assign an index �. / 2R for
each isolated Reeb orbit  such that SHi.

k/ is zero if i 62 Œk�. /�nC1; k�. /Cn�.
Here n is half the dimension of our Liouville domain M .

Let Bı be an open ball in R2n of radius ı > 0. Let Q be a symplectic manifold with a
choice of diffeomorphism to Bı�.Œ0; 1��S1/ and with an exact symplectic form d�Q .
Let �QW Bı � .Œ0; 1��S1/! Œ0; 1��S1 be the natural projection map. Suppose that
Q, �Q and �Q satisfy:
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(1) d�QjBı�f.s;a/g is the standard symplectic form on Bı for all .s; a/ 2 Œ0; 1��S1 .
Here we identify Q with Bı � .Œ0; 1��S1/ and from now on we will do this.

(2) We require that the tangent spaces to the submanifold

f0g � .Œ0; 1��S1/� Bı � .Œ0; 1��S1/

are symplectically orthogonal to the fibres.

(3) We let e@=@a be the lift of @=@a up to the plane distribution H which is d�Q

orthogonal to the fibres. The vector field e@=@a has no orbits of any period
contained inside NQn

�
f0g � .Œ0; 1��S1/

�
where NQ is a small neighbourhood

of f0g � .Œ0; 1��S1/.

(4) The symplectic form d�Q restricted to f0g � .Œ0; 1� � S1/ must be equal to
�Qds ^ da for some constant �Q > 0.

We call such a fibration �Q a partially trivial fibration. A deformation of partially
trivial fibrations is a smooth family of such fibrations where the map �Q is fixed along
with the trivialization Bı � .Œ0; 1��S1/ but the 1–form �Q can smoothly vary and
so can �Q . The neighbourhood NQ described above must be fixed throughout this
deformation as well although we are allowed to choose a smaller neighbourhood at the
start of the deformation if we wish.

All such fibrations have a natural choice of trivialization of the canonical bundle
because the vertical bundle has a symplectic trivialization induced by our choice of
trivialization Bı�.Œ0; 1��S1/ and the horizontal bundle has a symplectic trivialization
induced by the coordinates .s; a/ 2 Œ0; 1��S1 where we view S1 as the quotient R=Z
(so da on S1 has volume 1). Let f W Œ0; 1�! R be a function with f 0; f 00 > 0 and
f 0.1

2
/D �Q . Then FQ WD f0g � .f

1
2
g �S1/ is an isolated S1 family of fixed points

for ��
Q

kf .s/ for all k 2 Z. We define SH�.�Q; �Q; k/ to be HF�.��Q.kf .s//;FQ/.
We project the vector field �e@=@a to a vector field L tangent to the fibres of �Q using
the trivialization Bı � .Œ0; 1�� S1/. We view L as a family of vector fields on Bı
parameterized by .s; a/ 2 Œ0; 1��S1 . These are Hamiltonian vector fields so they are
generated by a smooth family of Hamiltonians H s

a which we will call the associated
generating family of Hamiltonians for Q. We define CH�.�Q; �Q; k/ to be equal to
HF�.kH

1=2

kt
; 0/. These groups are invariants of Q up to deformation by Lemma 2.5.

We say that �Q is trivial at infinity if �Q D �BCC sda outside some compact subset
of Q D Bı � .Œ0; 1�� S1/ for some constant C . Here �B is a 1–form on Bı such
that d�B is the standard symplectic form on Bı .

Lemma 3.2 Let �Q be a partially trivial fibration. Then it is deformation equivalent
to a partially trivial fibration which is trivial at infinity.
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Proof of Lemma 3.2 Let �B be a 1–form on Bı such that d�B is the standard
symplectic form on Bı . We have that �QD �BCˇCdR where R is a function and ˇ
is a 1–form which vanishes when restricted to the fibres of �Q . Let ˇt be a smooth
family of 1–forms such that ˇt D ˇ near f0g � .Œ0; 1��S1/ for all t 2 Œ0; 1�. We also
require that ˇ0 D ˇ and ˇ1 D 0 outside a small neighbourhood of f0g � Œ0; 1��S1 .
We have for a large enough constant C > 0 that

� t
Q WD �BCˇt C d..1� t/R/CC t��Qsda

is a deformation of partially trivial fibrations such that �QD �
0
Q

. Also because ˇ1D 0

outside a small neighbourhood of f0g � .Œ0; 1��S1/, we have .�Q; �
1
Q
/ is trivial at

infinity. Hence we have a deformation of partially trivial fibrations starting at �Q and
ending at one which is trivial at infinity.

