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Complete intersections and mod p cochains
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We give homotopy invariant definitions corresponding to three well known properties
of complete intersections, for the ring, the module theory and the endomorphisms
of the residue field, and we investigate them for the mod p cochains on a space,
showing that suitable versions of the second and third are equivalent and that the first
is stronger. We are particularly interested in classifying spaces of groups, and we give
a number of examples. The case of rational homotopy theory is treated in [27], and
there are some interesting contrasts.

13C40, 55P43, 13D99, 20J06, 55N99; 14M10, 55P42, 55U35, 20J05

1 Introduction

1A The context

In algebraic geometry, the best behaved varieties are subvarieties of an affine space
that are specified by the right number of equations: if they are of codimension c then
only c equations are required. Considering this locally, we may work in commutative
algebra. A commutative local ring R is a complete intersection (ci) if its completion is
the quotient of a regular local ring Q by a regular sequence, f1; f2; : : : ; fc . We will
suppose that R is complete, so that

RDQ=.f1; : : : ; fc/:

The smallest possible value of c (as Q and the regular sequence vary) is called the
codimension of R.

If R is a commutative Noetherian local ring with residue field k that is ci of codimension
c , one may construct a resolution of any finitely generated module growing like a
polynomial of degree c � 1. In particular the ring Ext�R.k; k/ has polynomial growth
(we say that R is gci). Perhaps the most striking result about ci rings is the theorem
of Gulliksen [29], which states that this characterises ci rings so that the ci and gci
conditions are equivalent for local rings.
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In fact one may go further and show that the resolutions are constructed in an eventually
multiperiodic fashion. In particular, for a ci local ring, Ext�R.k; k/ is finite as a
module over a commutative Noetherian ring; see Gulliksen [28]. This in turn opens
the way to the theory of support varieties for modules over a ci ring; see Avramov and
Buchweitz [7].

1B The aspiration

We are interested in extending the notion of ci rings to commutative differential graded
algebras (DGAs) and commutative ring spectra. Indeed we have a particular interest in
studying the cochains C �.BGI k/ on the classifying space of a finite group G , where k

is a field of characteristic p , partly because of the consequences for the cohomology ring
H�.BGI k/. We would like to follow the model of Dwyer, Greenlees and Iyengar [15],
who consider the Gorenstein condition. In fact, they show C �.BGI k/ is Gorenstein in
a homotopical sense for all finite groups G . This structural result then establishes the
existence of a local cohomology theorem for H�.BGI k/. An immediate corollary is
the result of Benson and Carlson [9] that if H�.BGI k/ is Cohen–Macaulay it is also
Gorenstein, and the fact that in any case H�.BGI k/ is Gorenstein in codimension 0
in the sense that its localization at any minimal prime is Gorenstein.

By contrast, we only expect the complete intersection condition on C �.BG/ to hold for
a small subclass of groups G , and we expect the structural implications for H�.BG/

to be at a more subtle level. To explain this, we note that by the Eilenberg–Moore
theorem, the counterpart of the Ext algebra Ext�R.k; k/ for RD C �.BG/ is the loop
space homology of the p–completed classifying space, H�.�.BG^p //. Of course if G

is a p–group, this is simply the group ring kG in degree 0. More generally, it is known
to be of polynomial growth in certain cases (for instance A4 or M11 in characteristic 2)
and R Levi [33; 34; 35; 36] has proved there is a dichotomy between small growth and
large growth, and given examples where the growth is exponential. Evidently groups
whose p–completed classifying spaces have loop space homology that has exponential
growth cannot be spherically resolvable, so Levi’s groups disproved a conjecture of
F Cohen.

We give homotopy invariant versions of all three characterizations of the ci condition:

(sci): the “regular ring modulo regular sequence” condition,

(mci): the “modules have eventually multiperiodic resolutions” and

(gci): polynomial growth of the Ext algebra.

Before we do so, we need to give a counterpart of the Noetherian condition, which in
effect corresponds to Noether normalisation. In crude terms, ignoring the variety of
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variants, we show that under the Noetherian condition the mci and gci conditions are
equivalent, and both are implied by the strictly stronger sci condition. These definitions
acquire their interest because of the variety of examples available, and the insights that
our results give.

We note that the Avramov–Quillen characterization of ci rings in terms of André–
Quillen homology does not work for cochains on a space in the mod p context since
Mandell [38] has shown that the topological André–Quillen cohomology vanishes
rather generally in this case.

1C Relation to other papers in the series

In [10] two of us observed that the work of Eisenbud [19] and Avramov and Buch-
weitz [7] allowed us to formulate a homotopy invariant version of the mci condition
(the zci condition). The work of Gulliksen [29] shows that it is equivalent to the sci and
gci conditions for classical commutative local rings. The lectures of Avramov [5] give
a very accessible account of the relevant material making it clear that the zci condition
is equivalent to the sci and gci conditions for classical commutative local rings.

In [27] two of us together with K Hess formulated a homotopy invariant version of
the sci condition and applied it in the rational homotopy theory of simply connected
spaces, by taking RD C �.X IQ/ for some strictly commutative model of the rational
cochains. The Noetherian condition is then simply that H�.X IQ/ is Noetherian. The
sci condition implies the gci condition, and under a strong Noetherian condition sci is
equivalent to gci. However, even when they are equivalent, the zci condition is strictly
stronger. Accordingly, we formulated a weakened homotopy invariant condition (eci)
which is another counterpart of the mci condition and coincides with the zci condition
for ungraded commutative rings. We then showed that for strongly Noetherian rational
DGAs the sci, eci and gci conditions are equivalent. For finite complexes, the three
conditions are closely related to the classical notion of an elliptic space.

In the present paper we consider the same conditions as in the rational case, and
study the relationship between them when applied to RD C �.X I k/ for a field k of
characteristic p , and a connected p–complete space X (with particular interest in the
case X D BG^p ). At the superficial level there is a technical difficulty in that there
is no commutative DGA model for C �.X I k/ in general, but this difficulty is easily
circumvented by the use of commutative ring spectra, at the cost of having to work
in a more sophisticated technical setting. There is also the difficulty that in mod p

homotopy theory one cannot expect to make complete algebraic calculations. Neither
of these are essential differences. On the other hand, a really significant difference
comes from the fact that in the rational case the centre of H�.�X / can have a smaller
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growth rate than H�.�X / itself. By contrast, in the mod p context work of Félix–
Halperin–Thomas [23] shows that this does not happen. We are therefore able to prove
results which are in some ways a little stronger, and it seems possible that the eci and
zci conditions are again equivalent.

1D Organization of the paper

In Section 2 we introduce our philosophy in studying the cochain algebras: the idea is
to formulate conditions in commutative algebra so that they are homotopy invariant and
then to say that a space X has property P if the commutative ring spectrum C �.X I k/

has property P. This picks out interesting classes of spaces.

In Section 3 we record results about regular spaces, introducing some terminology
that becomes essential in discussions of complete intersections. There are two further
sections of prerequisites. In Section 4 we introduce two finiteness conditions that we
need, analogous to the Noetherian condition on rings and finite generation for modules.
In Section 5 we explain how bimodules give rise to endomorphisms of the module
category and how they are related to natural constructions on the module category.

This equips us to define in Section 6 a number of variants of the ci condition for spaces:
the sci condition is a structural condition like the basic definition of a ci local ring, and
it is the strongest. The eci condition is analogous to having a multiperiodic module
theory and the gci condition is a growth condition on the loop space homology.

In Sections 7 to 12 we explain how these definitions are related. Very roughly speaking
Section 7 explains how sci implies eci, Section 8 shows that eci implies gci, and
Section 9 shows that gci implies Gorenstein. Finally, the most surprising fact is that
the finiteness condition gci does have strong structural implications for the module
categories. Section 10 explains some basic properties of maps between Hochschild
cohomology groups, in preparation for Sections 11 and 12 which show that gci implies
eci (and also zci if the space is finite).

Finally, we finish with a section of examples coming from representation theory, and
pose some questions.

Acknowledgements We are grateful to N Castellana, W G Dwyer and A Gonzalez
for a number of valuable conversations related to these ideas.
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1E Grading conventions

We will have cause to discuss homological and cohomological gradings. Our experience
is that this is a frequent source of confusion, so we adopt the following conventions.
First, we refer to lower gradings as degrees and upper gradings as codegrees. As usual,
one may convert gradings to cogradings via the rule Mn DM�n . Thus both chain
complexes and cochain complexes have differentials of degree �1 (which is to say,
of codegree C1). This much is standard. However, since we need to deal with both
homology and cohomology it is essential to have separate notation for homological
suspensions (†i ) and cohomological suspensions (†i ): these are defined by

.†iM /n DMn�i and .†iM /n DM n�i :

Thus, for example, with reduced chains and cochains of a based space X , we have

C�.†
iX /D†iC�.X / and C �.†iX /D†iC

�.X /:

2 Commutative algebra for spaces

2A Philosophy

For a space X we want to work with a model of the cochains RD C �.X I k/ which
behaves like a commutative ring in the sense that its category of modules has a symmetric
monoidal tensor product ˝R , and so that we can form the derived category of R–
modules. We then use algebraic behaviour of this commutative ring to pick out
interesting classes of spaces. In accordance with the principle that C �.X I k/ is a sort
of ring of functions on X , we simplify terminology and say that X has a property P if
the commutative ring C �.X I k/ has the property P.

2B Building

We will be working in various triangulated categories. We say that A finitely builds B

(or that B is finitely built by A) if B may be formed from A by finitely many cofibre
sequences and retracts (in other words, B is in the thick subcategory generated by A).
We then write Aˆ B .

Similarly if arbitrary coproducts are also permitted we say that A builds B (in other
words, B is in the localizing subcategory generated by A). In this case we write A`B

When we work in a category of R–modules, we say M is small if it is finitely built by
R (RˆM ). We say that M is virtually small [16] if it finitely builds a nontrivial small
object W , called the witness: M ˆW , RˆW 6' 0. We say that M is proxy-small
[15] if it is virtually small and some witness W builds M .
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2C Convenient models

If k is a field of characteristic zero, the simplicial de Rham complex gives a strictly
commutative model for the cochains, and the commutative algebra of this DGA has
been extensively investigated by rational homotopy theorists, and from the present
point of view in [27]. On the other hand, it is well-known that in general Steenrod
operations give an obstruction to a natural commutative DGA model. Fortunately, there
is a commutative ring spectrum model of functions from X to the Eilenberg–MacLane
spectrum Hk [20; 30], so we use the notation

C �.X I k/ WDmap.X;Hk/:

The category of module spectra over this ring spectrum has a model structure with
weak equivalences given by homotopy isomorphisms, and we write Ho.C �.X I k// for
the homotopy category: this is a tensor triangulated category that provides a suitable
setting for investigating the commutative algebra for spaces.

This terminology is consistent in the sense that if we take X to be a point, we have an
equivalence

Ho.Hk/'D.k/

of tensor triangulated categories, between the topological and algebraic derived cate-
gories [47]. If k is replaced by a noncommutative ring there is a similar equivalence
of triangulated categories.

We will not be using special properties of the models, so it is not necessary to give further
details, but [26] gives an introduction and guide to the available sets of foundations.

2D Some analogies

At the most basic level, cofibre sequences

X �! Y �!Z

of pointed spaces induce (additive) exact sequences

C �.X I k/ � C �.Y I k/ � C �.ZI k/

of reduced cochains. On the other hand, fibrations

F �!E �! B

of spaces induce (multiplicative) exact sequences

C �.F I k/
EM
' C �.EI k/˝C�.BIk/ k � C �.EI k/ � C �.BI k/
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provided an Eilenberg–Moore theorem (EM) holds.

More generally, a homotopy pullback square

Z �X Y

��

// Z

��
Y // X

induces a homotopy pushout square

C �.Z �X Y I k/ C �.ZI k/oo

C �.Y I k/

OO

C �.X I k/oo

OO

in the sense that

C �.Z �X Y I k/' C �.ZI k/˝C�.X Ik/ C �.Y I k/

if the conditions of the Eilenberg–Moore theorem are satisfied (for example if X is
1–connected or connected and p–complete with �1.X / a p–group and pN D 0 on k

for some N [13]).

