Volume 12, issue 4 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Equivariant topological complexity

Hellen Colman and Mark Grant

Algebraic & Geometric Topology 12 (2012) 2299–2316
Bibliography
1 I Basabe, J González, Y B Rudyak, D Tamaki, Higher topological complexity and homotopy dimension of configuration spaces on spheres arXiv:1009.1851
2 I Berstein, T Ganea, The category of a map and of a cohomology class, Fund. Math. 50 (1961/1962) 265 MR0139168
3 G Cicortaş, Categorical sequences and applications, Studia Univ. Babeş-Bolyai Math. 47 (2002) 31 MR1989588
4 H Colman, Equivariant LS–category for finite group actions, from: "Lusternik–Schnirelmann category and related topics" (editors O Cornea, G Lupton, J Oprea, D Tanré), Contemp. Math. 316, Amer. Math. Soc. (2002) 35 MR1962151
5 O Cornea, G Lupton, J Oprea, D Tanré, Lusternik–Schnirelmann category, 103, Amer. Math. Soc. (2003) MR1990857
6 T tom Dieck, Transformation groups, 8, Walter de Gruyter & Co. (1987) MR889050
7 E Fadell, The equivariant Ljusternik–Schnirelmann method for invariant functionals and relative cohomological index theories, from: "Topological methods in nonlinear analysis" (editor A Granas), Sém. Math. Sup. 95, Presses Univ. Montréal (1985) 41 MR801933
8 M Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003) 211 MR1957228
9 M Farber, Instabilities of robot motion, Topology Appl. 140 (2004) 245 MR2074919
10 M Farber, Topology of robot motion planning, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 185 MR2276952
11 R H Fox, On the Lusternik–Schnirelmann category, Ann. of Math. 42 (1941) 333 MR0004108
12 J González, P Landweber, Symmetric topological complexity of projective and lens spaces, Algebr. Geom. Topol. 9 (2009) 473 MR2491582
13 M Grant, Topological complexity, fibrations and symmetry, Topology Appl. 159 (2012) 88 MR2852952
14 I M James, On category, in the sense of Lusternik–Schnirelmann, Topology 17 (1978) 331 MR516214
15 W Marzantowicz, A G-Lusternik–Schnirelman category of space with an action of a compact Lie group, Topology 28 (1989) 403 MR1030984
16 W Singhof, On the Lusternik–Schnirelmann category of Lie groups, Math. Z. 145 (1975) 111 MR0391075
17 S Smale, On the topology of algorithms. I, J. Complexity 3 (1987) 81 MR907191
18 E H Spanier, Algebraic topology, McGraw-Hill (1966) MR0210112
19 V A Vasiliev, Cohomology of braid groups and the complexity of algorithms, Funktsional. Anal. i Prilozhen. 22 (1988) 15, 96 MR961758
20 A S Švarc, The genus of a fiber space. I, II., Amer. Math. Soc. Transl. 55 (1966) 49