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Cascades and perturbed
Morse–Bott functions

AUGUSTIN BANYAGA

DAVID E HURTUBISE

Let f W M ! R be a Morse–Bott function on a finite-dimensional closed smooth
manifold M . Choosing an appropriate Riemannian metric on M and Morse–Smale
functions fj W Cj ! R on the critical submanifolds Cj , one can construct a Morse
chain complex whose boundary operator is defined by counting cascades [16]. Similar
data, which also includes a parameter " > 0 that scales the Morse–Smale functions
fj , can be used to define an explicit perturbation of the Morse–Bott function f to
a Morse–Smale function h"W M !R [3; 6]. In this paper we show that the Morse–
Smale–Witten chain complex of h" is the same as the Morse chain complex defined
using cascades for any "> 0 sufficiently small. That is, the two chain complexes have
the same generators, and their boundary operators are the same (up to a choice of
sign). Thus, the Morse Homology Theorem implies that the homology of the cascade
chain complex of f W M !R is isomorphic to the singular homology H�.M IZ/ .

57R70; 37D05, 37D15, 58E05

1 Introduction

Let f W M ! R be a Morse–Bott function on a finite-dimensional closed smooth
Riemannian manifold .M;g/ with connected critical submanifolds Cj for j D1; : : : ; l .
There are at least three approaches to computing the homology of M using moduli
spaces of gradient flow lines:

(1) Perturb f W M ! R to a Morse–Smale function and use the Morse–Smale–
Witten chain complex, whose boundary operator is defined using moduli spaces
of gradient flow lines of the perturbed function (see for instance the authors’ [4],
Schwarz [29], and the references therein).

(2) Introduce Morse functions fj W Cj !R on the critical submanifolds C1; : : : ;Cl

and use a Morse chain complex whose boundary operator is defined using moduli
spaces of cascades (see Frauenfelder [16]).
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(3) Use the Morse–Bott–Smale multicomplex, where the homomorphisms in the
multicomplex are defined using fibered products of moduli spaces of gradient
flow lines of the Morse–Bott function f W M !R (see the authors’ [7]).

A fourth approach might involve using the filtration determined by the Morse–Bott
function f W M !R to define a spectral sequence, but the differentials in the spectral
sequence determined by the filtration are not defined using moduli spaces of gradient
flow lines (see the authors’ [7] and the second author’s [19]). In addition, there are
approaches to computing the cohomology/homology of M from a Morse–Bott function
using differential forms and/or currents (see Austin and Braam [3], Cho and Hong [12]
and Latschev [22]), but we will not discuss differential forms or currents in this paper.

The main goal of this paper is to show that for a finite-dimensional closed smooth
manifold M the first two approaches are essentially the same. That is, the auxiliary
Morse functions fj W Cj!R on the critical submanifolds Cj for j D 1; : : : ; l required
to define the cascade chain complex and a parameter " > 0 determine an explicit
perturbation of the Morse–Bott function f W M !R to a Morse function h"W M !R
(see Austin and Braam [3] and the authors’ [6]). Moreover, under certain transversality
assumptions the Morse–Smale–Witten chain complex of h"W M ! R has the same
generators and the same boundary operator as the cascade chain complex (up to a
choice of sign).

We now describe the cascade chain complex for a Morse–Bott function. To the best
of our knowledge, moduli spaces of cascades were first introduced within the context
of symplectic Floer homology by Frauenfelder [16], and cascade-like objects were
simultaneously introduced within the context of contact homology by Bourgeois [9].
Moduli spaces of cascades have since been used in the contexts of contact homology
and gauge theory by several authors (see Bourgeois and Oancea [10; 11] Cieliebak and
Frauenfelder [13] and Swoboda [30]). Our approach to constructing moduli spaces
of cascades and their compactifications is given in Sections 3 and 4 for a function
f W M !R on a finite-dimensional closed smooth Riemannian manifold .M;g/ that
satisfies the Morse–Bott–Smale transversality condition. The moduli spaces of cascades
are constructed using finite-dimensional fibered products similar to those found in the
authors’ [7], and the compactifications of the moduli spaces are described in terms of
the Hausdorff topology.

