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On the algebraic classification of module spectra

IRAKLI PATCHKORIA

Using methods developed by Franke in [7], we obtain algebraic classification results
for modules over certain symmetric ring spectra (S –algebras). In particular, for any
symmetric ring spectrum R whose graded homotopy ring ��R has graded global
homological dimension 2 and is concentrated in degrees divisible by some natural
number N � 4 , we prove that the homotopy category of R–modules is equivalent to
the derived category of the homotopy ring ��R . This improves the Bousfield-Wolbert
algebraic classification of isomorphism classes of objects of the homotopy category
of R–modules. The main examples of ring spectra to which our result applies are the
p–local real connective K–theory spectrum ko.p/ , the Johnson–Wilson spectrum
E.2/ , and the truncated Brown–Peterson spectrum BPh1i , all for an odd prime p .
We also show that the equivalences for all these examples are exotic in the sense that
they do not come from a zigzag of Quillen equivalences.

18E30, 55P42, 55P43; 18G55

1 Introduction

In [2] Bousfield gave an algebraic classification of isomorphism classes of objects in the
E.1/–local (or, equivalently, K.p/–local) stable homotopy category L1S for an odd
prime p . For this he used a certain k –invariant coming from a d2 –differential of the
E.1/–homology Adams spectral sequence. Bousfield also tried to describe morphisms
in L1S but only managed to characterize them up to Adams filtration.

In [7] Franke, using the language of triangulated derivators, proved an abstract unique-
ness theorem for triangulated categories possessing an Adams spectral sequence.
Applying this result to L1S (for an odd prime), he obtained an equivalence of cate-
gories between L1S and the derived category of certain twisted chain complexes of
E.1/�E.1/–comodules. (For a streamlined exposition of this result see Roitzheim [19].)
This gives a complete algebraic description of the category L1S and thus improves the
aforementioned result of Bousfield. Moreover, as is shown in [19], this equivalence is
exotic in the sense that it does not come from a zigzag of Quillen equivalences.

A similar classification result to that of Bousfield for module spectra was obtained
by Wolbert in [25]. More precisely, let R be a symmetric ring spectrum (or an S –
algebra) and suppose the (right) graded global homological dimension of the homotopy
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ring ��R is less or equal than two. Suppose further that ��R is concentrated in
dimensions divisible by some natural number N � 2. Under these assumptions,
Wolbert gives an algebraic characterization of isomorphism classes of objects in the
derived category D.R/ [25, Theorem 6]. The main example of a ring spectrum to
which this can be applied is the p–local real connective K–theory spectrum ko.p/ for
an odd prime p .

Note that Wolbert, like Bousfield, did not give a complete algebraic characterization of
morphisms in D.R/. Consequently, a natural question arises whether one can apply
Franke’s methods to improve Wolbert’s classification. One of the aims of the present
paper is to examine this question.

Let R be a symmetric ring spectrum. We say that an object X of D.R/ has dimension k

if the projective dimension of the homotopy ��X regarded as a graded ��R–module
is equal to k . Similarly, we say that an object M in the derived category D.��R/
(ie, a differential graded ��R–module) has dimension k if the projective dimension
of the homology H�M regarded as a graded ��R–module is equal to k . The main
aim of this paper is to give self-contained homotopy theoretic proofs of the following
theorems.

Theorem 1.1.1 Let R be a symmetric ring spectrum. Suppose that the graded homo-
topy ring ��R is concentrated in dimensions divisible by a natural number N and
assume that the (right) graded global homological dimension of ��R is less than N .
Then one can construct a functor

RW D.��R/ �!D.R/

such that the following hold:

(i) The diagram

D.��R/
R //

H� ''

D.R/

��xx
Grmod–��R;

where Grmod–��R denotes the category of (right) graded ��R–modules,
commutes up to a natural isomorphism.

(ii) The functor RW D.��R/ �!D.R/ restricts to an equivalence of the full subcat-
egories of at most one-dimensional objects.

(iii) Let X 2D.R/ and suppose that X has dimension at most two. Then there exists
M in D.��R/ such that R.M / is isomorphic to X in D.R/.
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Theorem 1.1.2 Let R be a symmetric ring spectrum. Suppose that the graded homo-
topy ring ��R is concentrated in dimensions divisible by a natural number N and
assume that the (right) graded global homological dimension of ��R is less than N �1.
Then the functor

RW D.��R/ �!D.R/
restricts to an equivalence of the full subcategories of at most two-dimensional objects.

In particular, we have the following corollary.

Corollary 1.1.3 Let R be a symmetric ring spectrum. Suppose that the graded
homotopy ring ��R is concentrated in dimensions divisible by a natural number N � 4

and assume that the (right) graded global homological dimension of ��R is equal to
two. Then the functor

RW D.��R/ �!D.R/
is an equivalence of categories.

This corollary improves Wolbert’s classification [25, Theorem 6] for N � 4.

Note that similar results hold for differential graded rings and our proofs work in this
algebraic setting as well (see Remark 6.4.4).

The functor RW D.��R/ �! D.R/ is in fact Franke’s functor for the special case
of D.R/. Franke constructs his functor for general triangulated derivators possessing
an Adams spectral sequence, and claims that it is an equivalence of categories [7, 2.2,
Proposition 2]. If this is so, then under the hypotheses of Theorem 1.1.1 the functor
RW D.��R/ �!D.R/ becomes an equivalence that trivially implies Theorems 1.1.1
and 1.1.2. However, the proof of [7, 2.2, Proposition 2] contains a gap (see Remark 6.3.1)
which we were unable to fill in the general setting. We managed to eliminate this gap
in low dimensional cases and thus obtained the statements of Theorems 1.1.1 and 1.1.2.

Note that for the construction of R we adopt the methods of [19]. In particular, we use
the language of model categories rather than that of derivators which is used by Franke.
This technically simplifies our exposition.

For n< 2.p� 1/, the Johnson–Wilson spectra E.n/ are nontrivial examples of ring
spectra to which Theorem 1.1.1 can be applied. Further important examples are the
truncated Brown–Peterson spectra BPhni for nC 1 < 2.p� 1/. (For all primes and
any n, E.n/ as well as BPhni admit A1–structures (see eg, Lazarev [16]) and thus
possess models which are symmetric ring spectra.) Note that for all these ring spectra
the functor R is not a derived functor of a Quillen functor (see Subsection 4.2).
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Examples of ring spectra which fulfill the hypotheses of Corollary 1.1.3 are the p–local
real connective K–theory spectrum ko.p/ , the Johnson–Wilson spectrum E.2/, and
the truncated Brown–Peterson spectrum BPh1i, all for an odd prime p . We show in
Subsection 4.2 that all these examples are exotic in the sense that the equivalence R

does not come from a zigzag of Quillen equivalences.

The paper is organized as follows. In Section 2 some basic facts about triangulated
categories and model categories are recalled. Next we briefly review stable model
categories and give examples which are important for our purposes. Furthermore we
recall model structures on diagram categories and long exact sequences of a homotopy
pullback and homotopy coequalizer.

In Section 3 the functor R is constructed and Theorem 1.1.1 (i) is proved. In fact, we
define R in a more general setting of stable model categories. The most complicated
step in the construction of R is discussed in Subsection 3.3 which concerns Franke’s
crowned diagrams (see Example 2.5.5). At the end of Section 3 we verify that the
functor R commutes with suspensions.

In Section 4 we recall the notion of a derived mapping space and prove a proposition
which gives a sufficient condition for R not being a derived functor. We also discuss
some nontrivial examples to which Theorem 1.1.1 applies.

Section 5 is devoted to the proof of Theorem 1.1.1(ii). As a corollary we get that under
the hypotheses of Theorem 1.1.1 the functor RW D.��R/ �!D.R/ is an equivalence
of categories if the graded global homological dimension of ��R is equal to one. The
complex K–theory spectrum KU and the connective Morava K–theory spectra k.n/,
n� 1 serve as our main examples here.

Finally, in Section 6 we prove Theorem 1.1.1(ii) and Theorem 1.1.2. We also discuss
nontrivial examples to which Corollary 1.1.3 applies. Note that the key results in this
section are Lemmas 6.2.1 and 6.2.4 which fill the aforementioned gap in the proof
of [7, 2.2, Proposition 2] for the two dimensional case.

We conclude the paper with an appendix about infinite loop spaces where it is shown
that certain infinite loop spaces are not weakly equivalent to products of Eilenberg–
Mac Lane spaces. These facts are essentially used in Subsections 4.3, 5.3 and 6.4 to
deduce that for all examples, our equivalences are exotic. The material in the appendix
is well known. However, as we were unable to find proper references for it, we included
all the necessary proofs.
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2 Preliminaries

2.1 Notation

2.1.1 Simplicial objects The category of simplicial sets is denoted by sSet. For
n� 0, �Œn� stands for the standard simplicial n–simplex. Next, if K is a simplicial
set and x 2 Kn , then we denote again by x the unique simplicial map �Œn� �! K

which sends the generator of �Œn� to x .

The letter I stands for �Œ1� and IC for the union of �Œ1� with a disjoint base point. The
pointed simplicial 0–sphere is denoted by S0 , ie, the union of the standard 0–simplex
with a disjoint base point. Further,

in0; in1W S
0
�! IC

are our notation for obvious maps sending the nonbase point of S0 to .0/ and .1/,
respectively. S1 denotes the simplicial circle I=.0� 1/, ie, �Œ1�=@�Œ1�.

2.1.2 DG modules and graded modules For any differential graded ring A, we
denote by Mod–A the category of differential graded right A–modules. In particular,
for any graded ring B , we have the category Mod–B , where B is regarded as a differ-
ential graded ring with zero differential. Further, for any graded ring B , Grmod–B

stands for the category of graded right modules over B . For any X 2 Grmod–B ,
proj.dim X denotes the graded projective dimension of X , and gl.dim B the (right)
graded global homological dimension of B .

2.2 Adams spectral sequence in triangulated categories

Let T be a be a triangulated category (see eg, Gelfand and Manin [8, IV.1.1]) and
HomT .X;Y /� denote HomT .†

�X;Y /, the graded Hom, for any X;Y 2 T . Recall
the following definition.

Definition 2.2.1 Let T be a triangulated category with infinite coproducts. An object
P 2 T is compact if the functor HomT .P;�/ commutes with arbitrary coproducts.
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One says that P is a compact generator if it is a compact object and in addition
HomT .P;X /� D 0 implies that X D 0, for any X 2 T (or, equivalently, the functor
HomT .P;�/�W T �!Grmod–EndT .P /� reflects isomorphisms).

The following is well known (see eg, Benson, Krause and Schwede [1, Lemma 5.17
and Proposition A.4]). Although [1, Lemma 5.17] is stated for the derived category of
a differential graded algebra, the proof given in [1] can be equally applied to general
triangulated categories.

Lemma 2.2.2 Let T be a triangulated category with infinite coproducts and P 2 T a
compact generator.

(i) If F 2 T and HomT .P;F /� is a projective EndT .P /�–module, then the map

HomT .P;�/�W HomT .F;X / �! HomEndT .P/�.HomT .P;F /�;HomT .P;X /�/

is an isomorphism for any X 2 T .

(ii) For any projective graded EndT .P /�–module M , there exists G 2 T such that

HomT .P;G/� ŠM

in Grmod–EndT .P /� .

Next, using Lemma 2.2.2, one gets the following proposition.

Proposition 2.2.3 (The Adams spectral sequence) Suppose T is a triangulated cat-
egory with infinite coproducts and P 2 T a compact generator, and assume that the
graded global homological dimension of EndT .P /� is finite. Then there is a bounded
convergent spectral sequence

E
pq
2
D ExtpEndT .P/�

.HomT .P;X /�;HomT .P;Y /�Œq�/) HomT .X; †
pCqY /:

In fact, Proposition 2.2.3 is a special case of Christensen [4, 4.5].

2.3 Model categories

In this subsection we recall some basic properties of model categories and simplicial
model categories.

A model category M is a bicomplete category equipped with three classes of morphisms
called weak equivalences, fibrations and cofibrations, satisfying certain axioms. We
will not list these axioms here. The point of this structure is that it allows one to “do
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homotopy theory” in M. Good references for model categories include Dwyer and
Spaliński [5], Hovey [12] and Quillen [18].

The fundamental example of a model category is the category sSet of simplicial sets
(see Quillen [18] and Goerss and Jardine [9, 1.11.3]). Further important examples are
the category Top of topological spaces (see [18] and [12, 2.4.19]) and the category
Ch.K/ of chain complexes of modules over a ring K [12, 2.3.11].

For any model category M, one has the associated homotopy category Ho.M/ which
is defined as the localization of M with respect to the class of weak equivalences (see
eg, [12, 1.2] or [5]). The model structure guarantees that we do not face set theoretic
problems when passing to localization, ie, Ho.M/ has Hom–sets. Note that Ho.M/

admits other equivalent descriptions as well. For example, Ho.M/ is equivalent to
the homotopy category of cofibrant objects. More precisely, let Mcof denote the full
subcategory of cofibrant objects in M. Then Ho.M/ is equivalent to the localization
McofŒW�1�, where W is the class of weak equivalences in Mcof . This description of
the homotopy category is most convenient one for our exposition, and therefore we
make the following convention.

Convention 2.3.1 In what follows, we let Ho.M/ denote the category McofŒW�1�.

Note that the class W admits a calculus of left fractions [18]. This is one of the
advantages of Convention 2.3.1.

Further, recall the definition of a Quillen adjunction.

Definition 2.3.2 A Quillen adjunction between two model categories M and N is a
pair of adjoint functors

F WM //N WGoo ;

where the left adjoint F preserves cofibrations and acyclic cofibrations (or, equiva-
lently, G preserves fibrations and acyclic fibrations).

