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Virtual amalgamation of relatively quasiconvex subgroups

EDUARDO MARTÍNEZ-PEDROZA

ALESSANDRO SISTO

For relatively hyperbolic groups, we investigate conditions guaranteeing that the
subgroup generated by two relatively quasiconvex subgroups Q1 and Q2 is relatively
quasiconvex and isomorphic to Q1�Q1\Q2

Q2 . The main theorem extends results for
quasiconvex subgroups of word-hyperbolic groups, and results for discrete subgroups
of isometries of hyperbolic spaces. An application on separability of double cosets of
quasiconvex subgroups is included.

20F65, 20F67

1 Introduction

This paper continues the work started by the first author in [10] motivated by the
following question:

Problem 1 Suppose G is a relatively hyperbolic group and Q1 and Q2 are relatively
quasiconvex subgroups of G . Investigate conditions guaranteeing that the natural
homomorphism

Q1 �Q1\Q2
Q2 �!G

is injective and that its image hQ1[Q2i is relatively quasiconvex.

Let G be a group hyperbolic relative to a finite collection of subgroups P , and let dist
be a proper left invariant metric on G .

Definition 1 Two subgroups Q and R of G have compatible parabolic subgroups if
for any maximal parabolic subgroup P of G either Q\P <R\P or R\P <Q\P .

Theorem 2 For any pair of relatively quasiconvex subgroups Q and R of G with
compatible parabolic subgroups, and any finite index subgroup H of Q\R, there
is a constant M DM.Q;R;H; dist/ � 0 with the following property. Suppose that
Q0 <Q and R0 <R are subgroups such that:

(1) H DQ0\R0 ;

(2) dist.1;g/�M for any g in Q0 nQ0\R0 or R0 nQ0\R0 .
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Then the subgroup hQ0[R0i of G satisfies:

(1) The natural homomorphism

Q0 �Q0\R0 R0 �! hQ0[R0i

is an isomorphism.

(2) If Q0 and R0 are relatively quasiconvex, then so is hQ0[R0i.

Theorem 2 extends results by Gitik [6, Theorem 1] for word-hyperbolic groups and
by the first author [10, Theorem 1.1] for relatively hyperbolic groups. Yang recently
obtained a similar combination results requiring stronger conditions [14]. His results
include a combination result for HNN extensions and some applications to subgroup
separability.

Definition 3 Two subgroups Q and R of a group G can be virtually amalgamated
if there are finite index subgroups Q0 < Q and R0 < R such that the natural map
Q0 �Q0\R0 R0 �!G is injective.

Let Q and R be relatively quasiconvex subgroups of G with compatible parabolic
subgroups and let M DM.Q;R;Q\R/ be the constant provided by Theorem 2. If
Q\R is a separable subgroup of G , then there is a finite index subgroup G0 of G

containing Q\R such that dist.1;g/ > M for every g 2 G with g 62 Q\R. In
this case, the subgroups Q0 D G0 \Q and R0 D G0 \R satisfy the hypothesis of
Theorem 2; hence they have a quasiconvex virtual amalgam.

Corollary 4 (Virtual Quasiconvex Amalgam Theorem) Let Q and R be quasiconvex
subgroups of G with compatible parabolic subgroups, and suppose that Q \R is
separable. Then Q and R can be virtually amalgamated in G .

It is known that many (relatively) hyperbolic groups have the property that all quasi-
convex or all finitely generated subgroups are separable; see Agol, Long and Reid [2],
Long and Reid [8; 9], Wise [12; 13], and Agol, Groves and Manning [1]. Still, it is a
natural question to ask whether the corollary above holds under the hypothesis that G

is residually finite.

A special case of the Virtual Quasiconvex Amalgam Theorem is the following by Baker
and Cooper [3, Theorem 5.3].

Corollary 5 Let G be a geometrically finite subgroup of isom.Hn/, and let Q and R

be geometrically finite subgroups of G with compatible parabolic subgroups. Suppose
Q\R is separable in G . Then Q and R have a geometrically finite virtual amalgam.
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Separability of quasiconvex subgroups and double cosets of quasiconvex subgroups is
of interest in the construction of actions on special cube complexes [13]. The machinery
we use to prove the main result also gives the following.

Corollary 6 (Double cosets are separable) Let G be a relatively hyperbolic group
such that all its quasiconvex subgroups are separable. If Q and R are quasiconvex
subgroups with compatible parabolic subgroups then the double coset QR is separable.
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2 Preliminaries

2.1 Gromov-hyperbolic spaces

Let .X; dist/ be a proper and geodesic ı–hyperbolic space. Recall that a .�; �/–
quasigeodesic is a curve 
 W Œa; b�!X parameterized by arc length such that

jx�yj=���� dist.
 .x/; 
 .y//� �jx�yjC�

for all x;y 2 Œa; b�. The curve 
 is a k –local .�; �/–quasigeodesic if the above
condition is required only for x;y 2 Œa; b� such that jx�yj � k .