Cascades

Let f W M ! R be a Morse–Bott function on a finite-dimensional closed smooth
Riemannian manifold .M;g/ with connected critical submanifolds C1; : : : ;Cl . Choose
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Morse–Smale functions fj W Cj !R on the critical submanifolds for all j D 1; : : : ; l ,
and define the total index of a critical point of fj to be its Morse index on Cj plus
the Morse–Bott index of the critical submanifold Cj . Roughly speaking, a cascade
between two critical points is a concatenation of some gradient flow lines of the function
f and pieces of the gradient flow lines of the functions fj on the critical submanifolds.
Choosing appropriate Riemannian metrics on M and the critical submanifolds Cj , it is
shown in the appendix to Frauenfelder [16] that the moduli space of cascades Mc.q;p/

between two critical points q and p is a smooth manifold of dimension �q ��p � 1,
where �q and �p denote the total indices of q and p respectively. Moreover, Mc.q;p/

has a compactification consisting of broken flow lines with cascades between q and p .

Since the moduli space of cascades Mc.q;p/ has properties similar to those of a
moduli space of gradient flow lines of a Morse–Smale function, it is natural to define a
chain complex analogous to the Morse–Smale–Witten chain complex but using moduli
spaces of cascades in place of moduli spaces of gradient flow lines. Thus, we define the
k –th chain group C c

k
.f / to be the free abelian group generated by the critical points

of total index k of the Morse–Smale functions fj for all j D 1; : : : ; l . In the appendix
to [16] a boundary operator @c

� is defined by counting the number of cascades between
critical points of relative index one mod 2, and a continuation theorem is stated that
implies that the homology of the chain complex .C c

� .f /˝Z2; @
c
�/ is isomorphic to the

singular homology H�.M IZ2/. In Section 5 of this paper we show that it is possible
to define the boundary operator @c

� over Z by counting the elements of Mc.q;p/

with sign when �q ��p D 1, and we prove that the homology of the resulting chain
complex .C c

� .f /; @
c
�/ is isomorphic to the singular homology H�.M IZ/.

Perturbing the Morse–Bott function

The particular Morse–Smale functions fj W Cj!R chosen to define the chain complex
.C c
� .f /; @

c
�/ can also be used to define an explicit perturbation of the Morse–Bott

function f W M ! R to a Morse–Smale function h"W M ! R. This perturbation
technique was used by Austin and Braam [3] in relation to a de Rham version of Morse–
Bott cohomology. It was also used by the authors [6] to give a dynamical systems
approach to the proof of the Morse–Bott inequalities with somewhat different orientation
assumptions than the classical “half-space” method using the Thom Isomorphism
Theorem (see Bott [8], Farber [15, Appendix C], and Nicolaescu [25, Section 2.6]).

To define the Morse–Smale function h"W M ! R near f choose “small” tubular
neighborhoods Tj of each of the critical submanifolds Cj for all j D 1; : : : ; l and
extend the Morse–Smale functions fj to the tubular neighborhoods Tj by making
them constant in the direction normal to Cj . Choose bump functions �j on the tubular
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neighborhoods Tj for all j D 1; : : : ; l that are equal to one in an open neighborhood
of Cj , constant in the direction parallel to Cj , and equal to zero outside of Tj . The
function

h" D f C "

� lX
kD1

�kfk

�
is a Morse function near f for any sufficiently small " > 0, and the critical set of h" is
the union of the critical points of the functions fj W Cj !R for j D 1; : : : ; l . In fact,
the total index �q of a critical point q is the same as the Morse index of q viewed as a
critical point of h"W M !R.

Correspondence

If we choose the Riemannian metric g on M so that h"W M !R satisfies the Morse–
Smale transversality condition with respect to g , then the moduli space Mh".q;p/ of
gradient flow lines of h" between two critical points q and p is a smooth manifold
with dimMh".q;p/D �q��p�1. We show in Section 3 that if f W M !R satisfies
the Morse–Bott–Smale transversality condition and we choose the Morse functions
fj on the critical submanifolds so that some additional transversality conditions are
satisfied, then the moduli space of cascades Mc.q;p/ is also a smooth manifold of
dimension �q ��p � 1.

In Section 5 we prove that when the dimension of these moduli spaces is zero they
have the same number of elements.

Theorem 1.1 (Correspondence of moduli spaces) Let p; q2Cr.h"/ with �q��pD1.
For any sufficiently small " > 0 there is a bijection between unparameterized cascades
and unparameterized gradient flow lines of the Morse–Smale function h"W M ! R
between q and p ,

Mc.q;p/ !Mh".q;p/:

Choosing orientations on the unstable manifolds of the Morse–Smale function h"W M!