We refer to F as a left Quillen functor and to G as a right Quillen functor. Quillen’s
total derived functor theorem (see eg, [18] or [9, 2.8.7]) says that any such pair of
adjoint functors induces an adjunction

LF WHo.M/
// Ho.N / WRGoo :

The functor LF is called the left derived functor of F and RG the right derived functor
of G . If LF is an equivalence of categories (or, equivalently, RG is an equivalence),
then the Quillen adjunction is called a Quillen equivalence.
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Convention 2.3.1 allows us to give a very simple description of LF . Indeed, the functor

F jMcof WMcof �!Ncof

preserves weak equivalences [12, 1.1.12] and, therefore, it induces a functor between
the localizations. This functor is exactly LF in terms of Convention 2.3.1.

An important class of model categories is the class of simplicial model categories as
in [9, 2.3]. These are model categories which are enriched, tensored and cotensored
over sSet and which satisfy Quillen’s axiom SM7 [9, 2.3.1] (or, equivalently, the
pushout product axiom [9, 2.3.11]). If a simplicial model category M is pointed,
ie, the terminal object is isomorphic to the initial one, then M is enriched over the
category sSet� of pointed simplicial sets. In particular, we have the functors

�^�W sSet� �M �!M; MapM.�;�/WMop
�M �! sSet�

and the adjunction

HomM.K ^X;Y /Š HomsSet�.K;MapM.X;Y //:

Remark 2.3.3 It follows from the axioms of pointed simplicial (model) categories
that for any n� 0 and X;Y 2M, there is a canonical natural isomorphism

MapM.X;Y /n Š HomM.�Œn�C ^X;Y /;

where �Œn�C is the union of �Œn� with a disjoint base point. For any element � in
MapM.X;Y /n , the corresponding morphism �Œn�C^X �! Y will be denoted again
by � .

2.4 Stable model categories

Recall from [18] (see also [12, 6.1.1]) that the homotopy category Ho.M/ of a pointed
model category M supports a suspension functor

†W Ho.M/ �! Ho.M/

with a right adjoint loop functor

�W Ho.M/ �! Ho.M/:

Definition 2.4.1 A stable model category is a pointed model category for which the
functors † and � are inverse equivalences.
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Remark 2.4.2 If M is a pointed simplicial model category, then the suspension
functor

†W Ho.M/ // Ho.M/

admits a very simple description. Indeed, by the simplicial model category axioms the
functor

S1
^�WM �!M

is a left Quillen functor. Then † can be defined as the left derived functor of S1 ^�.

Note that if M is stable, then the homotopy category Ho.M/ is a triangulated cat-
egory [12, 7.1.6] with † a shift functor. We will now recall the construction of
distinguished triangles in Ho.M/ in the case when M is simplicial.

Definition 2.4.3 Suppose M is a simplicial stable model category and f W X �! Y

a morphism in Mcof . The pushout of f along the morphism

incl^1WX Š S0
^X �! .I; 0/^X

is called the mapping cone of f and is denoted by Cone.f /.

Thus Cone.f / comes with the pushout square

X
f //

��

Y

�
��

.I; 0/^X
� // Cone.f /:

Furthermore, the universal property of pushout implies that there is a commutative
diagram

Y
� //

� ##

Cone.f /

ı
���
�
�

.I; 0/^X
�oo

�^1xx
S1 ^X;

where � W I �! S1 is the projection.

Definition 2.4.4 Let M be a simplicial stable model category and f W X �! Y a
morphism in Mcof . The elementary triangle associated to f is the triangle

X
f //Y

� // Cone.f / ı //S1 ^X:

Algebraic & Geometric Topology, Volume 12 (2012)



2338 Irakli Patchkoria

A triangle
A //B //C //†A

in Ho.M/ is called distinguished if it is isomorphic to an elementary one.

The distinguished triangles together with † define the triangulated structure on Ho.M/.

Now let us give some examples of stable model categories which are important in what
follows.

Example 2.4.5 For any ring K , the category Ch.K/ of unbounded chain complexes of
K–modules with the projective model structure is a stable model category [12, 2.3.11].
The weak equivalences and fibrations in this model structure are quasi-isomorphisms
(ie, homology isomorphisms) and degreewise epimorphisms, respectively.

Example 2.4.6 Let R be a symmetric ring spectrum. The category Mod–R of
right R–modules admits a stable simplicial model structure; see Hovey, Shipley and
Smith [13, Corollary 5.5.2]. The homotopy category Ho.Mod–R/ is called the derived
category of R, denoted by D.R/. Note that R is a compact generator of D.R/ and the
representable homological functor (see eg, [8, IV.1.6]) associated to R is the homotopy
group functor ��W D.R/ �!Grmod–��R.

Example 2.4.7 Let A be a differential graded ring. Then, by Example 2.4.5 and
Schwede and Shipley [21, 4.1], the category Mod–A of differential graded right
modules over A has a projective model structure in which the weak equivalences and
fibrations are as in Example 2.4.5. This model structure is stable as well. The category
Ho.Mod–A/ is called the derived category of A, denoted by D.A/. The differential
graded module A is a compact generator of D.A/ and the representable homological
functor associated to A is the homology H�W D.A/ �!Grmod–H�A.

By Shipley [22, 2.15], there is a symmetric ring spectrum HA such that Mod–HA

is Quillen equivalent to Mod–A. In particular, the derived category D.A/ is triangu-
lated equivalent to D.HA/. Thus, from the point of view of model category theory
Example 2.4.7 is a special case of Example 2.4.6.

Remark 2.4.8 Note that the triangulated structure on the derived category D.A/ of a
differential graded ring A, comes from the usual shift functor and algebraic mapping
cone construction. More precisely, for any M 2D.A/, the suspension of M , denoted
by M Œ1�, is given by

M Œ1�n DMn�1; dM Œ1�
n D�dM

n�1:
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Obviously, M Œ1� inherits the structure of a graded right A–module from that of M

(the action of A on M Œ1� is not twisted by a sign). Furthermore, it is clear that dM Œ1�

satisfies the Leibniz rule.

Next, let f W M �! M 0 be a morphism of DG modules over A. The (algebraic)
mapping cone C.f / of f is defined by

.C.f //n DMn�1˚M 0
n; n 2 Z;

d.m;m0/D .�dm; f .m/C dm0/:

Clearly, C.f / inherits the structure of graded (right) A–module from that of M

and M 0 and the differential of C.f / satisfies the Leibniz rule. Thus .C.f /; d/ is a
DG A–module. Further, there are canonical morphisms of DG modules

�W M 0
�! C.f /; �.m0/D .0;m0/;

@W C.f / �!M Œ1�; @.m;m0/Dm:

These morphisms together with f W M �!M 0 form a triangle

M
f //M 0 � //C.f /

@ //M Œ1�;

called the elementary triangle associated to f .

A triangle in D.A/ is distinguished if and only if it is isomorphic to an elementary one.

2.5 Diagram categories

We will use model structures on diagram categories throughout the paper. Therefore,
we recall some facts and notions concerning them.

Definition 2.5.1 [12, 5.1.1] Let ! denote the poset category of the ordered set
f0; 1; 2; : : :g. A small category C is called a direct category if there exists a functor
f W C �! ! that sends nonidentity morphisms to nonidentity morphisms.

Definition 2.5.2 [12, 5.1.2] Suppose M is a category with small colimits, C a small
category, z an object in C and Cz the category of all nonidentity morphisms in C with
codomain z . The latching space functor Lz WMC �!M is the composition

MC //MCz
colim //M;

where the first arrow is restriction. Note that we have a natural transformation

LzX �!Xz

for any fixed object z 2 C .
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The following proposition is proved in [12, 5.1.3].

Proposition 2.5.3 Given a model category M and a direct category C , there is a
model structure on MC in which a morphism of diagrams f W X �! Y is a weak
equivalence (resp. fibration) if and only if the map fz W Xz �!Yz is a weak equivalence
(resp. fibration) for all z 2 C . Furthermore, f W X �! Y is an (acyclic) cofibration if
and only if the induced map Xz

W
Lz X LzY �! Yz is an (acyclic) cofibration for all

z 2 C .

Example 2.5.4 Any finite poset P is a direct category. Therefore, for any model
category M, we have the model structure of Proposition 2.5.3 on MP .

Example 2.5.5 Suppose M is a model category and N � 2 a natural number. Let CN

denote the poset consisting of elements fˇi , �i ji 2 Z=N Zg such that ˇi < �i and
ˇi < �iC1 , ie,

�0 �1 � � � �N�2 �N�1

ˇ0

OO >>

ˇ1

OO >>

� � �

<<

ˇN�2

OO ::

ˇN�1;

OO
ll

and consider X 2MCN . Then, by Proposition 2.5.3, X is cofibrant if and only if the
canonical map

LzX �!Xz

is a cofibration in M for all z 2 CN , ie, if and only if Xˇi
is cofibrant and the induced

morphism Xˇi�1
_Xˇi

�!X�i
is a cofibration, for any i 2 Z=N Z.

Example 2.5.6 The category

�
////�

is a direct category. Thus, by Proposition 2.5.3, we get a model structure on the category
of parallel arrows in M.

It follows from [12, 5.1.5] that for any model category M and direct category C , there
is a Quillen adjunction

colimWMC //M W const;oo

where colim is a left Quillen functor.
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Definition 2.5.7 The left derived functor of colimWMC �!M is called the homotopy
colimit, denoted by

HocolimW Ho.MC/ �! Ho.M/:

If C is as in Example 2.5.6, then the homotopy colimit is called the homotopy coequal-
izer.

Remark 2.5.8 Let C be a direct category (Definition 2.5.1). If M is a simplicial
model category, then so is MC . Indeed, the mapping spaces for MC are given by the
end construction

MapMC .X;Y /D

Z
z2C

MapM.Xz;Yz/I

see Mac Lane [17, IX.5]. The tensors and cotensors are defined levelwise.

2.6 Long exact sequences

In this subsection we recall the Mayer–Vietoris sequence of a homotopy pullback and
the long exact sequence of a homotopy coequalizer.

Lemma 2.6.1 (Dyer and Roitberg [6]) Let

A
˛ //

ˇ

��

B

�

��
C

 // D

be a homotopy pullback square of pointed simplicial sets. Then there is a long exact
Mayer–Vietoris sequence

� � � �! �n.A/
.˛�;ˇ�/
�����! �n.B/��n.C/

.��;� �/
������! �n.D/

@
�! �n�1.A/ �! � � �

� � ��!�1.A/
.˛�;ˇ�/
�����!�1.B/��1.C/

.��; 
�1
� /

������!�1.D/
@
�!�0.A/

.˛�;ˇ�/
�����!�0.B/��0.C/:

Note that if
A

˛ //

ˇ

��

B

�

��
C

 // D

is a pullback square of Kan simplicial sets and � a Kan fibration, then it is in fact a
homotopy pullback. In this case the connecting homomorphism

@W �n.D/ �! �n�1.A/
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can be described as follows.

Lemma 2.6.2 Suppose that

A
˛ //

ˇ

��

B

�

��
C

 // D

is a pullback square of pointed Kan simplicial sets, and � a Kan fibration. Suppose
further that F is the fiber of � and ˇ , and "W F �! A the inclusion. Then the
connecting homomorphism

@W �n.D/ �! �n�1.A/

of the Mayer–Vietoris sequence is given by the composite

�n.D/
@0 //�n�1.F /

"� //�n�1.A/;

where @0 is the connecting homomorphism of the long exact sequence of the fibration
�W B �!D ; see Kan [14, 3.5].

Lemma 2.6.3 Let
A

˛ //

ˇ

��

B

�

��
C

 // D

be a homotopy pullback square of simplicial sets with A, B , C , D homotopy associa-
tive and homotopy commutative H –spaces, and ˛ , ˇ , � ,  H –space maps. Then the
long exact Mayer–Vietoris sequence of this square can be extended to the right by one
further term. More precisely, there is a long exact sequence of abelian groups

� � � �! �n.A/
.˛�;ˇ�/
�����! �n.B/˚�n.C /

.��;� �/
������! �n.D/

@
�! �n�1.A/ �! � � �

� � � �! �1.B/˚�1.C /
.��;� �/
������! �1.D/

@
�!

�0.A/
.˛�;ˇ�/
�����! �0.B/˚�0.C /

.��;� �/
������! �0.D/:

Next we recall the following lemma.

Lemma 2.6.4 Let M be a stable model category and

X
f //
g
//Y

h //Z
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a coequalizer diagram in M. Suppose that X is cofibrant and

.f;g/WX _X �! Y

is a cofibration (ie, the given coequalizer is a homotopy coequalizer). Then there is a
morphism ıW Z �!†X in Ho.M/ such that the triangle

X
f�g //Y

h //Z
ı //†X

is distinguished.

This lemma essentially follows from the remark at the end of Section I.4 in Brown [3].

Corollary 2.6.5 Let M be a stable model category, A an abelian category and
F W Ho.M/ �!A a homological functor. Then any homotopy coequalizer

X
f //
g
//Y

h //Z

in M induces a long exact sequence

� � � �! F.X /
F.f /�F.g/
��������! F.Y /

F.h/
���! F.Z/

@
�! F.†X / �! � � � :

3 Franke’s functor

3.1 Formulation of main results

Let M be a stable model category and ŒX;Y � denote the Hom-group HomHo.M/.X;Y /,
for any X;Y 2 Ho.M/. Next, suppose P 2 Ho.M/ is a compact generator. In the
sequel we use the notation

��X D ŒP;X �� D HomHo.M/.†
�P;Y /:

In particular, ��P denotes the graded ring ŒP;P �� .

Remark 3.1.1 The suspension functor †W Ho.M/ �! Ho.M/ induces a natural
isomorphism of graded ��P –modules

��.†X /Š .��X /Œ1�:

Having this in mind, we identify ��.†X / with .��X /Œ1� in what follows.

Definition 3.1.2 Suppose N � 2 is a natural number. A graded ring B is said to be
N –sparse if it is concentrated in degrees divisible by N .
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Definition 3.1.3 Let M be a stable model category and P 2M a compact generator.
We say that an object X 2 Ho.M/ is k –dimensional (with respect to P ) if the
projective dimension of ��X in Grmod–��P is equal to k .

Now we are ready to list the main results and their corollaries.

