Volume 12, issue 4 (2012)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Mutation and $\mathrm{SL}(2,\mathbb{C})$–Reidemeister torsion for hyperbolic knots

Pere Menal-Ferrer and Joan Porti

Algebraic & Geometric Topology 12 (2012) 2049–2067
Abstract

Given a hyperbolic knot, we prove that the Reidemeister torsion of any lift of the holonomy to SL(2, ) is invariant under mutation along a surface of genus 2, hence also under mutation along a Conway sphere.

Keywords
hyperbolic knot, mutation, Reidemeister torsion
Mathematical Subject Classification 2000
Primary: 57M27
Secondary: 57M50, 57M25
References
Publication
Received: 20 September 2011
Revised: 27 September 2012
Accepted: 28 September 2012
Published: 31 October 2012
Authors
Pere Menal-Ferrer
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Cerdanyola del Vallès
Spain
Joan Porti
Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Cerdanyola del Vallès
Spain
http://mat.uab.cat/~porti/