R associates a sign ˙1 to each component of Mh".q;p/ when �q��p D 1, and thus
we can use the correspondence theorem for moduli spaces to transport the signs to
the components of Mc.q;p/. This allows us to define the boundary operator in the
cascade chain complex over Z, and we have the following as an immediate corollary.

Corollary 1.2 (Correspondence of chain complexes) For " > 0 sufficiently small,
the Morse–Smale–Witten chain complex .C�.h"/; @�/ associated to the perturbation

h" D f C "

� lX
kD1

�kfk

�
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of a Morse–Bott function f W M ! R is the same as the cascade chain complex
.C c
� .f /; @

c
�/. That is, the chain groups of both complexes have the same generators

and their boundary operators are the same (up to a choice of sign).

This corollary, together with the Morse Homology Theorem, implies immediately
that the homology of the chain complex .C c

� .f /; @
c
�/ is isomorphic to the singular

homology H�.M IZ/.

Outline of the paper

In Section 2 we recall some basic definitions and facts about the Morse–Smale–Witten
chain complex. In Section 3 we give a detailed construction of the smooth moduli
space of cascades Mc.q;p/ under the assumption that f W M ! R satisfies the
Morse–Bott–Smale transversality condition with respect to the metric g on M . Our
construction requires that the Morse functions fj W Cj !R satisfy the Morse–Smale
transversality condition with respect to the restriction of the Riemannian metric g

to the critical submanifolds for all j D 1; : : : ; l and that all the unstable and stable
manifolds on the critical submanifolds are transverse to certain beginning and endpoint
maps (Definition 3.8). Lemma 3.9 shows that it is always possible to choose the
auxiliary Morse functions fj W M ! R so that these transversality conditions are
satisfied. Theorem 3.10 shows that under the above assumptions Mc.q;p/ is a smooth
manifold of dimension �q ��p � 1 that is stratified by smooth manifolds with corners.

In Section 4 we study the compactness properties of Mc.q;p/. We show using the
Hausdorff metric that Mc.q;p/ can be compactified using broken flow lines with
cascades, which implies that Mc.q;p/ is compact when �q � �p D 1. In Section 5
we give a detailed construction of the perturbation h"W M ! R, and we prove that
it is possible to choose a single Riemannian metric g so that h"W M ! R satisfies
the Morse–Smale transversality condition with respect to g for all " > 0 sufficiently
small (Lemma 5.1). We also prove that as "! 0 a sequence of gradient flow lines of
h" between two critical points q and p must have a subsequence that converges to a
broken flow line with cascades from q to p (Lemma 5.3).

The correspondence theorem for moduli spaces (Theorem 5.4) is proved in Section 5
using recent results from geometric singular perturbation theory. In particular, our
proof uses the exchange lemma for fast-slow systems (see Jones [21] and Schecter [27;
28]), which says (roughly) that a manifold M0 that is transverse to the stable manifold
of a normally hyperbolic locally invariant submanifold C will have subsets that flow
forward in time under the full fast-slow system to be near subsets of the unstable
manifold of C . The correspondence theorem for the Morse–Smale–Witten chain
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complex of h"W M !R and the cascade chain complex (Corollary 5.7) follows as an
immediate corollary to the correspondence theorem for moduli spaces.

2 The Morse–Smale–Witten chain complex

In this section we briefly recall the construction of the Morse–Smale–Witten chain
complex and the Morse Homology Theorem. For more details see [4].

Let Cr.f /D fp 2M j dfp D 0g denote the set of critical points of a smooth function
f W M ! R on a smooth m–dimensional manifold M . A critical point p 2 Cr.f /
is said to be nondegenerate if the Hessian Hp.f / is nondegenerate. The index �p

of a nondegenerate critical point p is the dimension of the subspace of TpM where
Hp.f / is negative definite. If all the critical points of f are nondegenerate, then f is
called a Morse function. If f W M ! R is a Morse function on a finite-dimensional
compact smooth Riemannian manifold .M;g/, then the stable manifold Wf

s.p/ and
the unstable manifold Wf

u.p/ of a critical point p 2 Cr.f / are defined to be

Wf
s.p/D

˚
x 2M j lim

t!1
't .x/D p

	
;