Theorem 3.1.4 Let M be a stable model category and P a fixed compact generator
of Ho.M/. Suppose that the graded ring ��P is N –sparse and the (right) graded
global homological dimension of ��P is less than N . Then one can construct a functor

RW D.��P / �! Ho.M/

such that the following hold:

(i) The diagram

D.��P /
R //

H� ''

Ho.M/

��ww
Grmod–��P

commutes up to a natural isomorphism.

(ii) The functor R restricts to an equivalence of the full subcategories of at most
one-dimensional objects.

(iii) Let X 2 Ho.M/ and suppose that X has dimension at most two. Then there
exists M 2D.��P / such that R.M / is isomorphic to X in Ho.M/.

Theorem 3.1.5 Let M be a stable model category and P a compact generator of
Ho.M/. Suppose that the graded ring ��P is N –sparse and the (right) graded global
homological dimension of ��P is less than N � 1. Then the functor

RW D.��P / �! Ho.M/

restricts to an equivalence of the full subcategories of at most two dimensional objects.

In particular, we have the following corollary.

Corollary 3.1.6 Let M be a stable model category and P a compact generator of
Ho.M/. Suppose that the graded ring ��P is N –sparse, the (right) graded global
homological dimension of ��P is equal to two and N � 4. Then the functor

RW D.��P / �! Ho.M/

is an equivalence of categories.
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Theorems 1.1.1 and 1.1.2 are obtained as special cases of Theorems 3.1.4 and 3.1.5,
respectively. Further, in view of Example 2.4.7, one has the following corollaries.

Corollary 3.1.7 Let A be a differential graded ring. Suppose that the graded homology
ring H�A is concentrated in dimensions divisible by a natural number N and assume
that the (right) graded global homological dimension of H�A is less than N . Then one
can construct a functor

RW D.H�A/ �!D.A/
such that the following hold:

(i) The diagram

D.H�A/
R //

H� ''

D.A/

H�xx
Grmod–H�A

commutes up to a natural isomorphism.

(ii) The functor RW D.H�A/�!D.A/ restricts to an equivalence of the full subcat-
egories of at most one-dimensional objects.

(iii) Let X 2 D.A/ and suppose X has dimension at most two. Then there exists
M 2D.H�A/ such that R.M / is isomorphic to X in D.A/.

Corollary 3.1.8 Let A be a differential graded ring. Suppose that the graded homology
ring H�A is N –sparse and the (right) graded global homological dimension of H�A

is less than N � 1. Then the functor

RW D.H�A/ �!D.A/

restricts to an equivalence of the full subcategories of at most two-dimensional objects.

Corollary 3.1.9 Let A be a differential graded ring. Suppose that the graded homology
ring H�A is N –sparse, the (right) graded global homological dimension of H�A is
equal to two and N � 4. Then the functor

RW D.H�A/ �!D.A/

is an equivalence of categories.

The functor R is constructed in Subsection 3.4 and the proof of Theorem 3.1.4(i) is
given in Subsection 3.4. Next, Theorem 3.1.4(ii) is proved in Section 5, and finally, the
proofs of Theorems 3.1.4(iii) and 3.1.5 are discussed in Section 6.
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3.2 Some consequences of the Adams spectral sequence

In this subsection we state some known facts which follow from the Adams spectral
sequence of Proposition 2.2.3,

E
pq
2
D Extp

��P
.��X; ��Y Œq�/) ŒX; †pCqY �:

Let M, P and N be as in Theorem 3.1.4. Then the category of graded ��P –modules
splits as follows:

Grmod–��P � B˚BŒ1�˚ � � �˚BŒN � 1�;

where B is the full subcategory of Grmod–��P consisting of all those modules which
are concentrated in degrees divisible by N .

Let Ei denote the full subcategory of Ho.M/ consisting of objects X 2 Ho.M/ with

��X 2 BŒi �:

Proposition 3.2.1 (i) The functor

��jEi
W Ei �! BŒi �

is an equivalence of categories. In particular, for any i 2 Z=N Z and X;Y 2 Ei ,
the natural map

��W ŒX;Y � �! Hom��P .��X; ��Y /

is an isomorphism.

(ii) For any i 2 Z=N Z, X 2 Ei�1 and Y 2 Ei , there is a natural isomorphism

ŒX;Y �Š Ext1��P .��X Œ1�; ��Y /:

(iii) For any i 2 Z=N Z and X;Y 2 Ei , there is a natural isomorphism

Œ†X;Y �Š ExtN�1
��P .��X ŒN �; ��Y /:

This proposition immediately follows from the Adams spectral sequence. (The condi-
tions in Theorem 3.1.4 imply that the corresponding spectral sequences collapse at E2

and all appropriate terms vanish.) Note that here one essentially uses that the graded
global homological dimension of ��P is less than N . Indeed, all Exti��P –groups for
i �N vanish and hence, ExtN k

��P .��X ŒN k�; ��Y /D 0, for k > 0, X;Y 2 Ei , which
implies Proposition 3.2.1(i). Similar arguments yield the proofs of (ii) and (iii).
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Remark 3.2.2 If X 2 Ei�1 and Y 2 Ei then ��f D 0 for any f 2 ŒX;Y �. This
and the construction of the Adams spectral sequence enables one to get an explicit
description of the isomorphism in Proposition 3.2.1(ii). Indeed, for any f 2 ŒX;Y �, a
distinguished triangle

X
f //Y

� // Cone.k/ ı //†X

gives a short exact sequence

EW 0 //��Y
��� //�� Cone.k/

��ı //��X Œ1� //0;

and the isomorphism of Proposition 3.2.1(ii) sends f to the extension class of E .

3.3 Crowned diagrams and DG modules

In this subsection we start with the proof of Theorem 3.1.4. In order to simplify the
exposition, the model category M will be assumed to be simplicial in the sequel.
(Note that our examples of model categories (see Theorem 1.1.1 and Corollary 3.1.7)
are in fact simplicial or Quillen equivalent to simplicial ones.) However, the proof
can be applied for stable model categories without any enrichment as well, using the
techniques of cosimplicial frames from [12] (see Subsection 4.1 for details).

Let CN be as in Example 2.5.5. Suppose X is an object of .MCN /cof and

li W Xˇi
�!X�i

; ki W Xˇi�1
�!X�i

; i 2 Z=N Z;

the morphisms of X . Since X is cofibrant in MCN , the objects Xˇi
and X�i

are
cofibrant in M, i 2 Z=N Z. Let

Z.i/.X /D ��X�i
; B.i/.X /D ��Xˇi

; C .i/.X /D �� Cone.ki/;

�.i/ D ��li W B
.i/.X / �!Z.i/.X /; i 2 Z=N Z;

where Cone.ki/ denotes the cone construction from Definition 2.4.3 for simplicial
model categories applied to ki . Consider the mapping cone sequence

Xˇi�1

ki //X�i
// Cone.ki/ //†Xˇi�1

of ki , i 2Z=N Z. Applying the functor ��W Ho.M/�!Grmod–��P to the sequence
X�i

// Cone.ki/ //†Xˇi�1
; we obtain the sequence

Z.i/.X /
�.i/

��! C .i/.X /
�.i/

��! B.i�1/.X /Œ1�I
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see Remark 3.1.1. Clearly, Z.i/ and B.i/ are functors from .MCN /cof to Grmod–��P
and �.i/ is natural. Besides, since the cone construction of Definition 2.4.3 is func-
torial, C .i/ is a functor from .MCN /cof to Grmod–��P as well, and �.i/ and �.i/

are natural. Further, Z.i/ , B.i/ and C .i/ pass through Ho.MCN / (as they send
weak equivalences of diagrams to isomorphisms), and �.i/ , �.i/ , �.i/ induce natural
transformations on the homotopy level. We use the same notation for the resulting
functors and natural transformations.

Notation 3.3.1 let L denote the full subcategory of Ho.MCN / consisting of all
those X which satisfy the following conditions:

(i) The graded ��P –modules Z.i/.X /, B.i/.X / are objects of BŒi � for any i

2 Z=N Z.

(ii) The morphism �.i/ is a monomorphism for all i 2 Z=N Z.

Now we are going to construct a functor

QW L �!Mod–��P:

Let X be an object of L. As the functor

��W Ho.M/ �!Grmod–��P

is homological, the distinguished triangles

Xˇi�1

ki //X�i
// Cone.ki/ //†Xˇi�1

induce long exact sequences

� � ��!B.i�1/.X /�!Z.i/.X /
�.i/

��!C .i/.X /
�.i/

��!B.i�1/.X /Œ1��!Z.i/.X /Œ1��!� � � :

Note that B.i�1/.X / 2 BŒi�1� and Z.i/.X / 2 BŒi � for all i 2 Z=N Z, since X 2 L.
Therefore, the morphisms B.i�1/.X / �!Z.i/.X / and B.i�1/.X /Œ1� �!Z.i/.X /Œ1�

are zero. Consequently, for any i 2 Z=N Z, we get a short exact sequence

0 //Z.i/.X /
�.i/ //C .i/.X /

�.i/ //B.i�1/.X /Œ1� //0

in Grmod–��P . Then, consider the following graded ��P –modules

C�.X /D C .0/.X /˚C .1/.X /˚ � � �˚C .N�1/.X /;

Z�.X /DZ.0/.X /˚Z.1/.X /˚ � � �˚Z.N�1/.X /;

B�.X /D B.0/.X /˚B.1/.X /˚ � � �˚B.N�1/.X /:
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The morphisms �.i/ , �.i/ , �.i/ , i 2 Z=N Z, induce morphisms between the direct sums

�W B�.X / �!Z�.X /; �D �.0/˚�.1/˚ � � �˚�.N�1/;

�W Z�.X / �! C�.X /; �D �.0/˚ �.1/˚ � � �˚ �.N�1/;

�W C�.X / �! B�.X /Œ1�; �D �.0/˚ �.1/˚ � � �˚ �.N�1/:

After summing up, we get a short exact sequence of ��P –modules

(3.3.2) 0 //Z�.X /
� //C�.X /

� //B�.X /Œ1� //0:

Splicing this short exact sequence with its shifted copy gives a differential graded
��P –module. More precisely, define

d D �Œ1��Œ1��W C�.X / �! C�.X /Œ1�:

Then dd D 0 and, therefore, we get a DG ��P –module .C�.X /; d/. The desired
functor,

QW L �!Mod–��P;

is defined by Q.X /D .C�.X /; d/.

Remark 3.3.3 Towards the end of this subsection, namely in 3.3.13, we will see that in
many cases the functor Q is an equivalence of categories. In fact, the intuition behind the
definition of L (Notation 3.3.1) is to construct diagram models that encode the structure
of DG ��.P /–modules. More precisely a diagram X from L carries information about
the differentials of the DG ��.P /–module Q.X / and also remembers how Q.X / is
built out of cycles and boundaries.

Remark 3.3.4 Let L0 denote the full subcategory of .MCN /cof consisting of all
the objects X with Z.i/.X /, B.i/.X / 2 BŒi � and �.i/ a monomorphism, for any
i 2 Z=N Z (ie, L0 has the same objects as L). Then L is the localization of L0 with
respect to the class of weak equivalences. This immediately follows from the fact that
the class of weak equivalences in .MCN /cof admits a calculus of left fractions [18].

The following is one of the main technical results of the paper.

Proposition 3.3.5 Let K be the full subcategory of L consisting of all the objects X

with
proj.dim Z.i/.X / <N � 1; proj.dim B.i/.X / <N � 1;

for any i 2 Z=N Z (see 2.1.2). Then the functor

QjKW K �!Mod–��P

is full and faithful.
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Before starting to prove this proposition, we reformulate it in an equivalent way in
terms of exact sequences. Consider X , zX 2K . Let K denote the abelian group

HomHo.MCN /.X;
zX /D ŒX; zX �;

and L denote the abelian group of commutative diagrams of the form

Z�.X /
� //

��

C�.X /

��

Z�. zX /
z� // C�. zX /:

In other words,

LD Hom.Grmod –��P/1.Z�.X /
�
�! C�.X /;Z�. zX /

z�
�! C�. zX //;

where 1 denotes the category � �! �. To prove Proposition 3.3.5 it suffices to check
that the morphism

qW K �!L

induced by the functor Q is injective and its image consists of all those morphisms
which respect the differentials, ie, which are morphisms of DG modules. Thanks
to (3.3.2) any f 2L induces a morphism on the cokernels

B�.X /
xf
�! B�. zX /:

By definition of d W C�.X / �! C�.X /Œ1�, a morphism f 2 L is a DG morphism if
and only if the outer square in the diagram

C�.X /
� //

f
��

B�.X /Œ1�
�Œ1� //

xf Œ1�
��

Z�.X /Œ1�
�Œ1� //

f Œ1�
��

C�.X /Œ1�

f Œ1�
��

C�. zX /
z� // B�. zX /Œ1�

z�Œ1� // Z�. zX /Œ1�
z�Œ1� // C�. zX /Œ1�

commutes. The left and right squares in the diagram are commutative. Therefore,
since z�Œ1�W Z�. zX /Œ1� �! C�. zX /Œ1� is a monomorphism and �W C�.X / �! B�.X /Œ1�

an epimorphism, the outer square commutes if and only if the middle one does, ie, if
and only if f lies in the kernel of

DW L �! Hom��P .B�.X /;Z�. zX //; D.f /D z� xf �f �:

Thus, showing that the functor

QjKW K �!Mod–��P
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is full and faithful is equivalent to showing that the sequence

(3.3.6) 0 //K
q //L

D // Hom��P .B�.X /;Z�. zX //

is exact, for any X , zX 2 K . To prove the latter we describe K and L in terms of
some exact sequences.

Let us start with K .