Let Kt W Bı!R be an S1 family of compactly supported Hamiltonians. We suppose
that dKt .0/D 0 for all t , and that the constant k periodic orbit at 0 is isolated for
all k 2 Z. We can construct a partially trivial fibration as follows: We start with
Bı � .Œ0; 1� �R/ with the product symplectic form d�Bı C ds ^ da. This has a Z
action where 1 2 Z sends .z; s; a/ 2 Bı � .Œ0; 1��R/ to .��1

Kt
.z/; s; aC 1/. We will

define QKt
to be the quotient Bı � .Œ0; 1��R/=Z. This has a trivialization

T W Bı � .Œ0; 1��S1/!QKt

given by T .z; s; a/D .��a
Ka
.z/; s; a/. Also H 2.QKt

/D 0 so the symplectic form has
a primitive �Kt

. We say that .QKt
; �Kt

/ is the standard trivialization associated to
Kt . Such fibrations are called standard partially trivial fibrations.

Lemma 3.3 Every partially trivial fibration is deformation equivalent to a standard
partially trivial fibration.

Proof of Lemma 3.3 First of all our partially trivial fibration is deformation equivalent
to some partially trivial fibration Q that is trivial at infinity. The reason why we need a
fibration trivial at infinity is that we have well defined parallel transport maps (ie points
do not get transported off to infinity). Let Bı�.Œ0; 1��S1/ be its choice of trivialization
with respective coordinates .z; s; a/. We have a family of smooth maps  t W Q!Q

parameterized by t 2 Œ0; 1� sending .z; s; a/ to .z; 1
2
.1C .1� t/.2s�1//; a/. This is a

smooth linear deformation retraction of Bı � .Œ0; 1��S1/ onto Bı � .f
1
2
g �S1/. We

define � t
q to be  �t �Q . We have that  �t �Q is a symplectic form for t < 1 but not for

t D 1. But this problem can be fixed by adding C t��
Q

sda for some C > 0. So

.Q; � t
Q WD  

�
t �QCC t��Qsda/
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is a deformation of partially trivial fibrations. The partially trivial fibration .Q; �1
Q
/

has an associated family of Hamiltonians H s
a that are independent of s so we will just

write Ha . These are all compactly supported.

On the trivialization Bı�.Œ0; 1��S1/ we have a smooth self diffeomorphism � defined
away from Bı�.Œ0; 1��f0g/ given by sending .z; s; a/ to .��a

Ha
.z/; s; a/ for 0< a< 1.

Let !std be the pullback ��.d�B C ds ^ da/ where d�B is the standard symplectic
form on Bı . This extends to a smooth form on Bı � .Œ0; 1��S1/ which we define by
abuse of notation as !std . There is a primitive �std such that d�stdD !std . This 1–form
gives �Q the structure of a partially trivial fibration in standard form along with the
chosen trivialization Bı � .Œ0; 1��S1/. Also the horizontal lifts of @=@a with respect
to both �1

Q
and �std coincide. Hence if �W Œ0; 1�! R is a smooth function which is

zero at 0 and 1 but positive elsewhere then for � > 0 large enough we have that

.1� t/�1
QC t�stdC ��.t/sda

is a deformation of partially trivial fibrations. Hence .Q; �Q/ is deformation equivalent
to .Q; �std/ which is a standard partially trivial fibration.