Wf
u.p/D

˚
x 2M j lim

t!�1
't .x/D p

	
;

where 't is the 1–parameter group of diffeomorphisms generated by minus the gradient
vector field, ie �rf . The index of p coincides with the dimension of Wf

u.p/. The
stable/unstable manifold theorem for a Morse function says that the tangent space at p

splits as
TpM D T s

p M ˚T u
p M;

where the Hessian is positive definite on T s
p M

def
D TpWf

s.p/ and negative definite on
T u

p M
def
D TpWf

u.p/. Moreover, the stable and unstable manifolds of p are surjective
images of smooth embeddings

Es
W T s

p M �!Wf
s.p/�M;

Eu
W T u

p M �!Wf
u.p/�M:

Hence, Wf
s.p/ is a smoothly embedded open disk of dimension m��p , and Wf

u.p/

is a smoothly embedded open disk of dimension �p .

If the stable and unstable manifolds of a Morse function f W M ! R all intersect
transversally, then the function f is called Morse–Smale. For any metric g on M

the set of smooth Morse–Smale functions is dense by the Kupka–Smale Theorem [4,
Theorem 6.6 and Remark 6.7], and for a given Morse function f W M ! R one can
choose a Riemannian metric on M so that f is Morse–Smale with respect to the
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chosen metric [1, Theorem 2.20]. Moreover, if f is Morse–Smale and p; q 2 Cr.f /
then Wf .q;p/DWf

u.q/\Wf
s.p/ is an embedded submanifold of M of dimension

�q��p , and when �q��p D 1 the number of gradient flow lines from q to p is finite
[4, Corollary 6.29].

If we choose an orientation for each of the unstable manifolds of f , then there is an
induced orientation on the normal bundles of the stable manifolds. Thus, we can define
an integer associated to any two critical points p and q of relative index one by counting
the number of gradient flow lines from q to p with signs determined by the orientations.
This integer is denoted by nf .q;p/D #Mf .q;p/, where Mf .q;p/DWf .q;p/=R
is the moduli space of gradient flow lines of f from q to p . The Morse–Smale–Witten
chain complex is defined to be the chain complex .C�.f /; @�/ where Ck.f / is the free
abelian group generated by the critical points q of index k and the boundary operator
@k W Ck.f /! Ck�1.f / is given by

@k.q/ D
X

p2Crk�1.f /

nf .q;p/p;

where Crk�1.f / denotes the set of critical points with index k � 1.

Theorem 2.1 (Morse Homology Theorem) The pair .C�.f /; @�/ is a chain complex,
and the homology of .C�.f /; @�/ is isomorphic to the singular homology H�.M IZ/.

Note that the Morse Homology Theorem implies that the homology of .C�.f /; @�/ is
independent of the Morse–Smale function f W M !R, the Riemannian metric, and
the chosen orientations.

3 Morse–Bott functions and cascades

Let f W M !R be a smooth function whose critical set Cr.f / contains a submanifold
C of positive dimension. Pick a Riemannian metric on M and use it to split T�M jC
as

T�M jC D T�C ˚ ��C;

where T�C is the tangent space of C and ��C is the normal bundle of C . Let p 2C ,
V 2 TpC , W 2 TpM , and let Hp.f / be the Hessian of f at p . We have

Hp.f /.V;W /D Vp � . zW �f /D 0

since Vp 2 TpC and any extension of W to a vector field zW satisfies df . zW /jC D 0.
Therefore, the Hessian Hp.f / induces a symmetric bilinear form H �

p .f / on �pC .
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Definition 3.1 A smooth function f W M !R on a smooth manifold M is called a
Morse–Bott function if the set of critical points Cr.f / is a disjoint union of connected
submanifolds and for each connected submanifold C �Cr.f / the bilinear form H �

p .f /

is nondegenerate for all p 2 C .

Often one says that the Hessian of a Morse–Bott function f is nondegenerate in the
direction normal to the critical submanifolds.

For a proof of the following lemma see [4, Section 3.5] or [5].

Lemma 3.2 (Morse–Bott Lemma) Let f W M ! R be a Morse–Bott function and
C � Cr.f / a connected component. For any p 2 C there is a local chart of M around
p and a local splitting ��C D ��� C ˚ �C� C , identifying a point x 2M in its domain
to .u; v; w/ where u 2 C , v 2 ��� C , w 2 �C� C , such that within this chart f assumes
the form

f .x/D f .u; v; w/D f .C /� jvj2Cjwj2:

Definition 3.3 Let f W M ! R be a Morse–Bott function on a finite-dimensional
smooth manifold M , and let C be a critical submanifold of f . For any p 2 C let
�p denote the index of H �

p .f /. This integer is the dimension of ��p C and is locally
constant by the preceding lemma. If C is connected, then �p is constant throughout
C and we call �p D �C the Morse–Bott index of C .