Lemma 3.3.7 For any X , zX 2K , there is a natural exact sequence

0 // Hom��P .B�.X /Œ1�;Z�. zX //
//K //

Hom��P .B�.X /;B�. zX //˚Hom��P .Z�.X /;Z�. zX //
//

Ext1��P .B�.X /Œ1�;Z�.
zX //˚Hom��P .B�.X /;Z�. zX //:

Proof By Remark 2.5.8, we have a pullback square of based simplicial sets

MapMCN .X; zX /
//

��

Q
i

MapM.X�i
; zX�i

/

�

��Q
i

MapM.Xˇi
; zXˇi

/  //
Q
i

MapM.Xˇi�1
; zX�i

/�
Q
i

MapM.Xˇi
; zX�i

/;

(3.3.8)

where � and  are induced by

Xˇi�1
_Xˇi

.ki ;li /
����!X�i

; zXˇi

.zkiC1;zli /
������! zX�iC1

� zX�i
; i 2 Z=N Z;

respectively. Without loss of generality we may assume that zX is fibrant in MCN ,
ie, zXˇi

and zX�i
, i 2 Z=N Z are fibrant in M. Besides, since X is a cofibrant object

in MCN , we can conclude that

Xˇi�1
_Xˇi

.ki ;li /
����!X�i

is a cofibration and Xˇi
, X�i

are cofibrant, for any i 2 Z=N Z (see Example 2.5.5).
This, by the axiom SM7 for simplicial model categories implies that all objects in (3.3.8)
are fibrant and � is a Kan fibration. Next, as M is stable, the simplicial sets and
maps involved in (3.3.8) are infinite loop spaces and infinite loop maps, respectively.
In particular, all the objects are homotopy associative and homotopy commutative
H –spaces and all the morphisms are H –space maps. Thus, by Lemma 2.6.3, the
diagram (3.3.8) gives a long exact Mayer–Vietoris sequence. Let us identify the
terms of this long exact sequence. Since X is cofibrant and zX is fibrant, the group
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�0.MapMCN .X; zX // is isomorphic to ŒX; zX �DK , by [9, 2.3.10]. As noted above, Xˇi

and X�i
, i 2 Z=N Z are cofibrant and zXˇi

, zX�i
are fibrant for all i 2Z=N Z. Hence,

using again [9, 2.3.10], we get isomorphisms

�n.MapM.Xˇi
; zXˇi

//Š Œ†nXˇi
; zXˇi

�;

�n.MapM.X�i
; zX�i

//Š Œ†nX�i
; zX�i

�;

�n.MapM.Xˇi�1
; zX�i

//Š Œ†nXˇi�1
; zX�i

�;

�n.MapM.Xˇi
; zX�i

//Š Œ†nXˇi
; zX�i

�:

Thus, the final part of the Mayer–Vietoris sequence of the square (3.3.8) looks as
follows:M

i

Œ†Xˇi
; zXˇi

�˚
M

i

Œ†X�i
; zX�i

� �!

M
i

Œ†Xˇi�1
; zX�i

�˚
M

i

Œ†Xˇi
; zX�i

�
@
�!

K �!
M

i

ŒXˇi
; zXˇi

�˚
M

i

ŒX�i
; zX�i

� �!M
i

ŒXˇi�1
; zX�i

�˚
M

i

ŒXˇi
; zX�i

�;

where @ is the connecting homomorphism.

Next we need more explicit descriptions of the terms involved in this exact sequence.
Proposition 3.2.1 yields the following isomorphisms:

ŒXˇi
; zXˇi

�Š Hom��P .B
.i/.X /;B.i/. zX //;

ŒX�i
; zX�i

�Š Hom��P .Z
.i/.X /;Z.i/. zX //;

ŒXˇi
; zX�i

�Š Hom��P .B
.i/.X /;Z.i/. zX //;

Œ†Xˇi�1
; zX�i

�Š Hom��P .B
.i�1/.X /Œ1�;Z.i/. zX //;

ŒXˇi�1
; zX�i

�Š Ext1��P .B
.i�1/.X /Œ1�;Z.i/. zX //;

Œ†Xˇi
; zXˇi

�Š ExtN�1
��P .B

.i/.X /ŒN �;B.i/. zX //;

Œ†X�i
; zX�i

�Š ExtN�1
��P .Z

.i/.X /ŒN �;Z.i/. zX //;

Œ†Xˇi
; zX�i

�Š ExtN�1
��P .B

.i/.X /ŒN �;Z.i/. zX //:

Since X 2K , the last three Ext-groups vanish and therefore

Œ†Xˇi
; zXˇi

�D 0; Œ†X�i
; zX�i

�D 0; Œ†Xˇi
; zX�i

�D 0:
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Consequently, one obtains a natural exact sequence describing K , namely

0 �!
M

i

Hom��P .B
.i�1/.X /Œ1�;Z.i/. zX //

@
�!K �!M

i

Hom��P .B
.i/.X /;B.i/. zX //˚

M
i

Hom��P .Z
.i/.X /;Z.i/. zX // �!M

i

Ext1��P .B
.i�1/.X /Œ1�;Z.i/. zX //˚

M
i

Hom��P .B
.i/.X /;Z.i/. zX //:

As B.i/.X /, B.i/. zX /, Z.i/.X /, Z.i/. zX / 2 BŒi �, i 2 Z=N Z, we may rewrite this
exact sequence as

0 // Hom��P .B�.X /Œ1�;Z�. zX //
@ // K //

Hom��P .B�.X /;B�. zX //˚Hom��P .Z�.X /;Z�. zX //
//

Ext1��P .B�.X /Œ1�;Z�.
zX //˚Hom��P .B�.X /;Z�. zX //:

Let us now describe LD Hom.Grmod –��P/1.Z�.X /
�
�! C�.X /;Z�. zX /

z�
�! C�. zX //.

Lemma 3.3.9 For any X , zX 2K , there is a natural exact sequence

0 // Hom��P .B�.X /Œ1�;Z�. zX //
// L //

Hom��P .B�.X /;B�. zX //˚Hom��P .Z�.X /;Z�. zX //
//

Ext1��P .B�.X /Œ1�;Z�.
zX //:

Proof First note that any f 2L yields (as we have already mentioned) a diagram

C�.X /
� //

f
��

B�.X /Œ1�
�Œ1� //

xf Œ1�
��

Z�.X /Œ1�
�Œ1� //

f Œ1�
��

C�.X /Œ1�

f Œ1�
��

C�. zX /
z� // B�. zX /Œ1�

z�Œ1� // Z�. zX /Œ1�
z�Œ1� // C�. zX /Œ1�;

in which the left and the right squares commute. Consider the map

� W L�!Hom��P .B�.X /;B�. zX //˚Hom��P .Z�.X /;Z�. zX //; �.f /D . xf ; f /:
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The kernel of � consists of morphisms of the form .0;G/ 2L such that the diagram

0 // Z�.X /

0
��

� // C�.X /

G
��

� // B�.X /Œ1�

0
��

// 0

0 // Z�. zX /
z� // C�. zX /

z� // B�. zX /Œ1�
// 0

commutes, ie, we can identify the kernel with the subgroup of Hom��P .C�.X /;C�. zX //

consisting of those GW C�.X / �! C�. zX / for which G� D 0 and z�G D 0. It then
follows from the Snake Lemma that G 2 Ker � if and only if G can be factored as

C�.X /
� //B�.X /Œ1�

g //Z�. zX /
z� //C�. zX /

for some g . Since � is an epimorphism and z� a monomorphism, Ker � is isomorphic
to

Hom��P .B�.X /Œ1�;Z�. zX //

and we get an exact sequence

0 // Hom��P .B�.X /Œ1�;Z�. zX //
b //L

� //

Hom��P .B�.X /;B�. zX //˚Hom��P .Z�.X /;Z�. zX //;

where

b.g/D .0;z�g�/:

Then, in order to give a more precise description of L, we would like to examine Im � .
For this purpose, observe that

S W 0 //Z�.X /
� //C�.X /

� //B�.X /Œ1� //0 ;

zS W 0 //Z�. zX /
z� //C�. zX /

z� //B�. zX /Œ1�
//0;

represent elements of Ext1��P .B�.X /Œ1�;Z�.X // and Ext1��P .B�.
zX /Œ1�;Z�. zX //, re-

spectively. Define a homomorphism

Hom��P .B�.X/;B�. zX//˚Hom��P .Z�.X/;Z�. zX//
� //Ext1��P .B�.X/Œ1�;Z�.

zX//;

�.u; w/D uŒ1��. zS/�w�.S/:
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We claim that Im � D Ker � . Indeed, .u; w/ 2 Im � if and only if there exists
hW C�.X / �! C�. zX / such that the diagram

0 // Z�.X /

w
��

� // C�.X /

h
��

� // B�.X /Œ1�

uŒ1�
��

// 0

0 // Z�. zX /
z� // C�. zX /

z� // B�. zX /Œ1�
// 0

commutes. But the latter is the case if and only if w�.S/DuŒ1��. zS/, ie, .u; w/2Ker � .
Hence, one concludes that there is an exact sequence

0 // Hom��P .B�.X /Œ1�;Z�. zX //
b //L

� //

Hom��P .B�.X /;B�. zX //˚Hom��P .Z�.X /;Z�. zX //
� //

Ext1��P .B�.X /Œ1�;Z�.
zX //:

Proof of Proposition 3.3.5 As we already explained, proving Proposition 3.3.5 is
equivalent to showing that the sequence (3.3.6) is exact. For this one has to compare the
exact sequences describing K and L from the previous two lemmas. In other words,
we have to check that the diagram

0

��

0

��

Hom��P .B�.X /Œ1�;Z�. zX //

@

��

Hom��P .B�.X /Œ1�;Z�. zX //

b

��
K

��

q // L

��

Hom��P .B�.X /;B�. zX //

˚

Hom��P .Z�.X /;Z�. zX //

��

Hom��P .B�.X /;B�. zX //

˚

Hom��P .Z�.X /;Z�. zX //

��Ext1��P .B�.X /Œ1�;Z�.
zX //

˚

Hom��P .B�.X /;Z�. zX //

pr // Ext1��P .B�.X /Œ1�;Z�.
zX //

(3.3.10)
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commutes. It is clear that the middle square in this diagram is commutative. The
commutativity of the lower one is an immediate formal consequence of the construction
of the Adams spectral sequence (Proposition 2.2.3). It thus remains to check that

q@D b;

which needs a detailed verification.

Fix j 2 Z=N Z and take � 2 Hom��P .B
.j�1/.X /Œ1�;Z.j/. zX //. In order to com-

pute @.�/, consider the isomorphisms

�1.MapM.X ǰ�1
; zX�j //Š Œ†X

ǰ�1
; zX�j �Š Hom��P .B

.j�1/.X /Œ1�;Z.j/. zX //:

A representative of the homotopy class in Œ†X
ǰ�1
; zX�j � to which � corresponds will

be denoted by
� W S1

^X
ǰ�1
�! zX�j ;

abusing notation. Let �1 denote the composite

�.�C ^ 1/W IC ^Xˇj�1

�C^1
//S1 ^Xˇj�1

� // zX�j ;

where �CW IC �! S1 is the projection. As noted above,

X
ǰ�1
_X

ǰ

.kj ;lj /
����!X�j

is a cofibration. Besides, the map in1W S
0 �! IC is an acyclic cofibration of pointed

simplicial sets (see 2.1.1). Therefore, the pushout product [9, 2.3.11]

in1 �.kj ; lj /W .IC ^ .X ǰ�1
_X

ǰ
//_S0^.X

ǰ�1
_X

ǰ
/S

0
^X�j �! IC ^X�j

is an acyclic cofibration in M. Then, since zX�j is fibrant, there exists a morphism

‚W IC ^X�j �!
zX�j ;

making the diagram

(3.3.11)

.IC ^ .Xˇj�1
_Xˇj //_S0^.Xˇj�1

_Xˇj /
S0 ^X�j

.�1;�;�///

in1 �.kj ;lj /

��

zX�j

IC ^X�j

‚

44

commute. This morphism together with the map in0W S
0 �! IC (see 2.1.1) gives a

composition �0D‚.in0 ^1/W X�j ŠS0^X�j �!
zX�j . Clearly, one has �0kj D� and

�0lj D �. Consequently, there is y� 2 HomMCN .X; zX /Š .MapMCN .X; zX //0 having
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�0 as the �j –th component and zero as all the other components. By adjunction, the
commutative diagram (3.3.11) is equivalent to the commutative square

S0
� //

in1

��

MapM.X�j ; zX�j /

.k�
j
;l�
j
/

��
IC

.�1;�/

//

‚

55

MapM.Xˇi�1
; zX�i

/�MapM.Xˇi
; zX�i

/:

Therefore, by construction of @ (see Lemma 2.6.2), we conclude

@.�/D Œy�� 2 �0.MapMCN .X; zX //D ŒX; zX �:

Thus one gets the desired computation of @.�/.

