Volume 12, issue 4 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Finite type invariants of rational homology $3$–spheres

Delphine Moussard

Algebraic & Geometric Topology 12 (2012) 2389–2428
Bibliography
1 E Auclair, C Lescop, Clover calculus for homology 3–spheres via basic algebraic topology, Algebr. Geom. Topol. 5 (2005) 71 MR2135546
2 D Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423 MR1318886
3 S Garoufalidis, M Goussarov, M Polyak, Calculus of clovers and finite type invariants of 3–manifolds, Geom. Topol. 5 (2001) 75 MR1812435
4 K Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1 MR1735632
5 A Kawauchi, S Kojima, Algebraic classification of linking pairings on 3–manifolds, Math. Ann. 253 (1980) 29 MR594531
6 M Kontsevich, Vassiliev’s knot invariants, from: "I M Gel’fand Seminar" (editors S Gelfand, S Gindikin), Adv. Soviet Math. 16, Amer. Math. Soc. (1993) 137 MR1237836
7 G Kuperberg, D P Thurston, Perturbative 3–manifold invariants by cut-and-paste topology arXiv:math/9912167
8 T T Q Le, An invariant of integral homology 3–spheres which is universal for all finite type invariants, from: "Solitons, geometry, and topology: on the crossroad" (editors V M Buchstaber, S P Novikov), Amer. Math. Soc. Transl. Ser. 2 179, Amer. Math. Soc. (1997) 75 MR1437158
9 T T Q Le, J Murakami, T Ohtsuki, On a universal perturbative invariant of 3–manifolds, Topology 37 (1998) 539 MR1604883
10 C Lescop, Splitting formulae for the Kontsevich–Kuperberg–Thurston invariant of rational homology 3–spheres arXiv:math/0411431
11 G Massuyeau, Splitting formulas for the LMO invariant of rational homology three-spheres, in preparation
12 S V Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 (1987) 268, 345 MR915115
13 M D Meyerson, Representing homology classes of closed orientable surfaces, Proc. Amer. Math. Soc. 61 (1976) 181 MR0425967
14 J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211 MR0174052
15 R Miranda, Nondegenerate symmetric bilinear forms on finite abelian 2–groups, Trans. Amer. Math. Soc. 284 (1984) 535 MR743731
16 C T C Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963) 281 MR0156890