In view of the importance of the Ext algebra, one particular case will be especially
significant for us.

Proposition 2.1 We have an equivalence

C�.�X I k/' HomC�.X Ik/.k; k/

provided either (i) X is simply connected or (ii) X is connected and p–complete,
�1.X / is a p–group and pN D 0 on k for some N .

Because of the importance of this condition we will always assume that our space
satisfies either condition (i) or (ii). In particular, note that if X is the p–completion
of a space with a finite fundamental group (such as B� for a compact Lie group) it
satisfies the second condition with k D Fp .

2E Conventions

Throughout we will be working over a field k of characteristic p , and we take k D Fp

for definiteness. We repeat that the space X is assumed to be p–complete, connected
and to have fundamental group a finite p–group.
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We will adapt our language accordingly, so that a space X is k –finite if H�.X I k/

is finite-dimensional, and a sequence of spaces F ! E! B is a k –fibration if its
k –completion is a fibration in the usual sense.

We will often omit notation for the coefficients k , and say “finite” when “k –finite”
is intended. This amounts to a global assumption of working in the category of k –
complete spaces.

The cochains, homology and cohomology of a space will always be taken with coeffi-
cients in k , which will be omitted from the notation. Taking the cochains of a space X

results in a commutative Hk–algebra C �.X / in the terminology of [20], which we will
sometimes refer to simply as a k –algebra. We will use k also to denote Hk whenever
there is no cause for confusion.

In this model, the homology is given by the homotopy groups according to the formula
��.C

�.X // D H�.X /. We say that a C �.X /–module M is bounded above if its
homotopy groups ��.M / are bounded above.

3 Regular spaces

Regular rings and spaces are not the main subject of this paper, but it is essential to
deal with regular rings first, since they provide the basis for subsequent study: not
only do they provide the basis for an essential finiteness condition, but also complete
intersections are defined as regular quotients of regular rings.

3A Commutative algebra

In commutative algebra there are three styles for a definition of a regular local ring:
one ideal theoretic, one in terms of the growth of the Ext algebra and a derived version.
Although these are equivalent for classical commutative rings, we distinguish the
definitions for comparison with other contexts.

Definition 3.1 (i) A local Noetherian ring R is s–regular if the maximal ideal is
generated by a regular sequence.

(ii) A local Noetherian ring R is g–regular if Ext�R.k; k/ is finite-dimensional.

(iii) A local Noetherian ring R is m–regular if every finitely generated module is
small in the derived category D.R/.

It is not hard to see that g–regularity is equivalent to m–regularity or that s–regularity
implies g–regularity. Serre [44] proved that g–regularity implies s–regularity, so the
three conditions are equivalent.
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3B g–regularity for spaces

Of the commutative algebra definitions, the only one with a straightforward counterpart
for C �.X / is g–regularity. In view of Proposition 2.1 it takes the following form.

Definition 3.2 A space X is g–regular if H�.�X I k/ is finite-dimensional.

Remark 3.3 Breaking our conventions for a moment, we might say that a not nec-
essarily complete space X 0 is globally regular if � 0 D �X 0 is a finite complex, so
that X D B� is the classifying space of a finite loop space. For instance, if � is any
compact Lie group we obtain such a space X .

Reverting to the standard situation that kDFp and X is p–complete and connected, the
g–regularity condition that H�.�X IFp/ is finite is precisely the condition � D�X

is a p–compact group in the sense of Dwyer and Wilkerson [17] with classifying
space X D B� . For example if � 0 is a compact Lie group with component group a
p–nilpotent group, the p–completion of B� 0 is an example, although there are many
examples not of this form.

3C Some small objects

To discuss possible definitions of m–regularity we need to identify some small objects.

Lemma 3.4 For a map f W Y ! X between p–complete spaces with fundamental
groups finite p–groups, H�.F.f // is finite-dimensional if and only if C �.Y / is small
as a C �.X /–module.

Proof Suppose first that H�.F.f // is finite-dimensional. Note first that since �1.X /

is a finite p–group, the only simple module over H0.�X / D k�1X is the trivial
module k . Accordingly, the hypothesis implies that k finitely builds C�.F.f // as
a C�.�X /–module. Applying HomC�.�X /. � ; k/, we deduce from the Rothenberg–
Steenrod equivalence that C �.X / finitely builds C �.Y /. In symbols,

k ˆC�.�X / C�.F.f //

and hence

C �.X /' HomC�.�X /.k; k/ˆ HomC�.�X /.C�.F.f //; k/' C �.Y /:

The reverse implication is similar, but using the Eilenberg–Moore equivalence.
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3D What should finitely generated mean?

The m–regularity condition in commutative algebra states that finitely generated mod-
ules are small. It would be nice to have a counterpart of this for spaces, but it is not
clear what should play the role of finitely generated modules.

Our solution to this problem is to treat smallness as a definition of “finitely generated”
for modules over g–regular rings. We then use g–regular spaces to define the notion
in general. We pause to show that over g–regular spaces, at least for modules M

arising from maps of spaces, this notion of finitely generated has the familiar form that
H�.M / is finitely generated over H�.X /. This also holds in the rational context [27].

Lemma 3.5 (Dwyer) If Y is a space with a map f W Y ! X to a regular space X

so that H�.Y / is finitely generated over H�.X / then in fact the fibre F.f / is small.

Proof First, by the fundamental work of Dwyer–Wilkerson on p–compact groups [17],
H�.X / is Noetherian. Accordingly, since H�.Y / is a finitely generated algebra over
H�.X / it is also Noetherian.

Finally, we argue that H�.F / is finitely generated over H�.Y /. For this we consider
the Serre spectral sequence of

�X �! F �! Y:

The E2 page has a finite number of rows, and each is a finitely generated module
over H�.Y /. It follows inductively that Er has a finite number of rows, each finitely
generated over H�.Y /. Since the spectral sequence collapses at a finite stage, this also
applies to r D1. Piecing the rows together, we see that H�.F / is finitely generated
over H�.Y / as claimed.

Finally, we see that H�.F / is finite. Indeed H�.Y / is Noetherian and the action of
H�.Y / on H�.F / factors through the finite quotient ring k˝H �X H�.Y /.

4 A Noetherian condition

Before we turn to complete intersections there are two matters we need to discuss.
The first, which we deal with here, is the notion of a normalisable space, which is
a counterpart of the Noetherian condition. This lets us use the ideas of the previous
section to give a notion of “finitely generated” module for all normalisable spaces.
Thanks to some major theorems in the theory of p–compact groups we can show that
the simplest possible definition has good properties.
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4A Normalisable spaces

In commutative algebra, it is natural to impose the Noetherian finiteness assumption.
One of the most useful consequences for k –algebras is Noether normalisation, stating
that a Noetherian k –algebra is a finitely generated module over a polynomial subring.

Definition 4.1 A space X is normalisable if there is a connected g–regular space
B� and a map �W X ! B� so that the homotopy fibre F.�/ is a k –finite complex.
We say that � is a normalisation and F.�/ is a Noether fibre. The normalisation is
called polynomial if B� is simply connected and has polynomial cohomology.

Remark 4.2 (i) By Lemma 3.4, the condition that F.�/ is k –finite is equivalent
to asking that C �.X / is small over C �.B�/.

(ii) In the rational context, whenever H�.X / is Noetherian the space X is normal-
isable [27].

(iii) If X is normalisable then H�.X / is Noetherian: since H�.B�/ is Noether-
ian [17] the first remark implies H�.X / is a finitely generated H�.B�/–module.

(iv) Since our spaces X are assumed to be connected, the Noether fibre of a polyno-
mial normalisation is connected.

Example 4.3 If G is a compact Lie group (for example a finite group), then BG is
polynomially normalisable by choosing a faithful representation G! U.n/, giving a
fibration U.n/=G! BG! BU.n/.

It is clear that requiring the existence of a map X ! B� with C �.X / small over
C �.B�/ is a finiteness condition, but we need to give examples to see how stringent
it is. For example, it is natural to assume H�.X / is Noetherian, but this does not
guarantee normalisability.

Example 4.4 (Castellana) A space X for which H�.X IZ^p / has unbounded p–
torsion is not normalisable. Indeed, if X ! B� is a normalisation, it is shown by
Dwyer–Wilkerson [17] that H�.X IZ^p / is finitely generated over the Noetherian ring
H�.B�IZ^p / and hence Noetherian.

Various classes of such spaces with H�.X IFp/ Noetherian are known. A simple
example is the 3–connected cover of S3 . Others come up naturally when considering
homotopical generalizations of classifying spaces of groups. For instance, some of the
classifying spaces of rank 2 Kac–Moody groups described by Kitchloo [31] have this
property, as do the Aguadé–Broto–Notbohm [1, 5.5 and 5.6] spaces Xk.r/.
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4B Finitely generated modules

Next we need to define a notion of finitely generated modules, and for this we restrict
to normalisable spaces X . We choose a normalisation �W X ! B� and then take

FG� WD fC �.Y / j Y �!X
�
�! B� makes C �.Y / small over C �.B�/g;

and
FG.X / WD

[
normali-
sations �

FG� :

In any case, it is convenient to be able to compare different normalisations. Thus if
�1; �2 are two normalisations we can form

f�1; �2gW X �! B�1 �B�2:

We may compare f�1; �2g to �1 in the diagram

X

D

��

f�1;�2g // B�1 �B�2

��
X

�1 // B�1:

Lemma 4.5 Given two normalisations, �1; �2 , the map f�1; �2g is also a normalisa-
tion, and we have

FG�1
� FGf�1;�2g

:

Proof For the first statement, we need only take iterated fibres to obtain a fibration

�2 �! F.f�1; �2g/ �! F.�1/

from which the statement follows. For the second statement we repeat the proof with
X replaced by Y and the normalisations replaced by their composites with Y !X .

We next show that the class FG is independent of the chosen normalisation when the
following conjecture holds.

Conjecture 4.6 (Linear representation) The conjecture is that every p–compact
group has a faithful linear representation. More precisely that if B� is regular there is a
map B�! BSU.n/, for some n, whose homotopy fibre is Fp –finite. We understand
that the conjecture has in fact been proved, but we state it as a conjecture so that the
dependence of our work on it is made clear.
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For the prime 2 the classification of 2–compact groups (see Andersen and Grodal [3]
and Møller [39; 40]) shows that any 2–compact group is the product of classical groups
and copies of DI.4/. Ziemianski [48] has constructed a faithful linear representation
of BDI.4/.

For odd primes p this is a consequence of the classification of p–compact groups (see
Andersen, Grodal, Møller, and Viruel [4, 1.6]) using verifications in some exotic cases
by Castellana [11; 12].

Note the Linear Representation Conjecture (LRC) implies that if �W X ! B� is a
normalisation, then we may compose with a faithful linear representation to obtain
another normalisation X ! BSU.n/.

Thus for every normalisable space X we can always assume without loss of generality
that the normalisation is �W X ! BSU.n/. In particular we may assume that our
normalisation is polynomial.

Lemma 4.7 Assuming the LRC 4.6, if X is a normalisable space then Y 2FG.X / if
and only if H�.Y / is finitely generated as a module over H�.X /.

Proof Suppose Y 2 FG� , so that there are maps Y ! X
�
! B� making C �.Y /

into a small C �.B�/–module. Since H�.B�/ is Noetherian, this implies H�.Y / is
finitely generated over H�.B�/ and hence also over H�.X /.

Conversely, suppose given a map Y ! X such that H�.Y / is finitely generated as
an H�.X /–module. Since X is normalisable, the LRC 4.6 shows we can choose
a normalisation �W X ! BSU.n/ for some n. Now H�.Y / is a finitely generated
module over H�.BSU.n//, and the Eilenberg–Moore spectral sequence shows that
the homotopy fibre of Y ! BSU.n/ is k –finite. Hence Y 2 FG� .

Even more is true.

Lemma 4.8 Assuming the LRC 4.6, if X has a polynomial normalisation �W X!B�

then FG� D FG .

The proof is left as an exercise to the reader.

In the following sections we will give several definitions where we require a polynomial
normalisation, so that we can rely on this lemma.
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5 Bimodules and natural endomorphisms of R–modules

The second topic we need to treat before coming to complete intersections is that of
bimodules.