Next we show that
q@.�/D b.�/;

ie,
q.Œy��/D b.�/:

For this purpose, we explicitly identify both sides of this equation and then compare
them. In order to do so, note once again that the cone construction of Definition 2.4.3
is functorial on .Mcof/

1 and hence we have a commutative diagram

Xˇj�1

�

��

kj // X�j

�0

��

� // Cone.kj /
ı //

x�0

���
�
�

S1 ^Xˇj�1

�

��
zXˇj�1

zkj // zX�j

z� // Cone.zkj /
zı // S1 ^ zXˇj�1

:

It follows from the universal property of pushout that there exists �W Cone.kj /�! zX�j
making the diagram

X�j
� //

�0 ##

Cone.kj /

�

��

.I; 0/^Xˇj�1

�oo

�
ww

zX�j

commute (since �0kj D �) and that x�0 D
z��. Then (�0 is null-homotopic via ‚) and

q.Œy��/D .0; �� x�0/D .0; ��.z�/��.�//;

b.�/D .0; ��.z�/��.�/��.ı//;
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by definitions of q and b , respectively. Thus, to verify q.Œy��/Db.�/, it suffices to prove
� is homotopic to �ı . This is done explicitly. Indeed, recall the simplicial set I � I is
generated by the 2–simplices h0D ..0; 0; 1/; .0; 1; 1// and h1D ..0; 1; 1/; .0; 0; 1// sat-
isfying the relation @1h0D @1h1 . Therefore, there is yF W I�I �!MapM.X ǰ�1

; zX�j /

with yF .h0/D yF .h1/D s0�1 (�1 is considered as an element of .MapM.X ǰ�1
; zX�j //1 ;

see Remark 2.3.3). It is easily seen that yF jI�0 D �, yF j0�I D �, yF jI�1 D �1 and
yF j1�I D �1 ; see 2.1.1. Hence, yF induces a simplicial map

IC ^ .I; 0/
zF //MapM.Xˇj�1

; zX�j /

with zF j0^.I;0/ D �, zF j1^.I;0/ D �1 , and zF jIC^1 D �1 (see 2.1.1). Let

IC ^ ..I; 0/^Xˇj�1
/

F // zX�j

be the adjoint of zF . Then, F j0^.I;0/^X
ǰ�1
D�, F j1^.I;0/^X

ǰ�1
D �.� ^1/D �ı�

(� W I �! S1 is the projection) and F jIC^1^X
ǰ�1
D �1 . The latter shows the diagram

IC ^Xˇj�1

1^kj //

��

IC ^X�j

‚
��

IC ^ ..I; 0/^Xˇj�1
/

F // zX�j

commutes. (Note that the left vertical arrow in this diagram comes from the morphism

Xˇj�1
Š S0 ^Xˇj�1

incl^1//.I; 0/^Xˇj�1
:/

On the other hand, by Definition 2.4.3, we have a pushout square

IC ^Xˇj�1

1^kj //

��

IC ^X�j

1^�

��
IC ^ ..I; 0/^Xˇj�1

/
1^� // IC ^Cone.kj /

since IC^� is left adjoint. Thus, there is H W IC^Cone.kj /�! zX�j so the diagram

IC ^X�j
1^� //

‚
''

IC ^Cone.kj /

H
��

IC ^ ..I; 0/^Xˇj�1
/

1^�oo

F
uu

zX�j
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commutes. A trivial computation shows that H is a left homotopy from � to �ı .
Hence, q@D b .

Thus (3.3.10) commutes. Now a diagram chase shows that (3.3.6) is exact, and this
completes the proof of Proposition 3.3.5.

Next we examine the image of QjKW K�!Mod–��P . By the construction of Q and
the definition of K , we have

proj.dim.Z�.X /DKer d/ <N �1; proj.dim.B�.X /D Im d/ <N �1; X 2K:

These key properties completely determine the essential image of QjK . Indeed, one
has the following proposition.

Proposition 3.3.12 A differential graded ��P –module .C�; d/ is in the essential
image of QjK if and only if

proj.dim Z� <N � 1 proj.dim B� <N � 1;

where Z� D Ker d and B� D Im d .

Proof We have just mentioned that the “only if” part of this proposition is valid. Let
us check that the “if” part holds as well.

Since ��P is N –sparse, we have the decompositions (see Subsection 3.2)

Z� DZ.0/
˚Z.1/

˚ � � �˚Z.N�1/;

B� D B.0/˚B.1/˚ � � �˚B.N�1/;

C� D C .0/
˚C .1/

˚ � � �˚C .N�1/;

where C .i/;B.i/;Z.i/2BŒi � i 2Z=N Z. By Proposition 3.2.1(i) there are X�i
;Xˇi

2Ei

such that
Z.i/
Š ��X�i

; B.i/ Š ��Xˇi
;

for all i 2 Z=N Z. We fix these isomorphisms once and for all. Without loss of
generality one may assume that Xˇi

is cofibrant and X�i
is bifibrant (ie, both cofibrant

and fibrant) in M, i 2Z=nZ. It then follows from Proposition 3.2.1(i) that there exist
morphisms li W Xˇi

�!X�i
in M such that the diagrams

��Xˇi

��li //

Š

��

��X�i

Š

��

B.i/ // // Z.i/
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commute. Further, for any i 2 Z=N Z, consider the extension

Ei W 0 // Z.i/ // C .i/ // B.i�1/Œ1� // 0:

By Proposition 3.2.1(ii), the extension class of Ei corresponds to some element in
ŒXˇi�1

;X�i
� which is the homotopy class of some morphism ki W Xˇi�1

�!X�i
in M.

Consequently, we get a diagram

X W X�0
X�1

� � � X�N�2
X�N�1

Xˇ0

l0

OO
k1

==

Xˇ1

l1

OO >>

� � �

<<

XˇN�2

lN�2

OO
kN�1

::

XˇN�1
;

lN�1

OO
ll

ie, an object in MCN . Without loss of generality we may assume that X 2 .MCN /cof

(otherwise we could replace X cofibrantly). Besides, proj.dim Z� and proj.dim B�
are less than N � 1. Therefore, X is an object of K . Finally, the construction of Q
and Remark 3.2.2 immediately imply that Q.X / is isomorphic to C� .

In view of Proposition 3.3.5, one gets the following corollary.

Corollary 3.3.13 Let M be a stable model category and P a compact generator of
Ho.M/. Suppose that the graded ring ��P is N –sparse and gl.dim��P < N � 1.
Then the functor

QW L �!Mod–��P

is an equivalence of categories (see Notation 3.3.1).

We conclude this subsection with the following proposition.

Proposition 3.3.14 For any X 2 L, there is a natural isomorphism of graded ��P –
modules

H�.Q.X //Š ��.Hocolim X /:

Proof As noted in Remark 3.3.4, L is the localization of L0 � .MCN /cof at the class
of weak equivalences. Let

Q0 DQ
 W L0 �!Mod–��P;

where 
 W L0�!L is the localization functor (which is the identity on objects!). Clearly,
to prove the proposition, it suffices to construct a natural isomorphism

H�.Q0.X //Š ��.colim X /; X 2 L0:
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Recall that Xˇi
and X�i

are cofibrant and

Xˇi�1
_Xˇi

.ki ;li /
����!X�i

is a cofibration for all i 2 Z=N Z (since X is cofibrant in MCN (see Example 2.5.5)).
This implies that the coequalizer diagram

(3.3.15)
W

i Xˇi

k //

l

//
W

i X�i
// colim X;

where k D
W

i ki and l D
W

i li , is in fact a homotopy coequalizer. Hence, we get a
long exact sequence (see Corollary 2.6.5)

� � � �! ��.colim X /Œ�1�
@
�!

M
i

��Xˇi

��l���k
������!

M
i

��X�i
�!

��.colim X /
@
�!

M
i

��Xˇi
Œ1� �! � � � :

Since X 2 L0 , ��l D
L

i ��li is a monomorphism and ��k D
L

i ��ki is zero.
Therefore, the connecting homomorphisms of this long exact sequence vanish and we
get a short exact sequence

0 //
L

i ��Xˇi

L
i ��li //

L
i ��X�i

//��.colim X / //0;

ie,

0 //B�.X /
� //Z�.X / //��.colim X / //0:

This short exact sequence shows that there is a natural isomorphism

Z�.X /=B�.X /Š ��.colim X /:

The short exact sequence (3.3.2) together with the definition of the differential of C�.X /

gives
H�.Q0.X //DH�.C�.X //ŠZ�.X /=B�.X /:

Thus, we get a natural isomorphism

H�.Q0.X //Š ��.colim X /:

3.4 Proof of Theorem 3.1.4(i)

Our aim is to construct a functor

RW D.��P / �! Ho.M/
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and a natural isomorphism �� ıRŠH� .

By our assumption, the graded global homological dimension of ��P is less than N .
This together with Proposition 3.3.12 implies that the essential image Q.K/ of QjK
contains all differential graded ��P –modules which have underlying projective graded
��P –modules. By Hinich [11, 2.2.5], it in particular contains all cofibrant DG ��P –
modules. Therefore, the derived category D.��P / is equivalent to the localization
Q.K/ŒV�1�, where V is the class of quasi-isomorphisms in Q.K/. Thus, in order to
construct R, we need a functor

R0W Q.K/ �! Ho.M/

which sends quasi-isomorphisms of DG modules to isomorphisms. By Proposition 3.3.5,

QjKW K �!Q.K/

is an equivalence of categories and so we can choose an inverse .QjK/�1W Q.K/�!K .
Define R0 to be the composite

Q.K/
.QjK/�1

//K � Ho.MCN /
Hocolim // Ho.M/:

Then, Proposition 3.3.14 immediately yields a natural isomorphism

��.R
0.M //ŠH�M; M 2Q.K/:

In other words, the diagram

(3.4.1)

Q.K/

R0 $$

H� // Grmod–��P

Ho.M/

��

77

commutes up to a natural isomorphism. This shows that R0 sends quasi-isomorphisms
to isomorphisms (since �� reflects isomorphisms). Consequently, R0 factors through
the localization, ie, there exists

RW D.��P / �! Ho.M/

such that the diagram

(3.4.2)

Q.K/ R0 //

ƒ %%

Ho.M/

D.��P /
R

99
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where ƒ is the localization functor, commutes up to a natural isomorphism. The
universal property of localization and diagrams (3.4.1) and (3.4.2) give the desired
result.

3.5 Preservation of suspensions

Proposition 3.5.1 Let M be a stable model category and P a fixed compact generator
of Ho.M/. Suppose that the graded ring ��P is N –sparse and the (right) graded
global homological dimension of ��P is less than N . Then the functor

RW D.��P / �! Ho.M/

commutes with suspensions.

Proof We consider the functor

.�/#W L �! L

sending X 2 L to X # which is defined by

X #
ˇi
D S1

^Xˇi�1
; X #

�i
D S1

^X�i�1
;

k#
i D 1^ ki�1; l#

i D 1^ li�1; i 2 Z=N Z:

There is a natural isomorphism

Hocolim.X #/Š†Hocolim X; X 2 L;

in Ho.M/. On the other hand, by construction of Q, we have a natural isomorphism

Q.X #/ŠQ.X /Œ1�; X 2 LI

see Remark 3.1.1. Consequently, for any M 2Q.K/, there is a natural isomorphism

Q�1.M Œ1�/Š .Q�1.M //#:

By construction of R0 , one gets

R0.M Œ1�/D Hocolim.Q�1.M Œ1�//Š Hocolim..Q�1.M //#/

Š†Hocolim.Q�1.M //D†R0.M /;

whence we have a natural isomorphism

R.M Œ1�/Š†R.M /; M 2D.��P /:

Algebraic & Geometric Topology, Volume 12 (2012)



2364 Irakli Patchkoria

4 Further properties of R and examples

In this section we prove that the functor R need not be a derived functor of a Quillen
functor. Besides, we give nontrivial examples where Theorem 3.1.4 can be applied.

First let us briefly recall derived mapping spaces.

4.1 Derived mapping spaces

For a pointed simplicial model category M, one has the mapping space functor

MapM.�;�/WMop
�M �! sSet� :

The simplicial model category axioms imply that this functor is in fact a Quillen
bifunctor (see [12, 4.2.1]). Therefore, we get the derived mapping space functor

MapHo.M/.�;�/W Ho.M/op
�Ho.M/ �! Ho.sSet�/:

If a model category M is not simplicial, then one does not have mapping spaces on
the model level. However, one is still able to define derived mapping spaces. This is
done in [12, 5.4] as follows.

Let M be a model category and M� denote the category of cosimplicial objects
in M. Consider the functor

Ev0WM�
�!M

which sends X � 2M� to the 0–th space X �Œ0�. One can easily see that Ev0 has both
a right and left adjoint. The right adjoint

r�WM �!M�

is the constant cosimplicial object functor. The left adjoint

l�WM �!M�

sends X 2M to the cosimplicial object whose n–th space is the nC1–fold coproduct
of X and whose structure morphisms are obtained from the coproduct inclusions and
fold maps. The functors l� and r� come with a canonical natural transformation

l� �! r�

which is the identity in degree 0 and the fold map in higher degrees.

Note there is a model structure on M� , called the Reedy model structure (see [12, 5.2]
for details), and that the adjunctions .l�;Ev0/, .Ev0; r�/ are in fact Quillen adjunctions.
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Definition 4.1.1 [12, 5.2.7] Suppose M is a model category and X an object
of M. A cosimplicial frame on X is a cosimplicial object X � 2M� together with a
factorization

l�X //X � // r�X

of the canonical map
l�X �! r�X

into a cofibration in M� followed by a weak equivalence (which is an isomorphism
in degree zero).

The existence of such frames is shown in [12, 5.2.8].

Definition 4.1.2 Let X;Y 2 Ho.M/. The derived mapping space MapHo.M/.X;Y /

is defined by
MapHo.M/.X;Y /D HomM.X

�;Y f / 2 sSet;

where X � is a cosimplicial frame of X and Y f a fibrant replacement of Y .

It is proved in [12, 5.4] that the derived mapping space is a well-defined object of
Ho.sSet/, ie, it does not depend, up to homotopy, on the choice of the cosimplicial
frame X � and the fibrant replacement Y f . Moreover, we have a functor

MapHo.M/.�;�/W Ho.M/op
�Ho.M/ �! Ho.sSet/:

If M is pointed, then MapHo.M/.X;Y / comes with a natural base point and it is a
well-defined object of Ho.sSet�/.

Proposition 4.1.3 [12, 5.6.2] Suppose

F WM //N WGoo

is a Quillen adjunction, where F is a left adjoint. Then, for any X 2 Ho.M/ and
Y 2 Ho.N /, there is a natural weak equivalence of derived mapping spaces

MapHo.N /.LFX;Y /'MapHo.M/.X;RGY /:

Remark 4.1.4 Let A be a differential graded ring. The category Mod–A with the
model structure from Example 2.4.7 is not a simplicial model category. However, one
can apply Definition 4.1.2 to Mod–A and get derived mapping spaces. Note that since
Mod–A is an additive category, MapD.A/.X;Y / is in fact a simplicial abelian group
for any X;Y 2 D.A/. It is well known that every simplicial abelian group has the
homotopy type of a product of Eilenberg–Mac Lane spaces (see eg, [9, III.2.18]). In
particular, MapD.A/.X;Y / is homotopy equivalent to a product of Eilenberg–Mac Lane
spaces for any X;Y 2D.A/.
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Remark 4.1.5 There is an analog of the pushout product axiom for cosimplicial
frames (see [12, 5.4.1 and 5.4.2]). Using this and the derived mapping spaces it is not
difficult to see that the proofs given in Sections 3, 5 and 6 can be applied to stable
model categories without a simplicial enrichment.