Lemma 3.4 Let .�Q; �Q/ be a partially trivial fibration. Then we have the rank of
SHl.�Q; �Q; k/ is bounded above by the rank of

CHl.�Q; �Q; k/˚CHl�1.�Q; �Q; k/:

Proof of Lemma 3.4 We have that SH�.�Q; �Q; k/ is a local Floer homology group
associated to an S1 family of 1–periodic orbits of some Hamiltonian. In order to
prove our lemma we will first deform our fibration �Q so that it is sufficiently nice.
We will then perturb our S1 family of orbits so that they become two isolated orbits.
By analyzing these two isolated orbits we can relate them to CH�.�Q; �Q; k/.

By Lemma 3.3 we can assume .�Q; �Q/ is a standard partially trivial fibration. This
has a universal cover which is a product Bı � .Œ0; 1��R/ with product symplectic
form d�BıCds^da. This also has an associated Hamiltonian Ht . Let f W Œ0; 1�!R
be a function with f 0; f 00 > 0 and f 0.1

2
/ D 1. Consider the function kf .s/ on

Œ0; 1� � S1 where k 2 Z. This has an isolated S1 family of fixed points f1
2
g � S1

which are Morse–Bott nondegenerate. Let �t
s be the time t flow of the Hamiltonian s .

The time 1 flow is the identity map and this is a Hamiltonian S1 action of Maslov
index 0. Let �W S1 ! R be a Morse function with exactly one maximum and one
minimum. The Hamiltonian Kt WD kf .s/C �.��kt

s /��.a/ is a small perturbation
of kf .s/ for � > 0 small enough. The S1 family of orbits f1

2
g �S1 gets perturbed

into two orbits of index 0 and 1 corresponding to the maximum and minimum of �
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respectively. These points are located at .1
2
;x1/ and .1

2
;x2/ where x1 and x2 are the

maximum and minimum points of � . There is a small neighbourhood U around the
points .1

2
;x1/ and .1

2
;x2/ such that ��1

Q
.U / is symplectomorphic to U �Bı with

the standard product symplectic form and where �Q corresponds to the projection map
to U . Here the time 1 flow of the Hamiltonian ��

Q
.Kt / is equal to the time 1 flow of

the Hamiltonian K0t WD �
�
Q
.kf .s/� ksC ��.a//C��

2
kHkt on U �Bı where �2 is

the natural projection map U �Bı � Bı . The reason for this is as follows: If p.t/ is a
path tangent to the vector field X1 WDXkf .s/C�.��kt

s /��.a/ then ��kt
s .p.t// is tangent

to the vector field .��kt
s /�X1C d=dt��kt

s .

Hence by Lemma 2.6 we have

HF�
�
��Q.Kt /; f0g �

�˚
1
2

	
� fxig

��
D HF�

�
K0t ; f0g �

�˚
1
2

	
� fxig

��
:

The point is that .��
Q

Kt # .�K0t // is a Hamiltonian S1 action on ��1
Q
.U / isotopic

through such actions to the Hamiltonian S1 action induced by s which has Maslov
index 0. The time t flow of the Hamiltonian K0t fixes the points .0; 1

2
;x1/ and

.0; 1
2
;x2/ on U �Bı for all t , so in particular all the orbits starting at these points stay

inside the product U �Bı . So by Lemma 2.10 we get

HF�
�
K0t ;

˚�
0; 1

2
;xi

�	�
D HF�

�
kf .s/� ksC ��.t/;

˚�
1
2
;xi

�	�
˝HF�.Ht ; f0g/:

Because the orbits of kf .s/� ksC ��.a/ are nondegenerate critical points of index 0

and 1 we get that

HF�
�
kf .s/� ksC ��.a/;

˚�
1
2
;xi

�	�
D

(
K if � D i;

0 otherwise;

for i D 0; 1. Hence

HF�
�
K0t ;

˚�
0; 1

2
;xi

�	�
D HF��i .kHkt ; f0g/ :

So by Corollary 2.9 we have that the rank of HFl.kf .s/; f0g� .f
1
2
g�S1// is bounded

above by the rank of
L1

iD0HFl�i .kHkt ; f0g/. Hence the rank of SHl.�Q; �Q; k/ is
bounded above by the rank of the group CHl.�Q; �Q; k/˚CHl�1.�Q; �Q; k/.