5A The centre of the derived category of R–modules

If R is a commutative Noetherian ring and M is a finitely generated R–module
with an eventually n–periodic resolution, comparing the resolution with its n–fold
shift gives a map M !†nM in the derived category whose mapping cone is a small
R–module. If R is a hypersurface ring, any finitely generated module has an eventually
2–periodic resolution. In fact the construction of these resolutions can be made in a
very uniform way. The lesson learnt from commutative algebra is that if we want to use
this property to characterize hypersurfaces we need to use this uniformity. In fact the
uniform construction can be formulated as a natural transformation 1!†n1 of the
identity functor with a mapping cone which is small on finitely generated modules, and
it turns out that the existence of such a transformation does characterize hypersurface
rings.

By definition the centre ZD.R/ is the graded ring of all such natural transformations
of the identity functor. There are various ways of constructing elements of the centre,
and various natural ways to restrict the elements we consider. Some of these work
better than others, and it is the purpose of this section is to introduce these ideas.

5B Bimodules

We consider a map Q!R, where Q is regular and R is small over Q. We may then
consider Re DR˝Q R, and Re –modules are .R jQ/–bimodules. The Hochschild
cohomology ring is defined by

HH�.R jQ/D Ext�Re .R;R/:

If f W X ! Y is a map of .R j Q/–bimodules, for any R–module M we obtain a
map f ˝ 1W X ˝R M ! Y ˝R M of (left) R–modules.

The simplest way for us to use this is that if we have isomorphisms X ŠR and Y Š†nR

as R–bimodules, the map f ˝ 1W M !†nM is natural in M and therefore gives an
element of codegree n in ZD.R/: we obtain a map of rings

HHn.R/D HomRe .R; †nR/ �!ZD.R/n:
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Continuing, if X ˆRe Y then X ˝R M ˆR Y ˝R M . In particular, if X DR builds
a small Re –module Y then

M DR˝R M ˆR Y ˝R M DjRe
˝R M DR˝Q M:

Thus if M is finitely generated (ie small over Q), this shows M finitely builds a small
R–module.

We could then restrict the maps permitted in showing that X ˆRe Y . We could restrict
ourselves to using maps of positive codegree coming from Hochschild cohomology,
and say X ˆhh Y , more generally we could permit any maps of positive codegree
from the centre ZD.Re/ and say X ˆz Y , or we could relax further and require only
that all the maps involved in building are endomorphisms of nonzero degree for some
object and say X ˆe Y .

We shall have occasion to use Koszul constructions of modules. Given z1; : : : ; zc 2

ZD.R/ and an R–module M we define M=z1 to be the homotopy cofibre of
z1W †

nM!M and M=z1= � � � =zc is defined inductively. Given elements x1; : : : ;xn2

HH�.R jQ/, we have already observed that these define elements in ZD.R/ (because
R is a unit for ˝R ), and we note here that they also define elements in ZD.Re/ for
the same reason. Accordingly, for a bimodule M we may construct M=x1= � � � =xc as
a bimodule.

Example 5.1 In the topological context we have a map X!B� and take RDC �.X /,
QD C �.B�/ and Re D C �.X �B� X /. The associated Hochschild cohomology can
be abbreviated

HH�.X j B�/D ��.HomC�.X�B�X /.C
�.X /;C �.X //:

6 Complete intersection spaces

6A The definition in commutative algebra

In commutative algebra there are three styles for a definition of a complete intersection
ring: structural, in terms of the growth of the Ext algebra and module theoretic. See
Avramov [5] and Benson and Greenlees [10] for a more complete discussion.

Definition 6.1 (i) A local Noetherian ring R is an s–complete intersection (sci)
ring if RDQ=.f1; f2; : : : ; fc/ for some regular ring Q and some regular sequence
f1; f2; : : : ; fc . The minimum such c (over all Q and regular sequences) is called the
codimension of R.
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(ii) A local Noetherian ring R is gci if Ext�R.k; k/ has polynomial growth. The
g–codimension of R is one more than the degree of the growth.

(iii) A local Noetherian ring R is zci [10] if there are elements z1; z2; : : : zc 2ZD.R/

of nonzero degree so that M=z1=z2= � � � =zc is small for all finitely generated modules
M . The minimum such c is called the z–codimension of R. Similarly R is hhci if
the elements zi can be chosen to come from Hochschild cohomology.

Remark 6.2 The following condition has proved less useful. If R is a commutative
ring or CDGA, it is said to be a quasicomplete intersection (qci) [16] if every finitely
generated object is virtually small.

Remark 6.3 If Q is a regular local ring with a map Q!R making R into a small
Q–module we may consider a number of bimodule conditions.

We say R is bci, eci, zbci or hhbci if R finitely builds, e–builds, z–builds or hh–
builds a nontrivial small Re –module. Evidently these are increasingly strong conditions.
Similarly, it is clear that zbci implies zci and hhbci implies hhci.

Theorem 6.4 [10] For a local Noetherian ring the conditions sci, gci, hhbci, hhci,
zbci, zci and eci are all equivalent, and the corresponding codimensions are equal.
These conditions imply the bci and qci conditions.

It is a result of Shamash [45] that if R is ci of codimension c , one may construct
a resolution of any finitely generated module growing like a polynomial of degree
c � 1. Furthermore, the resolution is constructed by Eisenbud [19] as a module over
a polynomial ring on c generators of degee �2, which shows directly that R is
hhbci. (the form of the resolution due to Avramov–Buchweitz [7] and described by
Avramov [5, Section 9] makes this very clear). Considering the module k shows that
the ring Ext�R.k; k/ has polynomial growth. Perhaps the most striking result about ci
rings is the theorem of Gulliksen [29], which states that gci implies sci for commutative
local rings so that the ci and gci conditions are equivalent.

Remark 6.5 In commutative algebra, Avramov [6] proved Quillen’s conjectured char-
acterization of complete intersections by the fact that the André–Quillen cohomology
is bounded. The natural counterpart of this is false in homotopy theory since, by results
of Dwyer and Mandell [38], the topological André–Quillen cohomology vanishes much
too generally in characteristic p .

When k is of characteristic 0, the André–Quillen cohomology of C �.X / gives the
dual homotopy groups of X , so Avramov’s characterization corresponds to the gci
condition.
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6B Definitions for spaces

In view of the fact that regular elements correspond to spherical fibrations, adapting
the above definitions for spaces is straightforward.

Definition 6.6 (i) A space X is spherically ci (sci) if it is formed from a connected
g–regular space B� using a finite number of spherical fibrations. More precisely, we
require that there is a g–regular space X0 D B� and fibrations

Sn1 �!X1 �!X0 D B�; Sn2 �!X2 �!X1; : : : ; Snc �!Xc �!Xc�1

with X DXc . The least such c is called the s–codimension of X .

(i) 0 A space X is weakly spherically ci (wsci) if there is a g–regular space B� and a
fibration

F �!X �! B�

and F D F1 is spherically resolvable in the sense that there are fibrations

F2 �! F1 �! Sn1 ; F3 �! F2 �! Sn2 ; : : : ; � �! Fc �! Snc :

The least such c is called the ws–codimension of X .

(ii) A space X is a gci space if H�.X / is Noetherian and H�.�X / has polynomial
growth. The g–codimension of X is one more than the degree of growth.

(iii) A space X is a zci space if X is normalisable and there are elements z1; z2; : : : ; zc

in ZD.C �.X // of nonzero degree so that C �.Y /=z1=z2= � � � =zc is small for all
C �.Y / 2 FG.X /.

(iii) 0 A space X is a hhci space if there is a polynomial normalisation �W X ! B�

and RD C �.X / finitely hh–builds a small Re –module, where Re D C �.X �B� X /.
In particular, assuming the LRC 4.6, there are elements z1; z2; : : : ; zc 2HH�.X jB�/
of positive codegree so that C �.Y /=z1=z2= � � � =zc is small for all C �.Y / 2 FG.X /.

(iii) 00 A space X is a eci space if X has a polynomial normalisation as above and
R finitely e–builds a small Re –module. In particular, there are homotopy cofibration
sequences of Re –modules

M0 �!†n0M0 �!M1;

M1 �!†n1M1 �!M2; : : : ;

Mc�1 �!†nc�1Mc�1 �!Mc

with ni ¤ 0 and Mc small over Re .
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Remark 6.7 Two further variants have proved to be less useful.

We say X is bci space if X is normalisable and C �.X / is virtually small as a
C �.X �B� X /–module for some g–regular space B� and map X ! B� with
C �.X / small over C �.B�/.

We say X is qci space if X is normalisable and each C �.Y / 2 FG.X / is virtually
small.

There are also further variants, ! sci and w! sci where we are permitted to use loop
spaces on spheres rather than spheres. These conditions arose in Levi’s work. They are
evidently weakenings of sci and wsci, but they still imply gci.

It is easiest to verify the gci condition. The simplest example gives a good supply.

Example 6.8 If H�.X / is a complete intersection then Ext�;�
H �.X /

.k; k/ has poly-
nomial growth, so that if the Eilenberg–Moore spectral sequence converges, X is
gci.

For normalisable spaces X , working over k D Fp we will establish the implications

sci) wsci) eci” gci:

We will also show that for k –finite spaces hhci” gci. It is shown in [27] that in
the rational case sci) eci) gci, and that under an additional finiteness hypothesis
the three conditions sci, eci and gci are equivalent.

The implication, that sci implies wsci is straightforward. Indeed, if X is sci, the fibre
of the composite

X DXc �!Xc�1 �! � � � �!X1 �! B�

is clearly an iterated spherical fibration.

In Section 8 we explain that a rather straightforward calculation with Hilbert series
shows that eci implies gci. In Section 7 we give a direct construction to show that an
s–hypersurface is a z–hypersurface. This argument can be iterated if all the spherical
fibrations have odd-dimensional spheres, but we give a less direct general argument.

The main result is that (assuming normalisability) the gci finiteness condition implies
the structural condition eci: this occupies Sections 9 to 12.

Problem 6.9 Give an example of a gci space that is not wsci or show that no such
space exists.
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6C Hypersurface rings

A hypersurface is a complete intersection of codimension 1. The first three definitions
adapt to define s–hypersurfaces, g–hypersurfaces and z–hypersurfaces. The notion
of g–hypersurface (ie the dimension of the groups ExtiR.k; k/ is bounded) may be
strengthened to the notion of p–hypersurface where we require that they are eventually
periodic, given by multiplication with an element of the ring. All four of these conditions
are equivalent by results of Avramov.

One possible formulation of b–hypersurface would be to require that R builds a small
Re –module in one step (or equivalently, that R is a z–hypersurface but z arises from
HH�.R jQ/). This is also equivalent to the above definitions.

Finally, we may say that R is a q–hypersurface if every finitely generated module M

has a self map with nontrivial small mapping cone.

6D Hypersurface spaces

All six of these conditions have obvious formulations for spaces. A space X is an
s–hypersurface if there is a fibration

Sn
�!X �! B�;

where X!B� is a polynomial normalisation. It is a g–hypersurface if the dimensions
of Hi.�X / are bounded, and a p–hypersurface if they are eventually periodic given
by multiplication by an element of the ring.

The space X is an hh–hypersurface if C �.X / builds a small C �.X �B� X /–module
in one step using an hh–map. An e–hypersurface is the same as a hh–hypersurface. It
is a z–hypersurface if there is an element z of ZD.C �.X // of nonzero degree so that
C �.Y /=z is small for every module C �.Y / in FG.X /. Finally, X is a q–hypersurface
if every module C �.Y / in FG.X / has a self map with nontrivial small mapping cone.

The point about this condition is that there are a number of interesting examples
(see Section 13 below). We will show in Section 7 that an s–hypersurface is a z–
hypersurface.

7 s–hypersurface spaces and z–hypersurface spaces

In the algebraic setting the remarkable fact is that modules over hypersurfaces have
eventually periodic resolutions, and hence that they are hhci of codimension 1. The
purpose of this section is to prove a similar result for spaces. The result will be proved
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in a form that provides the inductive step for the general result on ci spaces, but the
iteration will only show it is an eci space (rather than zci or hhci).