4.2 The cases when R is not a derived functor

The following shows that Proposition 4.1.3 is rather useful.

Theorem 4.2.1 Let M be a stable model category and P a compact generator of
Ho.M/. Suppose that the graded ring ��P is N –sparse and gl.dim��P < N

(see 2.1.2). Suppose further that the derived mapping space MapHo.M/.P;P / is not
weakly equivalent to a product of Eilenberg–Mac Lane spaces. Then the functor

RW D.��P / �! Ho.M/

is not a derived functor of a Quillen functor.

Proof Consider the object

Y W P � � � � � �

�

OO >>

�

OO >>

� � �

>>

�

OO ??

�

OOkk

in MCN . Clearly, Y 2K (see Proposition 3.3.5). By construction of Q,

Q.Y /Š ��P;

where ��P is regarded as a DG ��P –module with zero differential. On the other
hand,

Hocolim Y D colim Y Š P:

Consequently,
R.��P /Š P

in Ho.M/. Now assume that R is the derived functor of a left Quillen functor. Then R

has a right adjoint
GW Ho.M/ �!D.��P /

and, in view of Proposition 4.1.3, we get a weak equivalence of derived mapping spaces

MapHo.M/.R.��P /;P /'MapD.��P/.��P;G.P //;

ie,
MapHo.M/.P;P /'MapD.��P/.��P;G.P //:

Algebraic & Geometric Topology, Volume 12 (2012)



On the algebraic classification of module spectra 2367

By Remark 4.1.4, the mapping space on the right is a product of Eilenberg–Mac Lane
spaces, a contradiction.

One similarly shows that R cannot be the derived functor of a right Quillen functor.

Corollary 4.2.2 Let R be a symmetric ring spectrum such that the graded homotopy
ring ��R is N –sparse and gl.dim��R<N , and the infinite loop space �1R is not
weakly equivalent to a product of Eilenberg–Mac Lane spaces. Then the functor

RW D.��R/ �!D.R/

is not derived from a Quillen functor.

Further, in view of Proposition 4.1.3 and Remark 4.1.4, one gets the following.

Proposition 4.2.3 Let M be a stable model category and P a compact generator
of Ho.M/. Suppose that the derived mapping space MapHo.M/.P;P / is not weakly
equivalent to a product of Eilenberg–Mac Lane spaces. Then there does not exist a
zigzag of Quillen equivalences between the model categories M and Mod–��P . In
particular, if the graded ring ��P is N –sparse, gl.dim��P <N , and the functor

RW D.��P / �! Ho.M/

is an equivalence of categories (see Remark 6.3.1), then R cannot be derived from a
zigzag of Quillen equivalences.

Corollary 4.2.4 Let R be a symmetric ring spectrum. Suppose that the infinite loop
space �1R is not weakly equivalent to a product of Eilenberg–Mac Lane spaces. Then
there does not exist a zigzag of Quillen equivalences between the model categories
Mod–R and Mod–��R. In particular, if the graded homotopy ring ��R is N –sparse,
gl.dim��R<N , and the functor

RW D.��R/ �!D.R/

is an equivalence of categories, then R cannot be derived from a zigzag of Quillen
equivalences.

4.3 Examples

Example 4.3.1 (Truncated Brown–Peterson spectra) Let p be a prime, n a natural
number, and suppose that

nC 1< 2.p� 1/:
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Then we have that the truncated Brown–Peterson spectrum BPhni satisfies the hypothe-
ses of Theorem 1.1.1. Indeed, the homotopy ring of BPhni looks as follows:

��BPhni Š Z.p/Œv1; : : : ; vn�; jvi j D 2.pi
� 1/:

Clearly, gl.dim��BPhni D nC 1 and ��BPhni is 2.p� 1/–sparse.

Note also that �1BPhni is not weakly equivalent to a product of Eilenberg–Mac Lane
spaces (see Corollary A.1.7). Therefore, in view of Corollary 4.2.2, the functor

RW D.Z.p/Œv1; : : : ; vn�/ �!D.BPhni/

is not a derived functor of a Quillen functor.

Example 4.3.2 (Johnson–Wilson spectra) The Johnson–Wilson spectrum E.n/ is
obtained from BPhni by inverting the generator vn . In particular, for the homotopy
ring of E.n/ one has

��E.n/Š Z.p/Œv1; : : : ; vn; vn
�1�; jvi j D 2.pi

� 1/:

Note that gl.dim��E.n/D n and ��E.n/ is 2.p� 1/–sparse. Therefore, if

n< 2.p� 1/;

then Theorem 1.1.1 can be applied to E.n/. Furthermore, since �1E.n/ is not weakly
equivalent to a product of Eilenberg–Mac Lane spaces (see Corollary A.1.8), the functor

RW D.Z.p/Œv1; : : : ; vn; vn
�1�/ �!D.E.n//

is not a derived functor of a Quillen functor.

5 The one-dimensional case

In this section we prove Theorem 3.1.4(ii).

5.1 Technical lemmas

The following well-known proposition immediately follows from the Adams spectral
sequence of Proposition 2.2.3.

Proposition 5.1.1 (Universal coefficient theorem) Suppose T is a triangulated cate-
gory with infinite coproducts, P 2 T a compact generator, and let ��DHomT .P;�/� .
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Then for any X with proj.dim��X � 1 (in Grmod–��P ) and Y 2 T , there is a
natural short exact sequence

0 // Ext1��P .��X Œ1�; ��Y /
// HomT .X;Y /

�� // Hom��P .��X; ��Y / //0:

In particular, X is isomorphic to Y in T if and only if ��X and ��Y are isomorphic
as graded ��P –modules.

Corollary 5.1.2 Let T , P and �� be as in Proposition 5.1.1, and suppose that ��P
is N –sparse. Then any X 2 T with proj.dim��X � 1 splits as follows:

X Š
M

i2Z=N Z

X .i/; ��X
.i/
2 BŒi �;

where B is as in Subsection 3.2.

Definition 5.1.3 Let T be a triangulated category. One says that a triangle

X
f //Y

g //Z
h //†X

in T is antidistinguished if the triangle

X
f //Y

g //Z
�h //†X

is distinguished.

Lemma 5.1.4 Let M be a (simplicial) stable model category, G0 , G1 cofibrant
objects of M, !W G0 �! G1 a cofibration in M, and P a compact generator of
Ho.M/. Suppose that the graded ring ��P is N –sparse and gl.dim��P < N .
Further, assume that ��G0; ��G1 are in BŒi � for fixed i 2 Z=N Z, ��G0 , ��G1 are
projective graded ��P –modules and ��! is a monomorphism. Then the functor

RW D.��P / �! Ho.M/

sends the antidistinguished triangle (see Remark 2.4.8)

(5.1.5) ��G0
��! //��G1

//C.��!/
�@ //��G0Œ1�

to a triangle isomorphic to the elementary distinguished triangle

G0
! // G1

// Cone.!/ // S1 ^G0

of ! (see Definition 2.4.3).
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Proof By Proposition 3.3.12, since ��G0 , ��G1 are projective, the triangle (5.1.5)
is contained in Q.K/. Let us construct a sequence

(5.1.6) A0
˛0 //A1

˛1 //A2
˛2 //A3

in K which is mapped to the triangle (5.1.5) after applying Q. Define

A0W � � � � � � G0 � � � � �

�

OO @@

�

OO ??

� � � �

OO >>

�

OO >>

�

OO ??

� � � �;

OOmm

A1W � � � � � � G1 � � � � �

�

OO @@

�

OO ??

� � � �

OO >>

�

OO >>

�

OO ??

� � � �;

OOmm

A2W � � � � � � G1 .I; 0/^G0 � � � �

�

OO AA

�

OO @@

� � � �

OO @@

G0

!

OO
�

::

�

OO ::

� � � �;

OOmm

A3W � � � � � � � S1 ^G0
� � � �

�

OO @@

�

OO ??

� � � �

OO @@

�

OO ;;

�

OO ;;

� � � �;

OOmm

where �W G0 �! .I; 0/^G0 is the canonical morphism and

.A0/�i
DG0;

.A1/�i
DG1;

.A2/�i
DG1; .A2/�iC1

D .I; 0/^G0; .A2/ˇi
DG0;

.A3/�iC1
D S1

^G0:

Next, define the nontrivial entries of ˛0 , ˛1 , and ˛2 by

.˛0/�i
D !; .˛1/�i

D 1; .˛2/�iC1
D � ^ 1;

where � W I �! S1 is the projection. It follows from the construction of Q that the
triangle

Q.A0/
Q.˛0/ //Q.A1/

Q.˛1/ //Q.A2/
Q.˛2/ //Q.A3/ŠQ.A0/Œ1�
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is isomorphic to (5.1.5). (Note that the morphism � 0W Cone.�/ �! S1 ^G0 induced
from the arrow morphism

G0

� //

��

.I; 0/^G0

�^1
��

� // S1 ^G0

on the cones and the morphism �W Cone.�/ �! S1 ^ G0 coming from the cone
construction of Definition 2.4.3 differ by a sign in the homotopy category Ho.M/.
This explains the appearance of the minus sign before @ in (5.1.5).)

Applying the functor Hocolim to the sequence (5.1.6) gives the elementary distin-
guished triangle

G0
! //G1

// Cone.!/ //S1 ^G0

since A0 , A1 , A2 and A3 are cofibrant. Now, by construction of R, the desired result
follows.

Lemma 5.1.7 Let M, P and N be as in Theorem 3.1.4. Assume that the triangle

F1
� //F0

//M //F1Œ1�

is antidistinguished in D.��P /, and H�F0 , H�F1 are projective ��P –modules,
and H�.�/ is a monomorphism. Then the triangle

R.F1/
R.�/ //R.F0/ //R.M / //R.F1Œ1�/Š†R.F1/

is distinguished.

Proof By Corollary 5.1.2, we have splittings

F0 Š

M
i2Z=N Z

F
.i/
0
; F1 Š

M
i2Z=N Z

F
.i/
1

in D.��P /, where H�F
.i/
0
;H�F

.i/
1
2 BŒi �. Since H�F1 is projective, it follows by

Lemma 2.2.2(i) that for any i; j 2 Z=N Z,

ŒF
.i/
1
;F

.j/
0
�Š Hom��P .H�F

.i/
1
;H�F

.j/
0
/:

In particular,

ŒF
.i/
1
;F

.j/
0
�D 0; i ¤ j ;

Algebraic & Geometric Topology, Volume 12 (2012)



2372 Irakli Patchkoria

whence,
ŒF1;F0�Š

M
i2Z=N Z

ŒF
.i/
1
;F

.i/
0
�:

This implies that the morphism �W F1 �! F0 splits as well. More precisely, there are
morphisms �.i/W F .i/

1
�! F

.i/
0

such that the diagram

F1
� //

Š
��

F0

Š
��L

i F
.i/
1

L
i �
.i/

//L
i F

.i/
0

commutes in D.��P /. Using this we see that the antidistinguished triangle

F1
� //F0

//M //F1Œ1�

is isomorphic to a finite sum of triangles of the form (5.1.5). As R is an additive
functor, Lemma 5.1.4 completes the proof.

5.2 Proof of Theorem 3.1.4(ii)

First we show the essential surjectivity. Consider X 2Ho.M/ with proj.dim��X � 1.
Since

H�W D.��P / �!Grmod–��P

is essentially surjective, there is M 2 D.��P / such that H�M and ��X are iso-
morphic as graded ��P –modules. By Theorem 3.1.4(i), ��R Š H� and, there-
fore, ��.R.M // Š ��X in Grmod–��P . As proj.dim��X � 1, it follows from
Proposition 5.1.1 that

R.M /ŠX:

Next let us verify fully faithfulness. Let M;M 02D.��P / and suppose proj.dim H�M

is at most one. Now we check that the morphism RW ŒM;M 0� // ŒR.M /;R.M 0/�

is an isomorphism. By Lemma 2.2.2, one can choose F 2D.��P / and

F
� //M

such that H�F is a projective ��P –module and H�.�/ is an epimorphism. Then,
embed � into a distinguished triangle

Y //F
� //M //Y Œ1�:

Since � induces a surjection on H� , we have a short exact sequence

0 //H�Y //H�F //H�M //0:
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As proj.dim H�M � 1 and H�F is projective, H�Y is projective as well. Therefore,
by Lemma 5.1.7, the triangle

R.Y / //R.F /
R.�/ //R.M / //R.Y Œ1�/Š†R.Y /

is antidistinguished. In particular, if we apply Œ�;R.M 0/� to this triangle, we get a
long exact sequence. Moreover, R induces a morphism of long exact sequences

ŒF Œ1�;M 0� //

R

��

ŒY Œ1�;M 0� //

R

��

ŒM;M 0� //

R

��

ŒF;M 0� //

R

��

ŒY;M 0�

R

��
ŒR.F Œ1�/;R.M 0/� // ŒR.Y Œ1�/;R.M 0/� // ŒR.M /;R.M 0/� // ŒR.F /;R.M 0/� // ŒR.Y /;R.M 0/�:

By Theorem 3.1.4(i), Lemma 2.2.2(i) and the Five Lemma,

RW ŒM;M 0� // ŒR.M /;R.M 0/�

is an isomorphism.

Corollary 5.2.1 Let M be a stable model category and P a compact generator of
Ho.M/. Suppose that the graded ring ��P is N –sparse and gl.dim��P D 1. Then
the functor

RW D.��P / �! Ho.M/

is an equivalence of categories.