Lemma 7 Coornaert, Delzant and Papadopoulos [5, Chapter 3, Theorem 1.2] (Morse
Lemma) For each �;�; ı there exists k > 0 with the following property. In a
ı–hyperbolic geodesic space, any .�; �/–quasigeodesic at k –Hausdorff distance from
the geodesic between its endpoints.

Lemma 8 [5, Chapter 3, Theorem 1.4] For each �;�; ı there exist k; �0; �0 so
that any k –local .�; �/–quasigeodesic in a ı–hyperbolic geodesic space is a .�0; �0/–
quasigeodesic.

Fix a basepoint x0 2X . If G is a subgroup of Isom.X /, we identify each element g

of G with the point gx0 of X . For g1;g2 2 G denote by dist.g1;g2/ the distance
dist.g1x0;g2x0/. Since X is a proper space, if G is a discrete subgroup of Isom.X /,
this is a proper and left invariant pseudometric on G .
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Lemma 9 [10, Lemma 4.2] (Bounded Intersection) Let G be a discrete subgroup of
isom.X /, let Q and R be subgroups of G , and let �> 0 be a real number. Then there
is a constant M DM.Q;R; �/� 0 so that

Q\N�.R/�NM .Q\R/:

2.2 Relatively quasiconvex subgroups

We follow the approach to relatively hyperbolic groups as developed by Hruska [7].

Definition 10 (Relative Hyperbolicity) A group G is relatively hyperbolic with
respect to a finite collection of subgroups P if G acts properly discontinuously and
by isometries on a proper and geodesic ı–hyperbolic space X with the following
property: X has a G –equivariant collection of pairwise disjoint horoballs whose union
is an open set U , G acts cocompactly on X nU , and P is a set of representatives of
the conjugacy classes of parabolic subgroups of G .

Throughout the rest of the paper, G is a relatively hyperbolic group acting on a proper
and geodesic ı–hyperbolic space X with a G –equivariant collection of horoballs satis-
fying all conditions of Definition 10. As before, we fix a basepoint x0 2X nU , identify
each element g of G with gx0 2X and let dist.g1;g2/ denote dist.g1x0;g2x0/ for
g1;g2 2G .

Lemma 11 Bowditch [4, Lemma 6.4] (Cocompact actions of parabolic subgroups on
thick horospheres) Let B be a horoball of X with G –stabilizer P . For any M > 0, P

acts cocompactly on NM .B/\ .X nU /.

Lemma 12 (Parabolic approximation) Let Q be a subgroup of G and let �> 0 be a
real number. There is a constant M DM.Q; �/ with the following property. If P is a
maximal parabolic subgroup of G stabilizing a horoball B , and f1; qg �Q\N�.B/
then there is p 2Q\P such that dist.p; q/ <M .

Proof By Lemma 11, dist.q;P / <M1 for some constant M1 DM1.Q;P /. Then
Lemma 9 implies that dist.q;Q\P / <M2 where M2 DN.Q;P;M1/. Since B is
a horoball at distance less than � from 1, there are only finitely many possibilities
for B and hence for the subgroup P . Let M the maximum of all N.Q;P; �/ among
the possible P .

Definition 13 (Relatively quasiconvex subgroup) A subgroup Q of G is relatively
quasiconvex if there is �� 0 such that for any geodesic c in X with endpoints in Q,
c \ .X nU /�N�.Q/.
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The choice of horoballs turns out not to make a difference.

Proposition 14 [7] If Q is relatively quasiconvex in G then for any L� 0 there is
��0 such that for any geodesic c in X with endpoints in Q, c\NL.X nU /�N�.Q/.

3 A lemma on Gromov’s inner product

Let Q and R be relatively quasiconvex subgroups with compatible parabolic subgroups,
and let H be a finite index subgroup of Q\R.

Let Q0 and R0 be subgroups of Q and R respectively such that Q0\R0 DH . Let
g 2Q0R0 (or g 2R0Q0 ) such that g 62H . Suppose gD qr (or gD rq ) with q 2Q0 ,
r 2R0 and such that dist.1; q/C dist.1; r/ is minimal among all such products.

Lemma 15 Suppose that there exists a 2H and a point p at distance at most A from
the geodesic segment Œ1;g� so that dist.p; qa/� B . Then

dist.1; q/C dist.1; r/� dist.1;g/C 2AC 2B:

Proof Let p0 2 Œ1;g� be such that dist.p;p0/ <A. Then

dist.1; qa/C dist.1; a�1r/� dist.1;p0/C dist.p0; qa/C dist.qa;p0/C dist.p0;g/

� dist.1;g/C 2AC 2B:

Since g can be written as .qa/.a�1r/, the minimality assumption implies dist.1; q/C
dist.1; r/� dist.1;g/C 2AC 2B .