Theorem 7.1 If X is an s–hypersurface space with fibre sphere of dimension � 2

then X is a z–hypersurface space.

Remark 7.2 The proof will show a similar result holds for the total space of a circle
fibration over a connected regular space, but the definition of a z–hypersurface would
need to be adapted along the Jacobson radical lines of [10] to give a uniform statement.

7A Split spherical fibrations

The key in algebra was to consider bimodules, for which we consider the (multiplicative)
exact sequence

R �!Re
�!Re

˝R k;

where the first map is a monomorphism split by the map � along which R acquires its
structure as an Re –module structure. This corresponds to the pullback fibration

X  �X �B� X  � Sn;

split by the diagonal
�W X �!X �B� X

along which the cochains on X becomes a bimodule. To simplify notation, we consider
a more general situation: a fibration

B �E � Sn

with section sW B �!E . The case of immediate interest is B DX , E DX �B� X ,
where a C �.E/–module is a C �.X /–bimodule.

Since s is a section of p there is a fibration

�Sn
�! B

s
�!E:

This gives the required input for the following theorem. The strength of the result is
that the cofibre sequences are of C �.E/–modules.

Theorem 7.3 Suppose given a fibration �Sn! B
s
!E with n� 2.

(i) If n is odd, then there is a cofibre sequence of C �.E/–modules

†n�1C �.B/ � C �.B/ � C �.E/:
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(ii) If n is even, then there are cofibre sequences of C �.E/–modules

C  � C �.B/ � C �.E/

and
†2n�2C �.B/ � C  �†n�1C �.E/:

In particular the fibre of the composite

C �.B/ �! C �!†2n�2C �.B/

is a small C �.E/–module constructed with one cell in codegree 0 and one in codegree
n� 1.

Remark 7.4 The case nD 1 is slightly different since �S1 ' Z. In this case, the
map B!E is an infinite cyclic covering up to homotopy. Taking appropriate models,
B is a free Z–space with E D B=Z and there is a cofibre sequence

C �.E/ �! C �.B/
1�z
�! C �.B/;

where z is a generator of Z.

7B Strategy

We will first prove the counterparts in cohomology by looking at the Serre spectral
sequence of the fibration from part (i) and then lift the conclusion to the level of
cochains.

Note that in either case we obtain a cofibre sequence

K � C �.B/ �†aC �.B/

of C �.E/–modules with K small.

In the motivating example we see that if X is an s–hypersurface, it is an e–hypersurface
with n � 2 and so it is a z–hypersurface as required. If n D 1, the condition on
nontriviality for a z–hypersurface needs to be adapted along the lines of [10]. Thus
Theorem 7.1 follows from Theorem 7.3.

To describe the strategy in more detail, we consider the Serre spectral sequence of the
fibration in part (i).

If n is odd, H�.�Sn/ is a free divided power algebra on one generator ˆ of codegree
n� 1. If n is even, H�.�Sn/ is the tensor product of an exterior algebra on one
generator ˆ of codegree n� 1 and a free divided power algebra on one generator ‰
of codegree 2n� 2.
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In either case, H�.�Sn/ corresponds precisely to the natural algebraic resolution of
RD C �.B/ over C �.E/. Indeed, the Serre spectral sequence of this fibration gives
precisely such a resolution, with the generators of H�.�Sn/ giving an H�.E/–basis
for the E2 term. One might imagine realizing the associated filtration by codegree in
H�.�Sn/. Using the equivalence

E 'E�B ��B �Sn

the filtration would correspond to the skeletal filtration of �Sn provided this was a
filtration of �B –spaces. We could then take

Ek
DE�B ��B .�Sn/..n�1/k/

to realize the filtration, but the terms would have to be �B –spaces so it seems unlikely
that this can be realized. In any case we can make do with a little less.

To start with we consider the map

C �.B/
s�

 � C �.E/

induced by the section, using it to give C �.B/ the structure of a C �.E/–module. Thus
s� is a map of C �.E/–modules, and we can take its mapping cone C in the category
of C �.E/–modules.

By looking at the Serre spectral sequence of the original spherical fibration, we
see that ��.C / Š †n�1H�.B/ as H�.B/–modules, and hence C is equivalent to
†n�1C �.B/ ' C �.†n�1B/ as a C �.B/–module. However, we need to consider
��.C / not just as an H�.B/–module, but as an H�.E/–module.

If n is odd, we will show ��.C / is †n�1H�.B/. If n is even this need not be true,
but we may repeat the construction, once more to obtain a C �.E/–module C1 so that
��.C1/Š†2n�2H�.B/ as an H�.E/–module.

In either case we have a C �.E/–module M so that ��.M / Š H�.B/ as H�.E/–
modules. We will show in Section 7D that the algebraic simplicity of the H�.E/–
module H�.B/ is such that we can lift the equivalence to the level of cochains.

If n is odd, we therefore have a triangle

†n�1C �.B/ � C �.B/ � C �.E/

of C �.E/–modules. If n is even we have cofibre sequence

C  � C �.B/ � C �.E/

Algebraic & Geometric Topology, Volume 13 (2013)



Complete intersections and mod p cochains 83

and
†2n�2C �.B/ � C  �†n�1C �.E/

of C �.E/–modules, and by the octahedral axiom, the fibre of the composite

C �.B/ �! C �!†2n�2C �.B/

is a C �.E/–complex with one cell in codegree 0 and one cell in codegree n� 1. In
particular, it is small.

7C The situation in homology

We start with the case that n is odd, since it is a little simpler.

Proposition 7.5 If n is odd, there is a short exact sequence:

0 �!†nH�.B/ �!H�.E/ �!H�.B/ �! 0

Proof Since pW E ! B is split, H�.E/ is a free module over H�.B/ on two
generators. We have a split surjection s�W H�.E/!H�.B/, so the kernel is a cyclic
H�.B/–module, and therefore a principal ideal in H�.E/, generated by an element �
of codegree n. We therefore have a short exact sequence

0 �! .�/ �!H�.E/ �!H�.B/ �! 0;

and .�/ŠH�.E/= ann.�/. Since n is odd, �2 D 0, and hence .�/ � ann.�/. Since
H�.E/ is a free module on 1 and � it follows that we have equality: .�/D ann.�/,
giving the isomorphism

.�/ŠH�.E/= ann.�/ŠH�.E/=.�/ŠH�.B/

of H�.E/–modules as required.

If n is even, it is easy to find examples where the conclusion fails.

Example 7.6 Take B D S4 , E D S4�S4 , with p being the projection onto the first
factor and s the diagonal. Then H�.E/D ƒ.x1;x2/, H�.B/DH�.E/=.x1 � x2/

and
ker.s�/D†nH�.E/=.x1Cx2/

so we do not have the conclusion of Proposition 7.5 unless the characteristic is 2.
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Proposition 7.7 If n is even, there are short exact sequences

0 �!†nH�.B/0 �!H�.E/ �!H�.B/ �! 0

and
0 �!†nH�.B/ �!H�.E/ �!H�.B/0 �! 0;

where H�.B/0 is an H�.E/–module isomorphic to H�.B/ as an H�.B/–module.

Proof The proof begins as for Proposition 7.5, but we need no longer have �2 D 0.
To control the situation we use the fact that the map s�W H�E!H�B is the edge
homomorphism of the Serre spectral sequence of the fibration

�Sn
�! B

s
�!E;

and that H�.�Sn/ is the tensor product of an exterior algebra on the generator ˆ of
codegree n� 1 and the divided power algebra on ‰ of codegree 2n� 2. We have
dn.ˆ/D � and we define �1 by dn.‰/D �1ˆ. It will be convenient to write

d i
nW E

�;i.n�1/
n �!E�;.i�1/.n�1/

n

for the H�.E/–module map giving the part of the differential from the i –th nonzero
row to the .i � 1/–st.

By comparison with the path-loop fibration for Sn we see that � restricts to a generator
of H n.Sn/, and therefore, from the Serre spectral sequence of Sn!E!B , that 1 and
� give an H�.B/–basis for H�.E/. This means that E

�;0
nC1
DH�.E/=.�/ŠH�.B/,

and the edge homomorphism shows that we have an exact sequence

0 �! .�/ �!H�.E/
s�

�!H�.B/ �! 0:

Since H�.E/ is free as an H�.B/–module on two generators, we conclude .�/ is
free as an H�.B/–module on one generator of degree n, and we obtain the first exact
sequence.

In particular .�/ has a single copy of k in the bottom codegree. Next, we have the
exact sequence

0 �! ann.�/ �!H�.E/ �! .�/ �! 0;

and, since H�.E/ is H�.B/–free on two generators, ann.�/ is free as an H�.B/–
module on one generator of degree n, and in particular it has a single copy of k in the
bottom codegree. Of course ker.d1

n /D ann.�/, whilst on the other hand, by comparison
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with the path-loop fibration, d2
n .‰/ generates a copy of k in degree n, and since it

lies in ker.d1
n / we see �1 generates ker.d1

n /, and

.�1/D ann.�/:

Finally, we have the exact sequence

0 �! ann.�1/ �!H�.E/ �! .�1/ �! 0:

Since H�.E/ is H�.B/–free on two generators, ann.�1/ is free as an H�.B/–module
on one generator of degree n, and in particular it has a single copy of k in the
bottom codegree. Of course ker.d2

n /D ann.�1/, whilst on the other hand dn.ˆ‰/D

�‰Cˆ2�1 D �‰ lies in this kernel and generates a copy of k in degree n. Since
dn.ˆ‰/ lies in ker.d2

n /, we see � generates ker.d2
n / so that

.�/D ann.�1/:

This identifies .�1/ with H�.B/ D H�.E/=.�/ as an H�.E/–module, giving the
second exact sequence as required.

7D Lifting to cochains

Whether n is even or odd, we have constructed a C �.E/–module M for which
��.M /DH�.B/ as H�.E/–modules. We now show that we may lift this conclusion
to the cochain level.

Proposition 7.8 There is a unique C �.E/–module M with ��.M / Š H�.B/ as
H�.E/–modules.

Proof We will first give the proof assuming there is a short exact sequence

0 �!†nH�.B/ �!H�.E/ �!H�.B/ �! 0

of H�.E/–modules.

The first step is to show that M is equivalent to a module constructed by adding free
C �.E/–cells in codegrees 0; n� 1; 2n� 2; 3n� 3; : : : as one might hope. We take
M0 DM , and then construct a diagram

M DM0 �!M1 �!M2 �! � � � ;

where
��.Mi/D†.n�1/iH

�.B/:
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To construct MiC1 from Mi we construct a cofibre sequence

†ni�iC
�.E/

ai
�!Mi �!MiC1;

where ai is a chosen generator of ��.Mi/. It follows from the hypothesis that
��.MiC1/D†.n�1/.iC1/H

�.B/ as required to proceed. Since each map Mi!MiC1

is zero in homotopy, M1 D holim
��!

i

Mi has zero homotopy and is thus contractible.

Now construct the dual tower by the cofibre sequences:

�� �� ��
M i //

��

M //

��

Mi

��
M iC1 //

��

M //

��

MiC1

��

Passing to direct limits we see that

M1
WD holim
��!

s

M s '
�!M

is an equivalence. On the other hand, we have M 0 ' 0 and by the octahedral axiom
we have cofibre sequences

M i
�!M iC1

�!†.n�1/iC
�.E/;

so the module M1 is a version of M built with periodic cells C �.E/ as required.

To see that any two such modules M.0/ and M.1/ are equivalent, we perform the
above construction to replace the two modules M.a/ (aD 0; 1) with filtered modules
fM.a/igi with M.a/iC1=M.a/iD†.n�1/iC

�.E/. We suppose given an isomorphism
f�W ��.M.0//! ��.M.1//, and we show it can be realized with a map f W M.0/!

M.1/. Indeed, we recursively construct maps

fi W M.0/i �!M.1/

agreeing with the map M.0/i !M.0/ in homotopy, where we identify ��.M.0//

and ��.M.1// using f� . Since M.0/0 D 0, there is nothing to prove for i D 0. After
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that we are faced with the extension problem:

†.n�1/i�1C �.E/

bi

��
M.0/i

��

fi // M.1/

M.0/iC1

fiC1

77

Since the map

†.n�1/i�1C �.E/
bi
�!M.0/i �!M.0/

is zero in homotopy by construction, the same is true for the map

†.n�1/i�1C �.E/
bi
�!M.0/i

fi
�!M.1/:

Since the domain is free, this shows fibi ' 0, and we can solve the extension problem.
Passing to limits, the Milnor exact sequence gives a map M.0/!M.1/ inducing a
homotopy isomorphism. This completes the proof if n is odd.