Remark 5.2.2 Lemma 5.1.7 and the construction of the Adams spectral sequence of
Proposition 2.2.3 show that R preserves (up to sign) universal coefficient sequences.
More precisely, for any M 2D.��P / with proj.dim H�M � 1 and M 0 2D.��P /,
the diagram

0 // Ext1
��P

.H�M Œ1�;H�M 0/ //

Š

��

ŒM;M 0�
H� //

R

��

Hom��P .H�M;H�M 0/ //

Š

��

0

0 // Ext1
��P

.��.R.M //Œ1�; ��.R.M
0/// // ŒR.M /;R.M 0/�

�� // Hom��P .��.R.M //; ��.R.M
0/// // 0

commutes up to sign, where the left and right isomorphisms come from the functor
isomorphism

�� ıRŠH�:

Note that the equivalence of categories

D.��P /� Ho.M/

in Corollary 5.2.1 is a special case of Greenlees [10, 4.3.2]. Moreover, since the
functor R preserves universal coefficient sequences, it is in fact naturally isomorphic
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to the functor constructed in [10, 4.3]. One should note although [10, 4.3.2] is stated
for homotopy categories coming from stable model categories, the proof in [10, 4.3]
can be equally applied to general triangulated categories as well. In other words, one
has the following generalization of Corollary 5.2.1.

Proposition 5.2.3 Suppose T is a triangulated category with infinite coproducts,
P 2 T a compact generator, and let ��DHomT .P;�/� . Suppose that the graded ring
��P is N –sparse and gl.dim��P D 1. Then T is equivalent to D.��P /.

Remark 5.2.4 According to [10, 4.3.1] the equivalence D.��P /� Ho.M/ is even
a triangulated equivalence. However, the argument about Toda brackets in [10, 4.3]
and hence the proof of the latter claim contains a gap. We do not know whether the
equivalences in Proposition 5.2.3 and Corollary 5.2.1 are triangulated or not.

5.3 Examples

Example 5.3.1 (Complex K–theory) It is well known to specialists that the derived
category D.KU/ of the complex K–theory spectrum KU is equivalent to the derived
category D.��KU/ of the homotopy ring

��KU Š ZŒu;u�1�; juj D 2:

Since ��KU is 2–sparse and gl.dim��KU D 1, one can think of this equivalence
as a consequence of Corollary 5.2.1. Note also that �1KU ' Z � BU is not a
product of Eilenberg–Mac Lane spaces (see Corollary A.1.2). Consequently, in view
of Corollary 4.2.4, there does not exist a zigzag of Quillen equivalences between the
model categories Mod–KU and Mod–ZŒu;u�1�. In particular,

RW D.ZŒu;u�1�/ �!D.KU/

can not be derived from a zigzag of Quillen equivalences. Note that we do not know
whether the equivalence D.ZŒu;u�1�/�D.KU/ is triangulated or not.

Example 5.3.2 (Connective Morava K–theories) The connective Morava K–theory
spectrum k.n/, n� 1, is obtained from the truncated Brown–Peterson spectrum BPhni
by killing the regular sequence .p; v1; : : : ; vn�1/. In particular, we have an isomor-
phism of graded rings

��k.n/Š Fp Œvn�; jvnj D 2.pn
� 1/:

As gl.dim��k.n/D 1 and ��k.n/ is 2.pn� 1/–sparse, the functor

RW D.Fp Œvn�/ �!D.k.n//
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is an equivalence of categories by Corollary 5.2.1. Observe that �1k.n/ is not
a product of Eilenberg–Mac Lane spaces (see Proposition A.1.10). Therefore, by
Corollary 4.2.4, the model categories Mod–k.n/ and Mod–Fp Œvn� are not connected
by a zigzag of Quillen equivalences. In particular, R does not come from a zigzag of
Quillen equivalences.

6 The two-dimensional case

In this section we prove Theorems 3.1.4(iii) and 3.1.5.

6.1 Proof of Theorem 3.1.4(iii)

Let X 2Ho.M/ and suppose proj.dim��X �2. By Lemma 2.2.2 and Corollary 5.1.2,
there are cofibrant objects F .i/ , i 2 Z=N Z, and a morphismW

i F .i/
� //X

such that ��F .i/ are projective, ��F .i/ 2 BŒi � andL
i ��F

.i/
��� //��X

is an epimorphism. Embed � into a distinguished triangle

(6.1.1) Y // W
i F .i/

� // X // †Y:

Since � induces a surjection on �� , we have a short exact sequence

0 //��Y //L
i ��F

.i/
��� //��X //0:

As proj.dim��X � 2 and
L

i ��F
.i/ is projective, one has

proj.dim��Y � 1:

Combining this with Corollary 5.1.2, we get a splitting

Y Š
_

i

Y .i/

in Ho.M/, where Y .i/ 2Mcof , and ��Y .i/ 2 BŒi �, i 2 Z=N Z. If we replace Y

by
W

iY
.i/ in (6.1.1), we get a distinguished triangleW

i Y .i/ //W
i F .i/

� //X //†
�W

i Y .i/
�
:
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By the Adams spectral sequence of Proposition 2.2.3,

ŒY .i/;F .j/�D 0; j ¤ i; i C 1 .mod N /;

since proj.dim��Y
.i/ � 1. Therefore the only possible nontrivial entries of_

i

Y .i/ �!
_

i

F .i/

are

Y .i/
˛i //F .i/ ; Y .i�1/

ˇi //F .i/:

Without loss of generality one may assume that F .i/ is bifibrant (ie, cofibrant and
fibrant) for any i 2 Z=N Z. Hence, there exist morphisms

li W Y
.i/
�! F .i/; ki W Y

.i�1/
�! F .i/

in M whose homotopy classes are ˛i and �ˇi , respectively. Then, we get a diagram

W W F .0/ F .1/ � � � F .N�2/ F .N�1/

Y .0/

l0

OO
k1

<<

Y .1/

l1

OO ==

� � �

;;

Y .N�2/

lN�2

OO
kN�1

99

Y .N�1/

lN�1

OO
ll

in M, ie, an object of MCN . We may also assume that W 2 .MCN /cof (otherwise
we could replace it cofibrantly). The homotopy colimit of W is isomorphic to the
homotopy coequalizer of W

i Y .i/
l //

k

//
W

i F .i/ ;

where k D
W

iki and l D
W

ili . Therefore, by Lemma 2.6.4, one has

Hocolim W ŠX

in Ho.M/. On the other hand, clearly, W 2K . Hence, the construction of R implies

R.Q.W //ŠX;

thus completing the proof.

6.2 Technical lemmas

In this subsection we prove two lemmas which will be used in the proof of Theorem 3.1.5.
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Lemma 6.2.1 Let M, P , �� and N be as in Theorem 3.1.5, and .C�; d/ be a
DG ��P –module and G� a DG ��P –module with zero differential (ie, a graded
��P –module), and suppose that

f W G� �! C�

is a DG morphism which induces a monomorphism on homology. Then the functor

RW D.��P / �! Ho.M/

sends the antidistinguished triangle (see Remark 2.4.8)

(6.2.2) G�
f //C�

� //C.f /
�@ //G�Œ1�

to a distinguished triangle.

Proof The proof goes in the same way as that of Lemma 5.1.4. First we construct a
sequence (see Proposition 3.5.1)

X //Y //Z //X #

in L (see Notation 3.3.1 and Proposition 3.3.5. Note that L=K under the hypotheses of
Theorem 3.1.5.) which is mapped to a triangle isomorphic to (6.2.2) after applying Q.

Consider the splitting
G� ŠG.0/

˚ � � �˚G.N�1/

in Grmod–��P , where G.i/ 2BŒi �, i 2Z=N Z. In view of Proposition 3.2.1(i), there
are cofibrant X�i

’s with
��X�i

ŠG.i/:

Clearly, the diagram

X W X�0
X�1

� � � X�N�2
X�N�1

�

OO <<

�

OO ==

� � �

;;

�

OO 99

�

OO
ll

is an object of L and Q.X /Š .G�; 0/. Next, by Corollary 3.3.13, Q.L/DMod–��P
since gl.dim��P is less than N � 1. In particular, one can choose a bifibrant

Y W Y�0
Y�1

� � � Y�N�2
Y�N�1

Yˇ0

l0

OO
k1

==

Yˇ1

l1

OO >>

� � �

<<

YˇN�2

lN�2

OO
kN�1

::

YˇN�1

lN�1

OO
ll
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in L such that
Q.Y /Š .C�; d/:

It then follows from Corollary 3.3.13 that there is a morphism  W X �! Y in L so
that the diagram

Q.X /
Q. / //

Š

��

Q.Y /

Š

��
G�

f // C�

commutes in Mod–��P . Further, as X is cofibrant and Y is fibrant, the morphism  

comes from some morphism in MCN , denoted by  as well. Moreover, using the
factorization axiom for the model category MCN , we may assume that  W X �! Y

is a cofibration in MCN , ie,

X�i
_Yˇi�1

_Yˇi

. �i
;ki�1;li /

//Y�i

is a cofibration for any i 2Z=N Z (see Proposition 2.5.3). Next, we construct an object
in L whose image under Q is isomorphic to the algebraic mapping cone C.f /. Define
Z 2MCN by

Z�i
D CX�i�1

_Y�i
; Zˇi

DX�i
_Yˇi

;

�i WZˇi
DX�i

_Yˇi

. �i
;li /

//Y�i

incl //CX�i�1
_Y�i

DZ�i
;

�i WZˇi�1
DX�i�1

_Yˇi�1

"i�1_ki //CX�i�1
_Y�i

DZ�i
;

where
C.�/D .I; 0/^�;

and "i W X�i
�! CX�i

, i 2 Z=N Z, is the canonical map. Thus, the diagram Z looks
as follows:

CX��1
_Y�0

CX�0
_Y�1

� � � CX�N�3
_Y�N�2

CX�N�2
_Y�N�1

X�0
_Yˇ0

�0

OO
�1

88

X�1
_Yˇ1

�1

OO ;;

� � �

99

X�N�2
_YˇN�2

�N�2

OO
�N�1

66

X�N�1
_YˇN�1

:

�N�1

OOmm

As X and Y are cofibrant and  W X �! Y is a cofibration, it follows Z 2 .MCN /cof .
Further,

���i W ��Zˇi
//��Z�i
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is a monomorphism since f induces a monomorphism on homology. Besides, obvi-
ously, ��Zˇi

and ��Z�i
are objects of BŒi �. Consequently, one gets Z 2 L. The

construction of Q immediately implies that

Q.Z/Š C.f /

in Mod–��P .

The diagram Z comes with two obvious morphisms Y �!Z and Z �!X # in MCN .
Hence, we get a sequence

(6.2.3) X
 //Y //Z //X #

in L. It is immediate from the construction of Q that the triangle

Q.X /
Q. / //Q.Y / //Q.Z/ //Q.X #/ŠQ.X /Œ1�

is isomorphic to (6.2.2) (the sign appears by the same reason as in Lemma 5.1.4). On
the other hand, applying the functor Hocolim to (6.2.3) (X , Y , Z are cofibrant) one
obtains the elementary distinguished triangle

colim X
colim // colim Y // Cone.colim /

ı //S1 ^ colim X:

Now the desired result follows from the construction of R.

Lemma 6.2.4 Let M, P , N be as in Theorem 3.1.5. Suppose that the triangle

(6.2.5) M 0 � //F
f //M

�d //M 0Œ1�

is antidistinguished in D.��P /, and assume that proj.dim H�M
0 � 1 and H�.�/ is a

monomorphism. Then the triangle

R.M 0/
R.�/ //R.F /

R.f / //R.M /
�R.d///R.M 0Œ1�/Š†R.M 0/

is distinguished in Ho.M/.

Proof By Proposition 5.1.1, since proj.dim H�M
0 � 1, one has

M 0
ŠH�M

0

in D.��P /, where H�M
0 is regarded as a differential graded ��P –module with zero

differential. Therefore, the triangle (6.2.5) is isomorphic to an antidistinguished triangle

H�M
0 //F

f //M //H�M
0Œ1�:
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Without loss of generality we may assume that M is cofibrant in Mod–��P . Then the
last morphism in the latter triangle comes from some morphism 'W M �!H�M

0Œ1�

of differential graded modules and, by one of the axioms of triangulated categories,
one has a triangle isomorphism

H�M
0 // F //

Š

���
�
� M

' // H�M
0Œ1�

H�M
0 incl // C.'/Œ�1�

�@Œ�1�// M
' // H�M

0Œ1�

in D.��P / (see Remark 2.4.8). On the other hand, the same axiom shows that the
lower triangle is isomorphic to

H�M
0 incl //C.'/Œ�1� //C.incl/ �@ //H�M

0Œ1�:

Thus the triangle (6.2.5) is isomorphic to an antidistinguished triangle of the form
(6.2.2) from Lemma 6.2.1. This completes the proof.

6.3 Proof of Theorem 3.1.5

It remains to check that R is fully faithful when restricted to the full subcategory of
at most two dimensional objects. We now verify a more general fact. Namely, we
show that for M 2 D.��P / with proj.dim H�M � 2 and any M 0 2 D.��P /, the
morphism

RW ŒM;M 0� // ŒR.M /;R.M 0/�

is an isomorphism. Indeed, by Lemma 2.2.2, we may choose F 2 D.��P / and
� W F �!M so that H�F is projective and H�.�/ an epimorphism. Embed � into a
distinguished triangle

Y //F
� //M //Y Œ1�:

As � induces a surjection on H� , one has a short exact sequence

0 //H�Y //H�F
H�.�/ //H�M //0:

It then follows that
proj.dim H�Y � 1;

since proj.dim H�M � 2 and H�F is projective. Therefore, by Lemma 6.2.4, the
triangle

R.Y / //R.F /
R.�/ //R.M / //R.Y Œ1�/Š†R.Y /
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is antidistinguished. In particular, if we apply Œ�;R.M 0/� to this triangle, we get a
long exact sequence. Moreover, R induces a morphism of long exact sequences

ŒF Œ1�;M 0� //

R

��

ŒY Œ1�;M 0� //

R

��

ŒM ;M 0� //

R

��

ŒF;M 0� //

R

��

ŒY ;M 0�

R

��
ŒR.F Œ1�/;R.M 0/� // ŒR.Y Œ1�/;R.M 0/� // ŒR.M/;R.M 0/� // ŒR.F/;R.M 0/� // ŒR.Y /;R.M 0/�:

By Lemma 2.2.2(i), the first and fourth morphisms in the diagram are isomorphisms.
Besides, the proof in Subsection 5.2 shows that so are the second and last one. Conse-
quently, by the five lemma,

RW ŒM;M 0� // ŒR.M /;R.M 0/�

is an isomorphism.