Lemma 16 (Gromov’s inner product is bounded) There is a constant KDK.Q;R;H/

with the following property:

dist.1; q/C dist.1; r/� dist.1;g/CK:

Proof Constants which depend only on Q, R, H and ı are denoted by Mi , the
index counts positive increments of the constant during the proof. Suppose g D qr ,
the other case being symmetric. The constant K of the statement corresponds to M13 .

Consider a triangle � with vertices 1; q;g . Let p 2 Œ1; q� be a center of �, ie the
ı–neighborhood of p intersects all sides of �.

Suppose that p 2X nU . Then dist.p;Q/; dist.p; qR/�M1 by relative quasiconvexity
of Q and R. By Lemma 9, there exists a 2Q\R so that dist.p; qa/�M2 . Since H
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g D qr
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p1 q

Figure 1

is a finite index subgroup of Q\R, there is b 2H such that dist.p; qb/�M3 . By
Lemma 15, dist.1; q/C dist.1; r/� dist.1;g/C 2M3C 2ı .

Suppose instead that p is in a horoball B , whose stabilizer is P . We can assume
dist.q;B/�M8 . Indeed, let p1 be the entrance point of the geodesic Œq; 1� in B ; then
dist.p1;Q/ <M4 by quasiconvexity of Q. Notice that dist.p1; Œq;g�/ is at most 2ı

since p is a center of � and p1 2 Œq;p� (consider a triangle with vertices p; q;p0

for p0 2 Œq;g� so that d.p;p0/ � ı ). By quasiconvexity of R, there is p2 2 Œq;g�

such that dist.p1;p2/; dist.p2; qR/ <M5 . Lemma 9 implies there is a 2Q\R such
that dist.qa;p1/; dist.qa;p2/ < M6 . Since H is a finite index subgroup of Q\R,
there is b 2H such that dist.qb;p1/; dist.qb;p2/ <M7 . Since g can be written as
.qb/.b�1r/, by minimality we have

dist.1;p1/C dist.p1; q/C dist.q;p2/C dist.p2;g/

D dist.1; q/C dist.1;g/

� dist.1; qb/C dist.1; b�1r/

D dist.1;p1/C dist.p1; qb/C dist.qb;p2/C dist.p2;g/;

and therefore

2 dist.q;B/D 2 dist.p1; q/

� dist.p1; q/C dist.q;p2/C dist.p1;p2/

� dist.p1; qb/C dist.qb;p2/C dist.p1;p2/

� 2M8:
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Since Q and R have compatible parabolic subgroups, assume Q\q�1Pq�R\q�1Pq ,
the other case being symmetric. By quasiconvexity of Q, there is q1 2 Q at dis-
tance M9 from the entrance point of Œ1; q� in B . In particular, the distance from q1 to
Œ1;g� is at most M10 . Applying the parabolic approximation lemma to f1; q�1q1g �

Q\NM10
.q�1B/, there is an element a 2Q\ q�1Pq such that dist.qa; q1/�M11 .

Since Q\q�1Pq �R\q�1Pq it follows that a 2Q\R. Since H is finite index in
Q\R, by increasing the constant we can assume that a 2H and dist.qa; q1/�M12 .
Then Lemma 15 implies

dist.1; q/C dist.1; r/� dist.1;g/CM13:

4 Proof of Theorem 2

Let Q and R be relatively quasiconvex subgroups with compatible parabolic subgroups,
and let H be a finite index subgroups of Q\R.

Let K DK.Q;R;H / be the constant of Lemma 16. Let M be large enough so that
M > k; �0�0 where k; �0 and �0 are as in Lemma 8 for �D 1; �DK .

Let Q0 and R0 be subgroups satisfying the hypothesis of the theorem, in particular
Q0\R0 DH . Consider 1¤ g 2Q0 �Q0\R0 R0 and suppose that g 62Q0\R0 . Then
gDg1 : : :gn where the gi ’s are alternatively elements of Q0nQ0\R0 and R0nQ0\R0 .
Moreover, assume that this product is minimal in the sense that

P
dist.1;gi/ is minimal

among all such products describing g .

Lemma 17 For each i , let hi D g1 : : :gi . Then the concatenation ˛ D ˛1 � � �˛n�1

of geodesics ˛i from hi to hiC1 is an M –local .1;K/–quasigeodesic.