If n is even, the proof is precisely similar, except that the odd image modules are
suspensions of H�.B/0 rather than of the standard H�.E/–module H�.B/.

8 Growth conditions

In this section we prove perhaps the simplest implication between the ci conditions:
for spaces of finite type, eci implies gci.

8A Polynomial growth

Throughout algebra and topology it is common to use the rate of growth of homology
groups as a measurement of complexity. We will be working over H�.X /, so it is
natural to assume that our modules M are locally finite in the sense that H�.M / is
cohomologically bounded below and dimk.H

i.M // is finite for all i .

Definition 8.1 We say that a locally finite module M has polynomial growth of degree
� d and write growth.M /� d if there is a polynomial p.x/ of degree d with

dimk.H
n.M //� p.n/

for all n� 0.
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Remark 8.2 Note that a complex with bounded homology has growth � �1. For
complexes with growth � d with d � 0, by adding a constant to the polynomial, we
may insist that the bound applies for all n� 0.

8B Mapping cones reduce degree by one

We give the following estimate on growth.

Lemma 8.3 Given locally finite modules M;N in a triangle

†nM
�
�!M �!N

with n¤ 0 then
growth.M /� growth.N /C 1:

Proof The homology long exact sequence of the triangle includes

� � � �!H i�n.M /
�
�!H i.M / �!H i.N / �! � � � :

This shows

dimk.H
i.M //� dimk.H

i.N //C dimk.�H i�n.M //:

Iterating s times, we find

dimk.H
i.M //� dimk.H

i.N //C dimk.H
i�n.N //

C � � �C dimk.H
i�.s�1/n.N //C dimk.�

sH i�sn.M //:

To obtain growth estimates, it is convenient to collect the dimensions of the homo-
geneous parts into the Hilbert series hM .t/ D

P
n dimk.H

i.M // t i . An inequality
between such formal series means that it holds between all coefficients.

First suppose that n > 0. Since H�.M / is bounded below, if hM .t/ is the Hilbert
series of H�.M / then we have

hM .t/� hN .t/.1C tn
C t2n

C � � � /D
hN .t/

1� tn
;

giving the required growth estimate.

If nD�n0 < 0 we rearrange to obtain

N 0 �!M �!†n0M;

where N 0 D†n0�1N and argue precisely similarly.
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8C Growth of eci spaces

The implication we require is now straightforward.

Theorem 8.4 If X is eci then it is also gci, and if X has e–codimension c it has
g–codimension � c .

Proof It is sufficient to show C �.�X /' k˝C�.X / k has polynomial growth.

By hypothesis there are elements �1; �2; : : : ; �c of nonzero degree in ZD.C �.X //

so that k=�c= � � � =�1 is small, and thus, applying k˝C�.X / . � / we obtain a complex
with growth � �1. By Lemma 8.3 if we apply k ˝C�.X / . � / to k=�c= � � � =�2 we
obtain a complex of growth � 0. Doing this repeatedly, we deduce that when we apply
k˝C�.X / . � / to k itself we obtain a complex with growth � c � 1 as required.

9 Properties of gci spaces

The main results here are a smallness condition for modules over the cochains of
a normalisable gci space X and a structural result for the homology of �X which
generalizes results of Félix, Halperin and Thomas. Throughout this section we assume
the LRC 4.6, alternatively the reader may forego assuming the LRC and instead replace
the normalisability condition with polynomial normalisability.

9A Cellular approximation, completion and Gorenstein condition

We have need of recalling concepts from [14] and [15].

Let RD C �.X /. A map U ! V of R–modules is a k –equivalence if the induced
map HomR.k;U / ! HomR.k;V / is an equivalence. A module N is k –null if
HomR.k;N /' 0. A module C is k –cellular if HomR.C;N /' 0 for every k –null
module N . A module C is k –complete if HomR.N;C /' 0 for every k –null module
N . A map f W C !X of R–modules is a k –cellular approximation (of X ) if C is
k –cellular and f is a k –equivalence. Finally, a map f W X ! C is a k –completion
(of X ) if C is k –complete and f is a k –equivalence.

We shall not recall the general definition of the Gorenstein condition from [15]; instead
we give a definition which is equivalent under the mild assumption of proxy-smallness.

Recall that an object is proxy-small if the thick category it generates includes a nontrivial
small object building the original object. Suppose that k is proxy-small as an R–
module. Then R is Gorenstein if HomR.k;R/'†

ak as left k –modules for some a

[15, Proposition 8.4].
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In the situation we consider, where X is normalisable, then k is always proxy-small
by the following lemma.

Lemma 9.1 Let X be a connected space. If H�.X / is Noetherian then k is proxy-
small over C �.X /.

Proof Since H�.X / is Noetherian, it is finitely generated as a module over a poly-
nomial subring. We may use the polynomial generators to form a Koszul complex
K on C �.X /. Since its homology is finite-dimensional over k , it is finitely built
by k . Finally, it is easy to see that K˝C�.X / k is nonzero. Since k is a retract of
K˝C�.X / k , we see that K builds k .

9B The Gorenstein property of gci spaces

It is well-known that for commutative rings a complete intersection is Gorenstein. We
prove an analogue, using the weakest of the analogues of ci.

Proposition 9.2 If X is a normalisable gci space then both C�.�X / and C�.X / are
Gorenstein.

In effect we rely on [23] for the simply connected finite case, and then apply the
fibration lemma for Gorenstein spaces [15, 10.2] twice to deduce it in general. We will
present the proof in stages. Recall that k D Fp .

Lemma 9.3 Let F be a k –finite simply connected gci space, then C�.F / is Goren-
stein.

Proof We begin by observing that F is equivalent to the p–completion of a finite
simply connected CW–complex F 0 , which is thus a space of finite LS category. Since
C�.�F 0/' C�.�F /, F 0 is also gci and therefore we see that H�.�F 0/ is an elliptic
Hopf algebra in the sense of [23]. By [23, Proposition 3.1], it is Gorenstein in the sense
that Ext�H�.�F 0/.k;H�.�F 0// is one-dimensional (nonzero in degree a, say), and the
same is true with F 0 replaced by F . Accordingly HomC�.�F /.k;C�.�F //'†ak

and C�.�F / is Gorenstein in the sense of [15].

By Proposition 2.1, the Eilenberg–Moore spectral sequence for C �.F / converges, so
it follows from [15, Proposition 8.5] that C �.F / is also Gorenstein, as required.

Next we deal with the case of a finite complex which need not be simply connected.
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Lemma 9.4 Let F be a connected k –finite gci space with finite fundamental group
such that its universal cover zF is Gorenstein. Then C�.F / is Gorenstein.

Proof Consider the fibration zF �! F �! B�1F . Since �1.F / is a p–group,
C�.B�1.F // is dc–complete in the sense of [15, 4.16] and so C�.B�1.F // is Goren-
stein, because C�.�B�1.F // is. Since zF has finite homology, C�.F / is a small
C�.B�1.F //–module. Now we can apply [15, Proposition 8.10], which shows that
C�.F / is Gorenstein.

Finally we are ready to deal with the general case.

Proof of Proposition 9.2 First, suppose F !X ! B is a polynomial normalisation
for X . By [15, 10.2] C�.B/ is Gorenstein.

Lemma 9.5 The Noether fibre F is gci.

Proof First note that both F and �B are connected since the normalisation is
polynomial. Since �B is a finite H –space it is gci.

Next, we may assume that X is simply connected. Indeed, we may replace X by
its universal cover and F by its corresponding cover and since �1.X / is finite, this
will not affect the conclusion. Now consider the fibration �2B ! �F ! �X . It
is principal and the �1.�X / action on H�.�

2B/ is trivial. The fact that �F has
polynomial growth follows from the Serre spectral sequence.

It now follows from Lemma 9.4 that the Noether fibre F is Gorenstein. Since F is k –
finite, C�.X / is small as a C�.B/–module. As before, we apply [15, Proposition 8.10],
which shows that C�.X / is Gorenstein. Finally, since C�.X / is dc–complete [15,
4.22], then C�.�X / is also Gorenstein, by [15, Proposition 8.5].

This completes the proof of Proposition 9.2

9C Completion and smallness criteria

We shall need criteria for both smallness and k –completeness of C �.X /–modules.

Lemma 9.6 Suppose X is a normalisable gci space. Then the k –completion of any
C�.X /–module M is given by

HomC�.�X /.†
ak;HomC�.X /.k;M //;

where a is the Gorenstein shift of C�.X /.
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Proof Set RDC�.X / and EDC�.�X /. Since R is dc–complete, E'HomR.k; k/.
As we saw above, k is proxy-small as an R–module, so by [15]

CellkR' HomR.k;R/˝E k:

Using the proxy-smallness of k once again, it is an easy exercise to show that the
k –completion of any R–module M is given by

M^
k ' HomR.CellkR;M /:

Bearing in mind that k is an R˝E –module, we have the following equivalences given
by standard adjunctions:

HomR.CellkR;M /' HomR.HomR.k;R/˝E k;M /

' HomEop.HomR.k;R/;HomR.k;M //

Since X is Gorenstein, we see that HomR.k;R/'†
ak as left k –modules. Because

�1.X / is a p–group and k D Fp there is only one simple kŒ�1.X /�–module, which
is the trivial module k . Hence the �0.E/–module �a.HomR.k;R// is that simple
module k . Now we can employ [15, Proposition 3.9], which shows that HomR.k;R/'

†ak as right E –modules

It is useful to have a criterion for k –completeness.

Lemma 9.7 If X is a Gorenstein space with H�.X / Noetherian then every bounded-
above C�.X /–module of finite type is k –complete.

Remark 9.8 (i) By Proposition 9.2 this applies to any normalisable gci space.

(ii) The exact generality of the lemma is not clear, but we note that k need not be
k –complete in general. For example if RD S0 and k DH Fp then R is itself k –null
by Lin’s theorem [37], and hence k is not k –complete.

Proof Denote by R the k –algebra C �.X /. We first note that it is sufficient to show
that k is k –complete. Indeed, in that case every R–module finitely built from k is
k –complete. Since there are dual Postnikov sections in the category of R–modules
(see [15, Proposition 3.3]) then every bounded-above R–module of finite type is the
homotopy limit of k –complete modules and hence is itself k –complete.

Since k is proxy-small, there is a small object K so that

k ˆK ` k:
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Because R is Gorenstein (Proposition 9.2) and coconnective with �0.R/ a field we
have that HomR.k;R/'†

ak as a left R–module (see [15, Proposition 3.9]).

Now suppose N is k –null, so that HomR.k;N /' 0. For an R–module M we denote
by DM the R–module HomR.M;R/. Since k `K we find Dk `DK , so that by
the Gorenstein condition k `DK . Hence

0' HomR.DK;N /'DDK˝R N 'K˝R N:

Since K ` k it follows that k˝R N ' 0. Finally,

HomR.N; k/' HomR.N; †
n HomR.k;R//

' HomR.k˝R N; †nR/' 0

and k is k –complete as required.

We get the following criteria for smallness.

Corollary 9.9 Suppose X is a normalisable gci space and let M be a bounded-above
C�.X /–module of finite type. The following are equivalent:

(1) M is small.

(2) ��.M ˝C�.X / k/ is finite.

Proof Set RD C�.X /. Clearly if M is small then ��.M ˝R k/ is finite.

So suppose that M ˝R k has finite homotopy. Let E D C�.�X /. Since k is proxy-
small and M is k –complete we see that M D HomE.†

ak;M /, where M is the
E –module HomR.k;M /.