Proof of Theorem 3.1 In this proof we will show that SH�. k/ is equal to the
group SH�.� 0 ; �M ; k/ for some partially trivial fibration � 0 . We will then use results
from [10] to put a bound on CH�.� 0 ; �M ; k/ and hence by Lemma 3.4 we get our
bounds on SH�. k/.

We will first assign an index to this Reeb orbit as follows: There is a fibration map
� W N � S1 where N is a small neighbourhood of  and such that d˛M restricted
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to each fibre is a symplectic form. Here the fibres are symplectomorphic to the
ball Bı of radius ı for some ı > 0. This fibration also has a choice of trivialization
which is compatible with the trivialization of the canonical bundle on �M . If we
look at f2g �R in the cylindrical end Œ1;1/� @M of �M then we have a fibration
� 0 W Œ1; 3��N ! Œ1; 3��S1 where � 0 D .id; � /. This is a partially trivial fibration
and we have that SH�. k/D SH�.� 0 ; �M ; k/ and CH�.; k/DCH�.� 0 ; �M ; k/. By
Lemma 3.4 we have that the rank of SHl.�

0
 ; �M ; k/ is bounded above by the rank

of CHl.�
0
 ; �M ; k/˚ CHl�1.� ; �M ; k/. The fibration � 0 also has an associated

family of Hamiltonians H s
t . The Hamiltonian kH

1=2

kt
has an isolated fixed point

at 0 and so we can assign a mean index �k WD �kH
1=2

kt
. We have by property [10,

Property MI1] that �k D k�1 . We will define our index �. / to be �1 . Hence
the rank of CHl.�

0
 ; �M ; k/ is zero for l 62 Œk�. /� .n� 1/; k�. /C .n� 1/� by

[10, Property LF5] stated above. Hence SH�.� 0 ; �M ; k/ is only supported in degrees
Œk�. /� .n� 1/; k�. /C n�. Also by [10, Corollary 1.5] we get that the rank of
CH�.� 0 ; �M ; k/ is bounded above by some constant independent of k . Hence the
rank SH�. k/ is bounded above by some constant and independent of k .

4 Proof of the main theorem

Theorem 1.1 Suppose that M is a Liouville domain such that @M has only finitely
many simple Reeb orbits. Then:

(1) There is a constant C such that the rank of SHk.M / is bounded above by C for
all k 62 Œ1� n; n� where n is half the dimension of M ;

(2) �.M /� 1.

Proof of Theorem 1.1 Let hW Œ1;1/ ! R be a function which is 0 near 1 with
h0; h00 � 0. Let r be the radial coordinate on the cylindrical end Œ1;1/�@M . We also
assume that h0.x/D 1 for x � 2 and that h00 > 0 in the region where 0< h0 < 1. Let
� 62 P where P is the period spectrum of @M . The Hamiltonian �h.r/ on �M has
the following isolated families of fixed points: One family is the region h�1.0/. Also
for each Reeb orbit  of length l � � there is a family fFg;� equal to fh g �  �
Œ1;1/� @M where h is the unique value that satisfies �h0.h /D l . Because h.r/

is C 2 small in the region h�1.0/, we get HF�.h.r/; h�1.0// D H n��.M /. Also
by the definition of SH�. / we have that HF�.h.r/;F;�/ D SH�. /. Hence by
Corollary 2.9, we get that the rank of HFj .�h.r// is bounded above by the rank of

H n�j .M /˚

�M


SHj . /

�
;
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where the direct sum
L
 is over all Reeb orbits of length less than or equal to �.