Remark 6.3.1 Let M, P and N be as in Theorem 3.1.4. In [7, 2.2, Proposition 2]
Franke claims that for any distinguished triangle

M
f //M 0

g //M 00 @ //M Œ1�

in D.��P / with H�.f / a monomorphism, the triangle

R.M /
R.f / //R.M 0/

R.g/ //R.M 00/
R.@/ //R.M Œ1�/Š†R.M /

is (anti)distinguished in Ho.M/. If this was so, then one could prove (similarly to the
proofs of Theorems 3.1.4(ii) and 3.1.5) that under the hypotheses of Theorem 3.1.4

RW D.��P / // Ho.M/

is fully faithful. Moreover, using the claim, one can also check that R is essentially
surjective and thus an equivalence of categories. But, the proof of [7, 2.2, Proposition 2]
contains a gap. The point is that the arguments given in [7, 2.2], show that the sequence

R.M /
R.f / //R.M 0/

R.g/ //R.M 00/

is a part of some distinguished triangle, but do not say anything about why exactly the
morphism

R.M 00/
R.@/ //R.M Œ1�/Š†R.M /

makes this sequence into an (anti)distinguished triangle.

We were unable to fill this gap in the general setting. Although we managed to do this
in low dimensional cases and thus obtained the statements of Theorems 3.1.4 and 3.1.5.
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Note that in particular, we do not know whether the functor

RW D.��P / // Ho.M/

is triangulated in general or not.

6.4 Examples

Example 6.4.1 (Real connective K–theory localized at an odd prime) Consider
ko.p/ , the real connective K–theory spectrum localized at an odd prime p . The ring
isomorphism

��ko.p/ Š Z.p/Œ!�; j!j D 4;

implies that gl.dim��ko.p/ D 2 and ��ko.p/ is 4–sparse. Thus Corollary 1.1.3 can
be applied to ko.p/ and therefore we conclude that the functor

RW D.Z.p/Œ!�/ //D.ko.p//

is an equivalence of categories. Note that �1ko.p/'Z.p/�BO.p/ is not a product of
Eilenberg–Mac Lane spaces (see Corollary A.1.3). Hence, in view of Corollary 4.2.4,
there does not exist a zigzag of Quillen equivalences between the model categories
Mod–ko.p/ and Mod–Z.p/Œ!�. In particular, the functor

RW D.Z.p/Œ!�/ //D.ko.p//

can not be derived from a zigzag of Quillen equivalences.

Example 6.4.2 The truncated Brown–Peterson spectrum BPh1i for an odd prime p

satisfies the assumptions of Corollary 1.1.3. Indeed, there is a ring isomorphism

��BPh1i Š Z.p/Œv1�; jv1j D 2.p� 1/;

and gl.dim Z.p/Œv1�D 2 and 2.p� 1/� 4. Thus, the functor

RW D.Z.p/Œv1�/ �!D.BPh1i/

is an equivalence of categories. Next, as mentioned above, �1BPh1i is not a product
of Eilenberg–Mac Lane spaces (see Corollary A.1.5). Therefore, by Corollary 4.2.4, the
model categories Mod–BPh1i and Mod–Z.p/Œv1� can not be connected by a zigzag
of Quillen equivalences. In particular, RW D.Z.p/Œv1�/ �! D.BPh1i/ is not derived
from a zigzag of Quillen equivalences.

Example 6.4.3 Another ring spectrum to which Corollary 1.1.3 applies is the Johnson–
Wilson spectrum E.2/ for an odd prime p . This follows from the ring isomorphism

��E.2/Š Z.p/Œv1; v2; v
�1
2 �; jv1j D 2.p� 1/; jv2j D 2.p2

� 1/;
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since gl.dim Z.p/Œv1; v2; v
�1
2
�D 2 and 2.p�1/� 4. Further, as in the two previous ex-

amples, �1E.2/ is not a product of Eilenberg–Mac Lane spaces (see Corollary A.1.8)
and therefore, by Corollary 4.2.4, there is no zigzag of Quillen equivalences between
the model categories Mod–E.2/ and Mod–Z.p/Œv1; v2; v

�1
2
�. In particular, the equiv-

alence RW D.Z.p/Œv1; v2; v
�1
2
�/ �!D.E.2// does not come from a zigzag of Quillen

equivalences.

Finally, we would like to conclude this section with the following remark.

Remark 6.4.4 As noted above, Corollaries 3.1.7 and 3.1.8 are consequences of Theo-
rems 1.1.1 and 1.1.2, respectively. However, one can also give independent and purely
algebraic proofs of Corollaries 3.1.7 and 3.1.8 as well. The main idea is the same as in
the proofs of Theorems 3.1.4 and 3.1.5, but in this special case one can use various
algebraic constructions which are easier (compared to their topological counterparts)
to deal with. Indeed, instead of the cone construction from Definition 2.4.3 we can
apply the algebraic mapping cone construction of Remark 2.4.8. Further, the mapping
spaces in (3.3.8) can be replaced by the internal Hom-complexes. Next, since any
cofibration in Mod–A is a split monomorphism of underlying graded modules, the
right vertical arrow in (3.3.8) becomes an epimorphism and thus (3.3.8) leads to a
short exact sequence of chain complexes. Clearly, the resulting long exact homology
sequence plays the role of the Mayer–Vietoris sequence. Then, the verification of the
identity q@Db in (3.3.10) can be done by explicit algebraic calculations with homology
classes. Finally, the long exact sequence of the homotopy coequalizer (3.3.15) becomes
the long exact homology sequence of

0 //
L

iXˇi

l�k //
L

iX�i
// colim X //0:

The other points of the proofs of Theorems 3.1.4 and 3.1.5 are more or less formal and
can be directly used in the algebraic setting as well.

Appendix A Infinite loop spaces

In this appendix we show that the infinite loop spaces appearing in Subsections 4.3, 5.3
and 6.4 are not products of Eilenberg–Mac Lane spaces. These facts are well known to
experts. However, the author was unable to find proper references for the material. We
start with the following.

Lemma A.1.1 Let X be a connected space and R denote one of the rings Z or Z.p/
(for p a prime). Suppose that H�.X;R/ is torsion free and �nX has a nontrivial
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R–free direct summand for infinitely many n 2N . Then X is not weakly equivalent
to a product of Eilenberg–Mac Lane spaces.

Proof Assume that X is weakly equivalent to the product of Eilenberg–Mac Lane
spaces Y

n�1

K.�nX; n/:

Fix any m� 0 and choose s >max.m; 2/ so that �sX contains a nontrivial R–free
direct summand. Then the cohomology

H mCs.X;R/ŠH mCs

� Y
n�1

K.�nX; n/;R

�
contains the stable cohomology of Eilenberg–Mac Lane spaces

H mCs.K.R; s/;R/DH m.HR;R/;

(s > m is the stable range) as a direct summand, for any m � 0 (HR denotes the
Eilenberg–Mac Lane spectrum associated to R). It is well known that H�.HR;R/

has torsion (see eg, Kochman [15, Theorem 3.5]). Thus, we see that H�.X;R/ has
torsion which is a contradiction.

Corollary A.1.2 The classifying space BU is not weakly equivalent to a product of
Eilenberg–Mac Lane spaces. Moreover, for any prime p , the localization BU.p/ is not
weakly equivalent to a product of Eilenberg–Mac Lane spaces.

Proof It is well known (see eg, Switzer [23, 16.11. Corollary]) that

H�.BU;Z/Š ZŒc1; c2; : : :�;

H�.BU.p/;Z.p//Š Z.p/Œc1; c2; : : :�:

Next, �2nBUŠZ and �2nBU.p/ŠZ.p/ , for n�1. Hence, we can apply Lemma A.1.1
and deduce the desired result.

Corollary A.1.3 For any odd prime p , the space BO.p/ is not weakly equivalent to a
product of Eilenberg–Mac Lane spaces.

Proof After p–localizing the stable equivalence of spectra

KU ' KO^C.�/;

where � is the Hopf map, one obtains a splitting

KU.p/ ' KO.p/ _†
2KO.p/:
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Passing to associated infinite loop spaces and then to path components, we have
BU.p/ ' BO.p/ �Y , for some space Y. Since H�.BU.p/;Z.p// is torsion free, so is
H�.BO.p/;Z.p//. Further, one has �4nBO.p/ŠZ.p/ , for n�1. Hence, Lemma A.1.1
applies to BO.p/ .

Remark A.1.4 The space BO.2/ is not a product of Eilenberg–Mac Lane spaces as
well. However, we do not need this fact in the paper.

Next, we continue with �1BPh1i. The Adams splitting

ku.p/ '
p�2_
iD0

†2iBPh1i

implies that
BU.p/ '�

1
0 BPh1i �Y;

where �1
0

BPh1i is the path component of the unit and Y a certain space. Hence,
the cohomology H�.�1

0
BPh1i;Z.p// is torsion free. On the other hand, we have

�2.p�1/m.�
1
0

BPh1i/ŠZ.p/ , m� 1. Thus, by Lemma A.1.1, one obtains the follow-
ing corollary.

Corollary A.1.5 For any prime p , the space �1BPh1i is not weakly equivalent to a
product of Eilenberg–Mac Lane spaces.

Next, we want to show that �1BPhni and �1E.n/ are not products of Eilenberg–
Mac Lane spaces for any n� 1 and p a prime. The strategy is to deduce these facts
from Corollary A.1.5 using the following simple lemma.

Lemma A.1.6 Let f W X �! Y be a map of simply connected spaces and suppose
�lf W �lX �! �lY is a split monomorphism for some fixed l � 2. If the l –th k –
invariant kl.X / of X is nontrivial, then the l –th k –invariant kl.Y / of Y is nontrivial.

Proof Recall that by definition, we have that kl.X / 2 H lC1.Pl�1X; �lX / and
kl.Y / 2H lC1.Pl�1Y; �lY /, where Pl�1 is the .l � 1/–th Postnikov section functor.
Next, consider the diagram

H lC1.Pl�1Y; �lY /
.Pl�1f /

�

//H lC1.Pl�1X; �lY / H lC1.Pl�1X; �lX /
.�lf /�oo :

By the naturality of k –invariants, we get

.Pl�1f /
�kl.Y /D .�lf /�kl.X /:

Since �lf is a split monomorphism, so is .�lf /� and hence, .�lf /�kl.X /¤ 0. This
implies that .Pl�1f /

�kl.Y /¤ 0 and thus, kl.Y /¤ 0.
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Corollary A.1.7 For any prime p and n � 1, the space �1BPhni is not weakly
equivalent to a product of Eilenberg–Mac Lane spaces.

Proof It follows from Wilson [24, Corollary 5.5] that

�1BPhnC 1i '�1BPhni �Y;

for some space Y . An elementary induction argument using Corollary A.1.5 and
Lemma A.1.6 completes the proof.

Further, one has the following corollary.

Corollary A.1.8 For any prime p and n � 1, the space �1E.n/ is not weakly
equivalent to a product of Eilenberg–Mac Lane spaces.

Proof The morphism of spectra BPhni�!E.n/ gives a map �1
0

BPhni�!�1
0

E.n/

which induces split monomorphisms an all homotopy groups. Hence, Corollary A.1.7
and Lemma A.1.6 imply the desired result.

Finally, we turn to �1k.n/, n � 1. To show that this space is not a product of
Eilenberg–Mac Lane spaces, we need an extra argument since all nontrivial homotopy
groups of k.n/ are torsion. We use the following well-known result.

Proposition A.1.9 (Rudyak [20, IX.7.17]) For a prime p and n greater than or
equal to 1, k2.pn�1/.k.n//DQn is the first nontrivial (stable) k –invariant of k.n/.
(Here, Qn is a specific degree 2pn� 1 element in the Steenrod algebra Ap .)

As a consequence, one obtains the following.

Proposition A.1.10 For any prime p and n � 1, the space �1k.n/ is not weakly
equivalent to a product of Eilenberg–Mac Lane spaces.

Proof Proposition A.1.9 implies that there is a cofiber sequence of spectra

†2pn�2HFp
//P2pn�2k.n/ //HFp

Qn //†2pn�1HFp:

Let fk.n/lgl�0 be the �–spectrum associated to k.n/. If l > 2pn� 1 (which implies
that the cohomology H lC2pn�1.K.Fp; l/;Fp/ is stable), the latter cofiber sequence
induces a fiber sequence of infinite loop spaces

Evl P2pn�2k.n/ //K.Fp; l/
Qn //K.Fp; l C 2pn� 1/:
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Here Evl is the (derived) evaluation functor at level l from the stable homotopy
category to the homotopy category of spaces. Obviously, by applying Evl to the stable
Postnikov tower of k.n/, one obtains a Postnikov tower for the space Evl k.n/'k.n/l .
Hence, Qn is the first (unstable) nontrivial k –invariant of k.n/l and therefore, k.n/l is
not weakly equivalent to a product of Eilenberg–Mac Lane spaces for every l > 2pn�1.
Since k.n/l is the .l � 1/–connected cover of Evl K.n/, where K.n/ is the periodic
Morava K–theory, it follows that Evl K.n/, l > 2pn� 1, is not weakly equivalent to
a product of Eilenberg–Mac Lane spaces. On the other hand the periodicity of K.n/

yields that
�1K.n/' Ev4.pn�1/K.n/;

and thus, �1K.n/ is not weakly equivalent to a product of Eilenberg–Mac Lane
spaces. Now the obvious weak equivalence �1K.n/'�1k.n/ finishes the proof.
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