Proof By the choice of Q0 and R0 each segment ˛i has length at least M . Let
x 2 Œhi�1; hi � and y 2 Œhi ; hiC1�. By Lemma 16, we have

dist.hi�1;x/C dist.x;y/C dist.y; hiC1/� dist.hi�1; hiC1/

� dist.hi�1; hi/C dist.hi ; hiC1/�K

D dist.hi�1;x/C dist.x; hi/C dist.hi ;y/C dist.y; hiC1/�K:

Therefore dist.x;y/CK � dist.x; hi/C dist.hi ;y/.

Since M > k , Lemma 8 implies that ˛ is a .�0; �0/–quasigeodesic. Since M > �0�0 ,
it follows that ˛ has different endpoints. Therefore we have shown that the map
Q0 �Q0\R0 R0!G is injective.
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It is left to prove that if Q0 and R0 are relatively quasiconvex, then hQ0;R0i is relatively
quasiconvex. Let g 2 hQ\Ri and let 
 be a geodesic from 1 to g . Since H is
quasiconvex, if g 2H then 
 \.X nU / is uniformly close to H and hence to hQ\Ri.
Suppose that g 62 H . By Lemma 7 (Morse Lemma), any .�0; �0/–quasigeodesic
is at Hausdorff distance at most L from any geodesic between its endpoints. In
particular, 
 \ .X nU /�NL.˛/\ .X nU / where ˛ is the quasigeodesic constructed
above. It is enough to show that ˛ \NL.X n U / is contained in N�.hQ0 [R0i/.
Let p 2 ˛ \NL.X nU / and let i be so that p 2 Œhi ; hiC1�\NL.X nU /. Assume
giC1 2Q0 , the other case being symmetric. As Q0 is relatively quasiconvex and in
view of Proposition 14, there is a constant � so that p 2N�.hiQ

0/�N�.hQ0[R0i/

(as hi 2 hQ
0[R0i).

5 Separability of double cosets

We now show Corollary 6. Suppose that all quasiconvex subgroups of G are separable.
Let Q and R be quasiconvex subgroups with compatible parabolic subgroups. Let
g 2G and suppose that g 62QR. We follow an argument described in Minasyan [11]
and Yang [14].

Let KDK.Q;R;Q\R/ be the constant of Lemma 16. As in the proof of Theorem 2,
let M be large enough so that M > k; �0�0 where k; �0 and �0 are as in Lemma 8
for �D 1; �DK . In addition, assume that

(1) M > �0 dist.1;g/C�0�0:

Lemma 18 There are finite index subgroups Q0 and R0 of Q and R respectively
such that g 62QhQ0;R0iR.

Proof Since Q\R is separable, there are finite index subgroups Q0 and R0 of Q

and R respectively, such that Q0 \R0 DQ\R and dist.1; f / � 2M for any f in
Q0 nQ0 \R0 or R0 nQ0 \R0 . By Theorem 2 hQ0 [R0i is a quasiconvex subgroup
of G isomorphic to Q0 �Q\R R0 .

Suppose that g 2QhQ0;R0iR. Since g 62QR it follows that g D g1 : : :g2n where
g1 2Q, g2n 2R, g2iC1 2Q0nQ\R, g2i 2R0nQ\R, and n� 2. Assume that this
product is minimal in the sense that

P
dist.1;gi/ is minimal among all such products

describing g .

For each i , let hi D g1 : : :gi ; let ˛i be a geodesic from hi to hiC1 . By the choice
of Q0 and R0 each segment ˛i has length at least 2M except ˛1 and ˛2n�1 .
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Notice that g2 � � �g2n�1 represents an element of Q0 �Q\R R0 and such product is
minimal in the sense of the previous section, so that by Lemma 17 the concatenation
˛2 � � �˛2n�1 is an M –local .1;K/–quasigeodesic. Minimality of g1 : : :g2n and
Lemma 16 imply that the concatenations ˛1˛2 and ˛2n�1˛2n are M –local .1;K/–
quasigeodesics. Since ˛2 and ˛2n�1 have both length at least 2M , it follows that the
concatenation ˛ D ˛1 � � �˛2n an M –local .1;K/–quasigeodesic.

By Lemma 8, it follows that ˛ is a .�0; �0/–quasigeodesic between 1 and g . It follows
that dist.1;g/� 4M=�0��0 ; this is a contradiction with Equation (1) above.

Since Q0 and R0 are of finite index, there are q1; : : : ; qk 2Q and r1; : : : ; rm 2R such
that

QhQ0;R0iRD
[

qi ;rj

qihQ
0;R0irj :

Since hQ0;R0i is quasiconvex, it is closed in the profinite topology. It follows that
QhQ0;R0iR is a finite union of closed sets. Therefore QhQ0;R0iR is a closed set in
the profinite topology containing QR and such that g 62QhQ0;R0iR. Since g was an
arbitrary element of g 2 G not in QR, it follows that QR is closed in the profinite
topology of G .
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