Symplectic homology is the direct limit as � tends to infinity of HF�.�h.r//. So the
rank of SHj .M / is bounded above by the rank of

H n�j .M /˚

�M


SHj . /

�
;

where the sum
L
 is now over all Reeb orbits  . We have that @M has only finitely

many simple Reeb orbits 1; : : : ; m . We will write  k
i for the k –th iterate. By

Theorem 3.1, there is a constant C so that the rank of SH�. k
i / is bounded above by

C for all k; i . Also we can assign an index �i 2R for each orbit i so that SH�. k
i /

is supported in degrees Œk�i � nC 1; k�i C n�. This means that if �i ¤ 0 then the
rank of

L
k SH�. k

i / is bounded in each degree. If �i D 0 then
L

k SH�. k
i / is

supported only in degrees Œ1� n; n�. Putting all of this together we get that the rank of
SHk.M / is bounded above by some constant independent of k for all k 62 Œ1� n; n�.

We now need to show that the growth rate is at most 1. Because the rank of SH�. k
i /

is bounded above by a constant, there is some linear function LW R! R such that
the rank of HF�.�h.r// is at most L.R/. By [16, Lemmas 4.15 and 3.1] we have
that the growth rate �.M / is bounded above by limx log.a.�//=log.�/ where a.�/

is the rank of HF�.�h.r//. This implies that �.M / � limx log.L.�//=log.�/ � 1.
Hence we have given a bound for SHk.M / for all k 62 Œ1� n; n� and also shown that
�.M /� 1.

5 Construction of our exotic Liouville domain

In this section we will prove Theorem 1.3. Here is a statement of this theorem:

Theorem 1.3 In each even dimension greater than 6 there is a Liouville domain M

diffeomorphic to the ball such that SH�.M;Q/ has infinite rank in each degree.

From now on our coefficient field will be Q. We need the following fact: Let N be
any Liouville domain with a choice of trivialization of its canonical bundle and l any
loop in @N . We suppose that the dimension of N is greater than 4. Then we can
attach a Weinstein 2–handle along another loop homotopic to l in such a way that the
trivialization of the canonical bundle extends over this handle.

We will not define what a Weinstein handle is here. The only fact we need to know is
that it is a 2–handle such that the Liouville domain structure extends over this handle,
and also that attaching such a handle does not change symplectic homology (see [6]).
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Lemma 5.1 Let k be any even integer. Consider the free graded algebra KŒx;x�1;y�

where x has degree k and y has degree kC 1. If N is a contractible Stein domain of
dimension greater than 2, then there exists another Stein domain N 0 such that

(1) dim.N 0/D dim.N /C 2;

(2) N 0 is contractible;

(3) SH�.N 0/D SH�.N /˝KŒx;x�1;y�.

Proof of Lemma 5.1 By C� we mean the Liouville domain associated to C� which
is the annulus. Also if we take the product of two Liouville domains A�B , then this
is a manifold with corners. We can smooth the corners to make this a Liouville domain,
but we will just write A�B for this Liouville domain by abuse of notation.

The set of trivializations of T C� is in one-to-one correspondence with Z. We normalize
so the trivialization corresponding to 0 is the natural one coming from viewing C�

as C=Z where we have the Z equivariant trivialization of C induced by the coordinates
aC ib . We choose the trivialization corresponding to k

2
. By Abbondandolo and

Schwarz [2], we have SH�.C�/DKŒx;x�1;y�. Really the result in [2] uses the trivial-
ization corresponding to 0, but changing trivialization changes the degrees of x and y .
By the statement before this lemma, we can attach a Weinstein 2–handle to N �C� ,
killing the unique generator of H1.N �C�/DH1.C

�/ and giving us a new Liouville
domain N 0 which is contractible. We have SH�.N 0/DSH�.N �C�/. By Oancea [18],
SH�.N �C�/D SH�.N /˝SH�.C�/. Hence SH�.N 0/D SH�.N /˝KŒx;x�1;y�.