By [15, Proposition 4.17] k is proxy-small also as an E –module. It follows that
†aM ˝R k is a k –cellular approximation of M . Hence there is a k –equivalence of
E –module †aM ˝R k!M . In particular

M ' HomE.k;M ˝R k/:

Since �1.X / is a finite p–group it follows that �n.M ˝R k/ is finitely built by k as
a kŒ�1X �–module for every n. Using [15, Proposition 3.2] and the fact that M ˝R k

has finite homotopy we see that k ˆE M ˝R k and therefore

R� HomE.k; k/ˆR HomE.k;M ˝R k/�M:

Algebraic & Geometric Topology, Volume 13 (2013)



94 David J Benson, John P C Greenlees and Shoham Shamir

9D Loop space homology of gci spaces

The following rests heavily on results of Félix, Halperin and Thomas.

Lemma 9.10 Let X be a Gorenstein gci space. Then

(1) H�.�X / is left and right Noetherian, and

(2) H�.�X / is a finitely generated module over a central polynomial subalgebra.

Proof First suppose that X is simply connected. The depth of the Hopf algebra
H�.�X / is the least integer m such that Extm

H�.�X /
.k;H�.�X // is nonzero. We

claim that H�.�X / has finite depth. Observe that there is conditionally convergent
spectral sequence

E
p;q
2
D Extp;q

H�.�X /
.k;H�.�X // ) ExtpCq

C�.�X /
.k;C�.�X //:

Since C�.�X / is Gorenstein, the E2 term of this spectral sequence cannot be zero.
Hence H�.�X / has finite depth. Now, by [22, Theorems B and C], H�.�X / has the
desired properties.

Now suppose that X is not simply connected. Let zX be the universal cover of
X . Clearly zX is gci. Using [15, Proposition 8.10] it follows from the fibration
�1.X / ! zX ! X that zX is also Gorenstein. Hence H�.� zX / has the desired
properties, ie it is left and right Noetherian and is a finite module over a central
polynomial subalgebra.

One can identify H�.�X / with the semidirect product H�.� zX /Ì�1.X / in a natural
way. Since �1.X / is a finite group, we see that H�.�X / is a left and right Noetherian
H�.� zX /–module. In particular H�.�X / is left and right Noetherian (over itself).

Note that �1.X / acts on H�.� zX / via algebra maps and therefore the center of
H�.� zX /, which we shall denote by zZ , is invariant under this action. Because there
is a polynomial subalgebra P � zZ such that H�.� zX / is a finitely generated P –
module, zZ is Noetherian. The Hilbert–Noether theorem shows that the ring zZ�1.X /

of invariants is Noetherian and zZ is a finitely generated over it. We conclude that
H�.�X / is finitely generated over zZ�1.X / .

From the identification H�.�X /ŠH�. zX /Ì�1.X / we see that zZ�1.X / is contained
in the center of H�.�X /. Therefore H�.�X / is finitely generated over its center
Z , and Z is Noetherian. From the Noether normalisation theorem we conclude that
H�.�X / is a finitely generated module over a central polynomial subalgebra.
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10 The Hochschild cohomology shearing map

We need to discuss certain ring homomorphisms

 W HH�.X / �!H�.�X /

in the absolute case and

�W HH�.X j B/ �!H�.�F /

when we have a fibration F !X ! B . We refer to these as shearing maps, and the
purpose of the present section is to show that several different possible definitions agree.
Note that  is well-known in various contexts; see [24].

10A General context

In this section we give two equivalent definitions for the shearing map. Throughout we
assume Q is a commutative ring spectrum and that there are maps of ring spectra

Q
�
�!R

�
�! S:

Thus, R and S are Q–algebras, note that we do not assume R and S are commutative
Q–algebras. This is a precaution, as it is often all too easy to assume the wrong
bimodule structure when working in a commutative setting.

In this section we shall denote by Re
Q

the Q–algebra R˝Q Rop . We will denote by
S� the Q–algebra R˝Q Sop . Note there are maps of Q–algebras

Re
Q

1˝�
���! S�

�˝1
���! Se

Q:

Since S is an Se
Q

–module, this structure is pulled back to make S both an S� –module
and an Re

Q
–module. The shearing map is a map of graded algebras

HH�.R jQ/ �! Ext�S� .S;S/:

This is probably the place to mention we have two main settings in mind. In the first
there is a fibration F!X!B and we set QDC �.B/, RDC �.X / and S DC �.F /

with � and � being the obvious maps induced by the fibration. In this first setting
S� is equivalent to the k –algebra S ˝k S and so Ext�S� .S;S/ is the Hochschild
cohomology HH�.F /. In the second setting R D C �.X / for some space X and
both S and Q are k . Here S� is equivalent to R and Ext�S� .S;S/ turns out to be
H�.�X /. There is also a third setting, which is an amalgamation of the first two. We
shall say more on all of these settings towards the end of this section.
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10B Two descriptions of the shearing map

Before describing the shearing map we need a pair of lemmas. In what follows we
refer to the right copy of R in Re

Q
as Rr , thus there is a k –algebra map Rr !Re

Q
.

Lemma 10.1 There is a functor F W Ho.Re
Q
/!Ho.S� / given by M 7!M ˝Rr

S .
This functor is naturally equivalent to the functor M 7! S� ˝Re

Q
M and therefore F

is left adjoint to the forgetful functor Ho.S� /!Ho.Re
Q
/.

Lemma 10.2 There is an equivalence of S� –modules: R˝Rr
S ' S .

At first glance it is perhaps not clear what is the claim in Lemma 10.2 above. Recall
that S is an Se

Q
–module, and it is this module structure that we pulled back to make S

into an S� –module. So it is not immediately apparent that the S� –module structure
on R˝Rr

S agrees with the one on S .

The proofs of Lemmas 10.1 and 10.2 are both based on chasing the same diagram.
There is a commuting square of maps of Q–algebras:

R
op
r

//

��

Sop

��
Re

Q
// S�

This induces a diagram of homotopy categories and adjoint functor between them:

Ho.R
op
r /

//

��

Ho.Sop/oo

��
Ho.Re

Q
/ //

OO

Ho.S� /oo

OO

Chasing the diagram above will easily yield proofs for Lemmas 10.1 and 10.2, and we
leave it to the reader to complete the details.

Definition 10.3 Define the shearing map for the transitivity triple Q!R! S to be
the map �W Ext�

Re
Q

.R;R/! Ext�S� .S;S/ of graded rings given by �.f /D f ˝Rr
S .

By Lemmas 10.1 and 10.2 there is an isomorphism �RW Ext�
Re

Q

.R;S/! Ext�S� .S;S/.
This allows us to construct another map

˛W Ext�Re
Q
.R;R/ �! Ext�S� .S;S/;
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where ˛ is the composition

Ext�Re
Q
.R;R/

�
�! Ext�Re

Q
.R;S/

�R
�! Ext�S� .S;S/:

We will show that ˛ and � are equal, but for that we must first have an explicit
description of � .

Since � is the isomorphism given by an adjunction, it only depends on a choice of
counit map mW S ˝Rr

S ! S . This then becomes a bootstrapping problem, namely
describing the counit map. For that we state the following lemma.

Lemma 10.4 There is the following commutative diagram of Se
Q

–modules

S ˝Q S
m0 //

��

S

D

��
S ˝R S

m // S;

where m0 is the multiplication map of S as a Q–algebra. The map m satisfies the
following identities:

m.� ˝R S/D 1S ;

m.S ˝R �/D 1S ;

where the first is an identity of morphisms in Ho.S� / and the second is an identity of
morphisms in Ho.S ˝Q Rop/.

Remark 10.5 Suppose F ! X is a fibration and set Q D k , R D C �.X / and
S D C �.F /. Then the map m0 is induced by the diagonal �0W F ! F � F while
m is induced by the diagonal �W F ! F �X F . Clearly F �X F � F �F and the
composition

F
�
�! F �X F �! F �F

is �0 . This gives a topological explanation to the commuting diagram above.

Denote by F the functor �˝Rr
S W Ho.Re

Q
/ ! Ho.S� / and by G the forgetful

functor Ho.S� /! Ho.Re
Q
/. Let �W FG ! 1 be given by �Y D Y ˝S m and let

�W 1!GF be �X DX ˝Rr
� . From Lemma 10.4 we get the following identities:

1FX D �FX ıF.�X /;

1GY DG.�Y / ı �GY :

Accordingly, � and � are the counit and the unit for the adjunction of F and G . In
particular we get the following corollary.
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Corollary 10.6 Define natural transformations

� W Ext�Re
Q
.� ;S/ �! Ext�S� .�˝Rr

S;S/;

ıW Ext�S� .�˝Rr
S;S/ �! Ext�Re

Q
.� ;S/;

in the following manner. Given a map f W M ! †nS of Re
Q

–modules, let �.f / be
the composition m.f ˝Rr

S/, and given a map gW M ˝R S !†nS of S� –modules,
let ı.g/D g.1M ˝Rr

�/. Then ı� D 1 and �ı D 1.

Proof The adjoint to a morphism f W M !GS is the composition

FM
Ff
��! FGS

�S
�! S:

The adjoint to a morphism gW FM ! S is the composition

M
�M
��!GFM

Gg
��!GS:

Since �S Dm and �M D 1˝Rr
� , we are done.

Lemma 10.7 The map ˛ defined above is equal to the shearing map �. In particular
˛ is a map of graded algebras. Moreover, the right Ext�

Re
Q

.R;R/–module structure on
Ext�

Re
Q

.R;S/ is the same as the module structure induced by the map of algebras �.

Proof Let f be an element of Ext�
Re

Q

.R;R/, then

��.f /D �.�f /Dm.�f ˝S/Dm.� ˝S/.f ˝S/Dm.� ˝S/�.f /D �.f /:

The last identity comes from m.� ˝S/D 1S .

The second statement requires us to show that for f in Ext�
Re

Q

.R;R/ and g in
Ext�

Re
Q

.S;S/,
m.g�f ˝S/D g.f ˝S/:

Thus, it is enough to show that m.g� ˝S/ D g , but this is precisely the statement
�ı.g/D g which is proved above.

10C The shearing map for a fibration

Let F
q
�!X

p
�!B be a fibration and set QDC �.B/, RDC �.X / and S DC �.F /.

We shall show that S� is equivalent to the k –algebra S ˝k S and so Ext�S� .S;S/ is
the Hochschild cohomology HH�.F /.

Lemma 10.8 There is an equivalence of k –algebras S� ' S ˝k Sop D Se .
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Proof Recall that S 'R˝Q k . Thus,

Re
Q˝R Sop

' .R˝Q R/˝R Sop
'R˝Q Sop

'R˝Q .k˝Q R/' .R˝Q k/˝k .k˝Q R/

' S ˝k Sop:

Remark 10.9 There is also topological argument for the equivalence above. It is easy
to show that the homotopy pullback of the diagram

X �B X
p2
�!X

q
 � F

is F �F , where p2 is the projection onto the second coordinate.

Remark 10.10 The equivalence S� ' Se allows us to translate the S� –module
R˝R S into an Se –module, which we shall provisionally denote by T . Clearly T

is equivalent to S as a k –module, but one might worry that T would not have the
correct Se –module structure we want. The module structure we need is the diagonal
one, induced by the diagonal map �W F!F �F (whereas, for example, the S˝k S –
module k˝k S has a “wrong” module structure). We sketch a topological argument
as to why T has the correct module structure. Consider the map of homotopy pullback
squares below, where the left and right walls are homotopy pullbacks and the map
X �B X !X is projection to the right coordinate:

F
� //

��

��

F �F

��

%%
X

� //

��

X �B X

��

F

  

// F

%%
X

D // X

One easily sees that the induced morphism � of homotopy pullbacks is indeed the
diagonal map, as required. Hence T has the correct module structure.

Thus we have shown:

Corollary 10.11 In the setting above the shearing map

�W HH�.X j B/ �! HH�.F /
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is a map of graded algebras.

10D The shearing map to the loop space homology

In this setting RD C �.X / for some space X and both S and Q are k . In this case
S� DR and Ext�S� .S;S/ŠH�.�X /. One immediately sees that the shearing map
has the form

 W HH�.X / �!H�.�X /:

Note that [24] describes a map I W HH�.X /!H�.�X / which is the same as the map
˛ introduced earlier and so, by Lemma 10.7, it is the shearing map. It is shown in [24]
that the image of I is central in H�.�X /, we give here a different argument for that
fact.