Proof of Theorem 1.3 Throughout this proof, our coefficient field K is equal to Q.
We wish to create a Liouville domain diffeomorphic to the ball of dimension 2n� 8.
Let A1 be the algebra KŒx;x�1;y� where x has degree 0 and y has degree 1. Let A2

be the same algebra but now x has degree 2 and y has degree 3. We start with a
contractible Stein domain D of real dimension 4 with nontrivial symplectic homology
(see Seidel [21, Section 5]). By Lemma 5.1 there is another contractible Stein domain D0

whose dimension is dim.D/C2 and such that SH�.D0/D SH�.D/˝A2 . This means
that SH�.D0/ is nonzero in every degree. We now apply Lemma 5.1 multiple times to
create a contractible Stein domain M of dimension 2n whose symplectic homology
group is SH�.D/˝A2˝A

˝.n�3/
1

. Tensoring with A
˝.n�3/
1

ensures that symplectic
homology is now infinitely generated in every degree as a vector space. Also M is
diffeomorphic to the ball by the author’s work [15, Corollary 2.30].

Algebraic & Geometric Topology, Volume 12 (2012)



1922 Mark McLean

References
[1] A Abbondandolo, M Schwarz, On the Floer homology of cotangent bundles, Comm.

Pure Appl. Math. 59 (2006) 254–316 MR2190223

[2] A Abbondandolo, M Schwarz, Floer homology of cotangent bundles and the
loop product, Geom. Topol. 14 (2010) 1569–1722 MR2679580

[3] M Abouzaid, A cotangent fibre generates the Fukaya category, Adv. Math. 228 (2011)
894–939 MR2822213

[4] M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol.
14 (2010) 627–718 MR2602848

[5] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results
in symplectic field theory, Geom. Topol. 7 (2003) 799–888 MR2026549

[6] K Cieliebak, Handle attaching in symplectic homology and the chord conjecture, J. Eur.
Math. Soc. 4 (2002) 115–142 MR1911873

[7] J W Fish, Target-local Gromov compactness, Geom. Topol. 15 (2011) 765–826
MR2800366

[8] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplec-
tic action, Duke Math. J. 80 (1995) 251–292 MR1360618

[9] V L Ginzburg, The Conley conjecture, Ann. of Math. 172 (2010) 1127–1180
MR2680488

[10] V L Ginzburg, B Z Gürel, Local Floer homology and the action gap, J. Symplectic
Geom. 8 (2010) 323–357 MR2684510

[11] D Gromoll, W Meyer, Periodic geodesics on compact riemannian manifolds, J. Differ-
ential Geometry 3 (1969) 493–510 MR0264551

[12] U Hryniewicz, L Macarini, Local contact homology and applications arXiv:
1202.3122

[13] D McDuff, D Salamon, J -holomorphic curves and symplectic topology, Ameri-
can Mathematical Society Colloquium Publications 52, Amer. Math. Soc. (2004)
MR2045629

[14] M McLean, Computability and the growth rate of symplectic homology arXiv:
1109.4466

[15] M McLean, Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009)
1877–1944 MR2497314

[16] M McLean, The Growth Rate of Symplectic Homology and Affine Varieties, Geom.
Funct. Anal. 22 (2012) 369–442 MR2929069

Algebraic & Geometric Topology, Volume 12 (2012)

http://dx.doi.org/10.1002/cpa.20090
http://www.ams.org/mathscinet-getitem?mr=2190223
http://dx.doi.org/10.2140/gt.2010.14.1569
http://dx.doi.org/10.2140/gt.2010.14.1569
http://www.ams.org/mathscinet-getitem?mr=2679580
http://dx.doi.org/10.1016/j.aim.2011.06.007
http://www.ams.org/mathscinet-getitem?mr=2822213
http://dx.doi.org/10.2140/gt.2010.14.627
http://www.ams.org/mathscinet-getitem?mr=2602848
http://dx.doi.org/10.2140/gt.2003.7.799
http://dx.doi.org/10.2140/gt.2003.7.799
http://www.ams.org/mathscinet-getitem?mr=2026549
http://dx.doi.org/10.1007/s100970100036
http://www.ams.org/mathscinet-getitem?mr=1911873
http://dx.doi.org/10.2140/gt.2011.15.765
http://www.ams.org/mathscinet-getitem?mr=2800366
http://dx.doi.org/10.1215/S0012-7094-95-08010-7
http://dx.doi.org/10.1215/S0012-7094-95-08010-7
http://www.ams.org/mathscinet-getitem?mr=1360618
http://dx.doi.org/10.4007/annals.2010.172.1129
http://www.ams.org/mathscinet-getitem?mr=2680488
http://projecteuclid.org/getRecord?id=euclid.jsg/1283865586
http://www.ams.org/mathscinet-getitem?mr=2684510
http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.jdg/1214429070
http://www.ams.org/mathscinet-getitem?mr=0264551
http://arxiv.org/abs/1202.3122
http://arxiv.org/abs/1202.3122
http://www.ams.org/mathscinet-getitem?mr=2045629
http://arxiv.org/abs/1109.4466
http://arxiv.org/abs/1109.4466
http://dx.doi.org/10.2140/gt.2009.13.1877
http://www.ams.org/mathscinet-getitem?mr=2497314
http://dx.doi.org/10.1007/s00039-012-0158-7
http://www.ams.org/mathscinet-getitem?mr=2929069