In the current setting the shearing map is clearly equal to the composition

HH�.R/ �!ZD.R/ �! Ext�R.k; k/;

where the map ZD.R/! Ext�R.k; k/ is given by � 7! �k W k!†nk . The following
is now obvious.

Lemma 10.12 In this setting the image of the shearing map  is contained in the
graded centre of H�.�X /.

10E The relative shearing map to the loop space homology

The setting here is as follows. Let F ! X ! B be a fibration and set QD C �.B/,
R D C �.X / and S D k . Then S� D R˝Q S turns out to be C �.F /. Thus the
shearing map is:

�W HH�.X j B/ �!H�.�F /

Lemma 10.13 The composition

HH�.X j B/
�
�!H�.�F / �!H�.�X /

is equal to the composition

HH�.X j B/ �! HH�.X /
 
�!H�.�X /;

where  is the shearing map from Section 10D above.
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Proof Let aW R! k be the augmentation map and let 'W Re!Re
Q

be the obvious
map. Note that ' induces the forgetful functor '�W Ho.Re

Q
/!Ho.Re/. In light of

Lemma 10.7 we need to show that the two compositions

Ext�Re
Q
.R;R/

a
�! Ext�Re

Q
.R; k/

'�

�! Ext�Re .R; k/(1)

Ext�Re
Q
.R;R/

'�

�! Ext�Re .R;R/
a
�! Ext�Re .R; k/(2)

are equal.

Let f W R! †nR be an element of Ext�Re
Q
.R;R/. The first composition yields the

morphism '�.af / 2 Ext�Re .R; k/ while the second composition yields '�.a/'�.f / 2
Ext�Re .R; k/. Both compositions are equal, because '� is a functor.

Corollary 10.14 The shearing map �W HH�.X j B/ ! H�.�F / is equal to the
composition

HH�.X j B/
˛
�! HH�.F /

ˇ
�!H�.�F /;

where ˛ and ˇ are the appropriate shearing maps.

Proof Given f 2 HH�.X j B/ we have

�.f /D f ˝C�.X / k D f ˝C�.X / C �.F /˝C�.F / k D ˇ.˛.�//:

11 Finite gci spaces are hhci

In this section we assume the LRC 4.6.

11A A sufficient condition for being hhci

This condition (Theorem 11.2 below) will also be used in Section 12, and for that
reason we phrase it in greater generality than is strictly needed in this section.

Throughout this section we denote by � the shearing map HH�.X j B/!H�.�F /

where X ! B is a polynomial normalisation and F is the Noether fiber. Recall
(Lemma 10.12) that the image of � is contained in the graded-commutative centre of
H�.�F /, which we shall denote by Z . We also remind the reader that by Lemma 9.5
the space F is gci whenever X is gci.

Lemma 11.1 Let X be a normalisable gci space. Denote by A the image of the
shearing map �. Suppose that Z is finitely generated as a module over the subalgebra
A. Then A is a Noetherian algebra.
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Proof By Lemma 9.10 the algebra H�.�F / is a free finitely generated module over
a central polynomial subalgebra P . Let Z � H�.�F / be the graded-commutative
centre. Then A�Z and Z is a Noetherian graded-commutative ring (Z is Noetherian
because it is also finitely generated as a P –module). In [18] Eisenbud proves that if
a central subring of a Noetherian ring finitely generates the whole ring as a module,
then that subring is Noetherian. A simple generalization of this result to the graded-
commutative setting completes the proof.

Theorem 11.2 Let X be a normalisable gci space and suppose that the shearing map
� makes Z into a finitely generated HH�.X j B/–module. Then X is hhci.

Proof Let A be the image of �. Since A is a graded-commutative Noetherian algebra
(by Lemma 11.1) with A0Dk , then A has a Noether normalisation. There are elements
x1; : : : ;xc 2A which generate a polynomial subalgebra P D kŒx1; : : : ;xc � such that
A is a finitely generated P –module. Since Z is finitely generated as an A–module, it
is also finitely generated as a P –module.

We know from Lemma 9.10 that H�.�F / is finitely generated as a Z–module and
hence it is also finitely generated as a P –module.

Set RDC �.X / and QDC�.B/ and choose elements z1; : : : ; zc 2HH�.R jQ/ such
that �.zi/ D xi . We will show that these elements satisfy the hhci definition. Let
B DR=z1= � � � =zc be the relevant Re

Q
–module; we must show that B is small.

Clearly B is bounded-above and of finite type, thus we may use the smallness criterion
of Corollary 9.9. Note we are applying the criterion to modules over the cochains of
the space X �B X , which is also a normalisable gci space using the normalisation
X �B X ! B . Thus we must show that B˝Re

Q
k has finite homology.

Recall from Section 10E that the transitivity triple used for defining the shearing map
� is Q D C�.B/, R D C�.X / and S D k and thus S� is C�.F /. As noted in
Lemma 10.1 B˝R k ' S� ˝Re

Q
B and so

B˝Re
Q

k ' k˝S� .B˝R k/:

Next we claim it is enough to show that

Ext�S� .B˝R k; k/

is finite-dimensional. Indeed

HomS� .B˝R k; k/' Homk.k˝S� .B˝R k/; k/:
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Recall there is an isomorphism Ext�S� .k; k/ŠH�.�F /. For every i D 1; : : : ; c the
map zi˝R k 2 Ext�S� .k; k/ represents the element xi D �.zi/. From this it is easy to
see that the map

Ext�S� .zi ˝R k; k/W H�.�F / �!H��jzi j
.�F /

is simply right multiplication by xi .

The Koszul filtration on B DR=z1= � � � =zc induces a filtration on B˝R k . This gives
rise to a spectral sequence whose E2 term is the Koszul homology

Hs;t .H�.�F /=x1= � � � =xc/Š TorP
s;t .H�.�F /; k/;

which strongly converges to Ext�s�tCc
S�

.k;B ˝R k/. Since H�.�F / is a finitely
generated P –module the E2 term of this spectral sequence is finite-dimensional.
Therefore Ext�S� .k;B˝R k/ is finite-dimensional and the proof is done.

11B Using a Hochschild cohomology spectral sequence

The Hochschild cohomology spectral sequence of [46] identifies one case where
H�.�F / is finitely generated over the image of the shearing map.

Theorem 11.3 A finite gci space is hhci.

Proof Let X be a finite gci space. The polynomial normalisation we consider is of
course X ! pt and the resulting shearing map is �W HH�.X /!H�.�X /.

Since X is a normalisable gci space, then by Lemma 9.10 the loop space homology
H�.�X / is finitely generated over a central polynomial subalgebra. We can now use
the results of [46] which show that the centre of H�.�X / is finitely generated over
the image of the shearing map. Invoking Theorem 11.2 completes the proof.

12 Normalisable gci spaces are eci

Throughout X is a normalisable gci space and we assume the LRC 4.6. Our goal is to
prove the following result.

Theorem 12.1 If X is a normalisable gci space then X is eci.

The missing ingredient for showing that a normalisable gci space X is hhci is described
in the next result.

Algebraic & Geometric Topology, Volume 13 (2013)



104 David J Benson, John P C Greenlees and Shoham Shamir

Proposition 12.2 Let X be a normalisable gci space, let �W X ! B be a polynomial
normalisation for X and let F be its Noether fibre. If the relative Hochschild cohomol-
ogy shearing map �W HH�.X jB/!HH�.F / makes HH�.F / into a finitely generated
HH�.X jB/–module, then X is hhci. In particular, if HH�.X jB/ is Noetherian then
X is hhci.

Example 12.3 For two closely related examples for X ! B to which this applies
suppose p is an odd prime. The two examples are (i) BCp ! BSO.2/ and (ii)
BD2p ! BO.2/. In both cases H�.B/ D kŒx� is polynomial on one generator (of
degree 2 or 4 respectively) and H�.X /D kŒx�˝ƒ.�/ where j� j D jxj � 1. Since the
spectral sequences relating algebra and topology collapse the shearing map is

HH�.kŒx�˝ƒ.�/jkŒx�/ �! HH�.ƒ.�/jk/

and easily seen to be surjective.

12A Normalisable gci spaces

Recall from Lemma 9.5 that because X is gci, then so is the Noether fibre F of any
polynomial normalisation X ! B . Theorem 11.3 above shows that F is hhci; we use
this together with the normalisability of X to deduce it is eci.

Proof of Theorem 12.1 Let �W X !B be a polynomial normalisation for X and let
F be the fibre of this map, then F is k –finite and is gci.

Set QD C �.B/, RD C �.X / and S D C �.F / and let x1; : : : ;xn 2H�.B/ be the
polynomial generators of the cohomology algebra. So k 'Q=x1= � � � =xn and

S 'R˝Q k 'R=x1= � � � =xm

as R–modules.

There is a commutative diagram of algebras

Re
Q

//

��

Se

��
R // S

coming from the obvious diagram of spaces. Pulling back along the left-hand vertical,
R=x1= � � � =xn ' S as Re

Q
–modules. Thus we have shown that Rˆhh S .

By Theorem 11.3 the Noether fibre F is hhci. In particular there are elements
z1; : : : ; zc 2 Ext�Se .S;S/ such that T D S=z1= � � � =zc is a small Se –module. Using
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the diagram above we can pull this construction back to the category of Re
Q

–modules,
thereby showing that S ˆe T as Re

Q
–modules. Combined with the fact that Rˆhh S

this yields Rˆe T .

It remains to show that T is small as an Re
Q

–module. The homotopy fibre of the
map F �F !X �B X is easily seen to be �B . This implies that Se is small as an
Re

Q
–module and therefore T is small as an Re

Q
–module.

12B Proof of Proposition 12.2

Let �W X ! B be a polynomial normalisation with Noether fibre F . As before F is
connected and gci.

By assumption, the shearing map �W HH�.X j B/! HH�.F / makes HH�.F / into a
finitely generated module over HH�.X j B/. As we saw in the proof of Theorem 11.3
above, the shearing map  W HH�.F /!H�.�F / makes Z (the centre of H�.�F /)
into a finitely generated HH�.F /–module. By Corollary 10.14, the relative shearing
map �0W HH�.X j B/!H�.�F / is the composition  �. Thus �0 makes Z into a
finitely generated HH�.X j B/–module. By Theorem 11.2, X is hhci.

To complete the proof of Proposition 12.2 we must show that if HH�.X j B/ is
Noetherian then � makes HH�.F / into a finitely generated HH�.X j B/–module.
This easily follows from the next lemma.

Lemma 12.4 Set QD C �.B/, RD C �.X / and S D C �.F /. Then HomSe .S;S/

is a small HomRe
Q
.R;R/–module.

Proof Since H�.�B/ is finite, we see that S is a small R–module. As we saw
earlier, the Re

Q
–module structure on S coming from the map of algebras Re

Q
!R

is the same as the usual Re
Q

–module structure on S . Hence, S is finitely built by
R over Re

Q
and therefore HomRe

Q
.R;S/ is finitely built by HomRe

Q
.R;R/ as a

HomRe
Q
.R;R/–module.

This completes the proof of Proposition 12.2.

13 Some examples from group theory

In this section we restrict attention to the special case RD C �.BGI k/, and seek to
understand both the eci condition and the gci condition.
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13A Chevalley groups

Now consider Quillen’s p–adic construction of the classifying space of a Chevalley
group. As usual, all spaces are completed at p , and we omit notation for this. If q¤ p

and ‰qW BG ! BG is an Adams map we follow Quillen in defining F‰q by the
homotopy pullback square

F‰q

��

// BG

B�
��

BG
f1;‰qg // BG �BG

and then find a p–adic equivalence

F‰q
' BG.q/:

This gives a p–adic fibration

G �! BG.q/ �! BG:

If G is a sphere this shows that BG.q/ is an s–hypersurface space. For example,
G D U.1/ this shows again that the classifying space BGL1.q/ of the cyclic group
GL1.q/ is an s–hypersurface space. More interesting is the case G D SU.2/, which
shows that BPSL2.q/ is an s–hypersurface space. When G is an iterated sphere
bundle (eg if G is one of the classical groups) this shows BG.q/ is wsci, and hence
also gci and therefore eci.

Problem 13.1 Show that when G D SU.3/ and q is such that the cohomology ring
is not periodic, then the space BG.q/ is not sci.

Quillen [43], Fiedorowicz–Priddy [25] and Kleinerman [32] show that H�.BG.q//

is ci provided H�.BG/ has no p–torsion. Similarly Quillen shows the extraspecial
groups [42] have ci cohomology rings. As in Example 6.8 this shows they are gci from
the Eilenberg–Moore spectral sequence and hence eci by Theorem 12.1.

13B Squeezed homology

Since we are working with groups, it is illuminating to recall the first author’s purely
representation theoretic calculation of the loop space homology H�.�.BG^p // [8]. In
fact

H�.�.BG^p //ŠH�
� .GI k/;

where H�
� .GI k/ is defined algebraically.
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More precisely H�
� .GI k/ is the homology of

� � � �! P3 �! P2 �! P1 �! P0;

a so-called squeezed resolution of k . The sequence of projective kG –modules Pi is
defined recursively as follows. To start with P0 D P .k/ is the projective cover of k .
Now if Pi has been constructed, take Ni D ker.Pi!Pi�1/ (where we take P�1D k ),
and Mi to be the smallest submodule of Ni so that Ni=Mi is an iterated extension of
copies of k . Now take PiC1 to be the projective cover of Mi .

13C Some simple cases

Note that if G is a p–group, we have �.BG^p /'G so that the topology focuses on
H�.�BG/Š kG and since k is the only simple module, M0 D 0 and we again find
H�
� .G/D kG .

We would expect the next best behaviour to be when H�.BG/ is a hypersurface. Indeed,
if H�.BG/ is a polynomial ring modulo a relation of codegree d , the Eilenberg–Moore
spectral sequence

Ext�;�
H �.BG/

.k; k/)H�.�.BG^p //

shows that there is an ultimate periodicity of period d � 2. The actual period therefore
divides d �2. This same phenomenon can be seen in the algebraic construction, where
complete information about products is also available.

Here is an example where we can understand both the loop space homology and the
Hochschild cohomology explicitly.

Example 13.2 (G D p W q with q j p� 1) We take G to be a nontrivial semidirect
product of Cp with Cq , where q is a divisor of p� 1. Then

H�.BG; k/Dƒ.y/˝ kŒx�;

where jyj D �.2q� 1/ and jxj D �2q (we grade everything homologically). So

H�.�BG^p I k/Dƒ.�/˝ kŒ��;

where j�j D 2q� 1 and j�j D 2q� 2. The spectral sequence [46] for the Hochschild
cohomology collapses to show

HH�.C �.BG//DH�.BG;H�.�BG^p I k//Dƒ.y; �/˝ kŒx; ��:

Alternatively, the spectral sequence

HH�.H�.BG; k//) HH�.C �BG/
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collapses, giving
HH�.C �.BG//Dƒ.y; �/˝ kŒx; ��:

Since the spectral sequence of [46] collapses on the E2 term, Theorem 11.2 shows
BG is hhci. Explicitly, we can take the element 1˝ � 2 HH�.BG/ to show the hhci
condition holds.

Example 13.3 (G D A4 with p D 2) To start with we use a homotopy theoretic
proof, showing that BA4 is an s–hypersurface space and hence also hhci.

Indeed, the natural 3–dimensional representation A4! SO.3/ gives a 2–adic fibration

S3
�! BA4 �! BSO.3/;

and BA4 is an s–hypersurface space at 2 with B� DBSO.3/, and nD 3 (ie d D�4).

The stable cofibre sequence establishing that BA4 is hhci will then be

BA4 �BSO.3/BA4 � BA4 �†
2BA4;

and the periodicity element will be

� 2 HH�2.BA4jBSO.3//:

Next we outline a purely algebraic proof. To start with, we would like to see algebraically
that H�.�.BA4/

^
2
/ is eventually periodic. Although this calculation is already in [8],

we recall it briefly, since we refer to it below.

This case is small enough to be able to compute products in H�.�BG^p ; k/ using
squeezed resolutions, and we get

H�.�BG^p ; k/Dƒ.˛/˝ khˇ;  i=.ˇ2;  2/

with j˛j D 1 and jˇj D j j D 2. Beware that ˇ and  do not commute, so that a
k –basis for H�.�BG^p ; k/ is given by alternating words in ˇ and  (such as ˇˇ or
the empty word), and ˛ times these alternating words.

First note that

H�.BA4/DH�.BV4/
A4=V4 D kŒx2;y3; z3�=.r6/;

where r6D x3
2
Cy2

3
Cy3z3Cz2

3
. From the Eilenberg–Moore spectral sequence we see

that the loop space homology will eventually have period dividing 4, and by calculation
with the squeezed resolution we find the eventual period is exactly 4.

There are three simple modules. Indeed, the quotient of A4 by its normal Sylow
2–subgroup is of order 3; supposing for simplicity that k contains three cube roots of
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unity 1; !; ! , the simples correspond to how a chosen generator acts. The projective
covers of the three simple modules are

P .k/D

k

! x!

k

; P .!/D

!

x! k

!

; P .x!/D

x!

k !

x!

:

Turning to Hochschild cohomology, HH�.C �.BG; k// is necessarily graded commu-
tative, and we have

HH�.H�.BG; k//D kŒx;y; z�=.x3
Cy2

CyzC z2/˝ƒ.�; �; �/˝ kŒ��

with j�j D 4. We expect that both spectral sequences collapse.

Example 13.4 (G DL3.2/ at p D 2) The behaviour is essentially the same as that
of G D A4 with p D 2, as described in [8], and we give details here of a different
group by way of variation.

First
H�.BL3.2//D kŒx2;y3; z3�=.r6/;

where r6 D y3z3 . From the Eilenberg–Moore spectral sequence we see that the loop
space homology will eventually have period dividing 4.

There are three simple modules, the trivial module k , and two others, M and N . The
projective covers of the three simple modules are

P .k/D

k

M N

k

; P .M /D

M

N

M k

N

M

; P .N /D

N

M

N k

M

N

:

The squeezed resolution takes the following form, where the top row records the
projective modules Pi , and the second row records the modules Ni ; the modules Mi

are obtained by deleting the copies of k marked with an asterisk.

Thus we see that
Mk ŠMkC2 for k � 1:
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P.M /˚P.N / P.N /˚P.M / P.N /˚P.M / P.M /˚P.N / P.k/

M N N M M N

k� k� N M k� k� M N k

M N k� M N k� M N N k� M

N M M N

Example 13.5 (The cochains on BL3.3/ at the prime 2) To start with, we note
that this is also an example for M11 . Indeed, the principal blocks of L3.3/ and of
M11 are Morita equivalent at the prime 2 [2; 21], and there is a 2–adic equivalence
BL3.3/' BM11 [41].

In any case, we take X D BL3.3/ because we want to use the Chevalley group
properties. This example is of interest since BL3.3/ is gci of codimension 1, whereas
it is not wsci of codimension 1. Since BL3.3/' BSU3.3/ it is wsci of codimension
2 as in Section 13A in view of the 2–adic fibration

SU.3/ �! BL3.3/ �! BSU.3/:

Since it has cohomology ring

H�.BL3.3/I k/Š kŒx3;y4; z5�=.r10/; with r10 D x2yC z2;

we see that to be sci of codimension 1, we would need a space with polynomial
cohomology kŒx3;y4; z5�, which does not exist [3].

From the Eilenberg–Moore spectral sequence we see that the loop space homology of
G will eventually have period dividing 8, and we may see this explicitly in terms of
representation theory.

There are three simple modules: the trivial module k , a module M of dimension 10

and a module N of dimension 44. The associated projective covers P .k/;P .M / and
P .N / are as follows

P .k/D

k

M N

k k

N M

k

; P .M /D

M

k M

N M

k M

M

; P .N /D

N

k

M N

k

N

:
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The squeezed resolution takes the following form, where the top row records the
projective modules Pi , and the second row records the modules Ni ; the modules
Mi are obtained by deleting the copies of k marked with an asterisk. The somewhat
delicate part of the following calculation is the fact that the kk� in N5 has the effect
of creating a module M5 with the same structure as M1 .

P.N /
˚P.M /

P.N /
˚P.M /

P.M /
˚P.N /

P.N /
˚P.M /

P.M /
˚P.N / P.k/

M k� M k� M M N

M N M M N k� M N M k k

N kk� M k k M k N k k N k M N M

N M M N M N M n M k

Thus we see that
Mk ŠMkC4 for k � 1:
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[48] K Ziemiański, A faithful unitary representation of the 2–compact group DI.4/ , J. Pure
Appl. Algebra 213 (2009) 1239–1253 MR2497572

Department of Mathematics, University of Aberdeen
Meston Building, Aberdeen AB24 3UE, UK

School of Mathematics and Statistics, University of Sheffield
Hicks Building, Sheffield S3 7RH, UK

Department of Mathematics, University of Bergen
5008 Bergen, Norway

bensondj@maths.abdn.ac.uk, j.greenlees@sheffield.ac.uk,
shoham_s@yahoo.com

http://homepages.abdn.ac.uk/mth192/pages/html/index.html,
http://greenlees.staff.shef.ac.uk

Received: 15 April 2011 Revised: 14 August 2012

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF01350050
http://dx.doi.org/10.1007/BF01350050
http://www.ams.org/mathscinet-getitem?mr=0290401
http://dx.doi.org/10.2307/1970825
http://dx.doi.org/10.2307/1970825
http://www.ams.org/mathscinet-getitem?mr=0315016
http://www.ams.org/mathscinet-getitem?mr=0086071
http://dx.doi.org/10.1016/0021-8693(69)90023-4
http://www.ams.org/mathscinet-getitem?mr=0241411
http://dx.doi.org/10.1353/ajm.2007.0014
http://www.ams.org/mathscinet-getitem?mr=2306038
http://dx.doi.org/10.1016/j.jpaa.2008.11.042
http://www.ams.org/mathscinet-getitem?mr=2497572
mailto:bensondj@maths.abdn.ac.uk
mailto:j.greenlees@sheffield.ac.uk
mailto:shoham_s@yahoo.com
http://homepages.abdn.ac.uk/mth192/pages/html/index.html
http://greenlees.staff.shef.ac.uk
http://msp.org
http://msp.org

	1. Introduction
	1A. The context
	1B. The aspiration
	1C. Relation to other papers in the series
	1D. Organization of the paper
	1E. Grading conventions

	2. Commutative algebra for spaces
	2A. Philosophy
	2B. Building
	2C. Convenient models
	2D. Some analogies
	2E. Conventions

	3. Regular spaces
	3A. Commutative algebra
	3B. g--regularity for spaces
	3C. Some small objects
	3D. What should finitely generated mean?

	4. A Noetherian condition
	4A. Normalisable spaces
	4B. Finitely generated modules

	5. Bimodules and natural endomorphisms of R--modules
	5A. The centre of the derived category of R--modules
	5B. Bimodules

	6. Complete intersection spaces
	6A. The definition in commutative algebra
	6B. Definitions for spaces
	6C. Hypersurface rings
	6D. Hypersurface spaces

	7. s--hypersurface spaces and z--hypersurface spaces
	7A. Split spherical fibrations
	7B. Strategy
	7C. The situation in homology
	7D. Lifting to cochains

	8. Growth conditions
	8A. Polynomial growth
	8B. Mapping cones reduce degree by one
	8C. Growth of eci spaces

	9. Properties of gci spaces
	9A. Cellular approximation, completion and Gorenstein condition
	9B. The Gorenstein property of gci spaces
	9C. Completion and smallness criteria
	9D. Loop space homology of gci spaces

	10. The Hochschild cohomology shearing map
	10A. General context
	10B. Two descriptions of the shearing map
	10C. The shearing map for a fibration
	10D. The shearing map to the loop space homology
	10E. The relative shearing map to the loop space homology

	11. Finite gci spaces are hhci
	11A. A sufficient condition for being hhci
	11B. Using a Hochschild cohomology spectral sequence

	12. Normalisable gci spaces are eci
	12A. Normalisable gci spaces
	12B. Proof of Proposition 12.2

	13. Some examples from group theory
	13A. Chevalley groups
	13B. Squeezed homology
	13C. Some simple cases

	References