Local Floer homology and infinitely many simple Reeb orbits 1923

[17] A Oancea, A survey of Floer homology for manifolds with contact type boundary or
symplectic homology, from: “Symplectic geometry and Floer homology. A survey of
the Floer homology for manifolds with contact type boundary or symplectic homology”,
Ensaios Mat. 7, Soc. Brasil. Mat., Rio de Janeiro (2004) 51–91 MR2100955

[18] A Oancea, The Künneth formula in Floer homology for manifolds with restricted
contact type boundary, Math. Ann. 334 (2006) 65–89 MR2208949

[19] D A Salamon, J Weber, Floer homology and the heat flow, Geom. Funct. Anal. 16
(2006) 1050–1138 MR2276534

[20] D Salamon, E Zehnder, Morse theory for periodic solutions of Hamiltonian systems
and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303–1360 MR1181727

[21] P Seidel, A biased view of symplectic cohomology, from: “Current developments in
mathematics, 2006”, (B Mazur, T Mrowka, W Schmid, R Stanley, S-T Yau, editors),
Int. Press, Somerville, MA (2008) 211–253 MR2459307

[22] M Vigué-Poirrier, D Sullivan, The homology theory of the closed geodesic problem,
J. Differential Geometry 11 (1976) 633–644 MR0455028

[23] C Viterbo, Functors and computations in Floer homology with applications, Part II.,
preprint

[24] C Viterbo, Functors and computations in Floer homology with applications. I, Geom.
Funct. Anal. 9 (1999) 985–1033 MR1726235

Department of Mathematics, MIT, Building 2, Room 275
77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA

mclean@math.mit.edu

http://math.mit.edu/~mclean/

Received: 8 February 2012 Revised: 19 June 2012

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://www.ams.org/mathscinet-getitem?mr=2100955
http://dx.doi.org/10.1007/s00208-005-0700-0
http://dx.doi.org/10.1007/s00208-005-0700-0
http://www.ams.org/mathscinet-getitem?mr=2208949
http://dx.doi.org/10.1007/s00039-006-0577-4
http://www.ams.org/mathscinet-getitem?mr=2276534
http://dx.doi.org/10.1002/cpa.3160451004
http://dx.doi.org/10.1002/cpa.3160451004
http://www.ams.org/mathscinet-getitem?mr=1181727
http://www.ams.org/mathscinet-getitem?mr=2459307
http://projecteuclid.org/DPubS?verb=Display&version=1.0&service=UI&handle=euclid.jdg/1214433729
http://www.ams.org/mathscinet-getitem?mr=0455028
http://dx.doi.org/10.1007/s000390050106
http://www.ams.org/mathscinet-getitem?mr=1726235
mailto:mclean@math.mit.edu
http://math.mit.edu/~mclean/
http://msp.org
http://msp.org



	1. Introduction
	2. Definition of our Floer homology groups
	2.1. Symplectic homology
	2.2. Growth rates
	2.3. Local Floer homology
	2.4. Reeb orbit homology theories

	3. Symplectic homology of iterates of a Reeb orbit
	4. Proof of the main theorem
	5. Construction of our exotic Liouville domain
	References