Cascades

Let f W M ! R be a Morse–Bott function on a finite-dimensional compact smooth
manifold, and let

Cr.f /D
la

jD1

Cj ;

where C1; : : : ;Cl are disjoint connected critical submanifolds of Morse–Bott index
�1; : : : ; �l respectively. Let fj W Cj !R be a Morse function on the critical submani-
fold Cj for all j D 1; : : : ; l . If q 2 Cj is a critical point of fj W Cj !R, then we will
denote the Morse index of q relative to fj by �j

q , the stable manifold of q relative to
fj by Wfj

s.q/� Cj , and the unstable manifold of q relative to fj by Wfj
u.q/� Cj .

Definition 3.4 If q 2 Cj is a critical point of the Morse function fj W Cj ! R for
some j D 1; : : : ; l , then the total index of q , denoted �q , is defined to be the sum of
the Morse–Bott index of Cj and the Morse index of q relative to fj , ie

�q D �j C�
j
q :
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The following is a restatement of [16, Definition A.5].

Definition 3.5 For q 2 Cr.fj /, p 2 Cr.fi/, and n 2N , a flow line with n cascades
from q to p is a .2n� 1/–tuple:�

.xk/1�k�n; .tk/1�k�n�1

�
;

where xk 2 C1.R;M / and tk 2RC D ft 2R j t � 0g satisfy the following for all k :

(1) Each xk is a nonconstant gradient flow line of f , ie

d

dt
xk.t/D�.rf /.xk.t//:

(2) For the first cascade x1.t/ we have

lim
t!�1

x1.t/ 2Wfj
u.q/� Cj

and for the last cascade xn.t/ we have

lim
t!1

xn.t/ 2Wfi

s.p/� Ci :

(3) For 1� k � n� 1 there are critical submanifolds Cjk
and gradient flow lines

yk 2 C1.R;Cjk
/ of fjk

, ie

d

dt
yk.t/D�.rfjk

/.yk.t//;

such that limt!1 xk.t/D yk.0/ and limt!�1 xkC1.t/D yk.tk/.

When j D i a flow line with zero cascades from q to p is a gradient flow line of fj

from q to p .

Note When j ¤ i a flow line with cascades from q to p must have at least one
cascade.

Note With respect to the notation in the preceding definition, we will say that the
flow line with n cascades ..xk/1�k�n; .tk/1�k�n�1/ begins at q and ends at p if the
conditions listed in .2/ hold, ie

lim
t!�1

x1.t/ 2Wfj
u.q/� Cj

and
lim

t!1
xn.t/ 2Wfi

s.p/� Ci :
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x1.t/

x2.t/

x3.t/

y1.0/

y1.t1/

y1.t/

y2.0/

y2.t2/

y2.t/

Ci

Cj

Cj1

Cj2

p

q nD 3

Note In the preceding definition the parameterizations of the gradient flow lines yk.t/

of the Morse functions fjk
W Cjk

!R are fixed in .3/ by limt!1 xk.t/D yk.0/, and
the entry tk records the time spent flowing along the critical submanifold Cjk

(or resting
at a critical point). However, the parameterizations of the cascades x1.t/; : : : ;xn.t/

are not fixed. Hence, there is an action of Rn on a flow line with n cascades given by�
.xk.t//1�k�n; .tk/1�k�n�1

�
7�!

�
.xk.t C sk//1�k�n; .tk/1�k�n�1

�
for .s1; : : : ; sn/ 2Rn .

Definition 3.6 For q 2 Cr.fj /, p 2 Cr.fi/, and n 2 N we denote the space of
flow lines from q to p with n cascades by W c

n .q;p/, and we denote the quotient of
W c

n .q;p/ by the action of Rn by

Mc
n.q;p/DW c

n .q;p/=R
n:

The set of unparameterized flow lines with cascades from q to p is defined to be

Mc.q;p/D
[

n2ZC

Mc
n.q;p/;

where Mc
0.q;p/DW c

0 .q;p/=R. We will say that an element of Mc.q;p/ begins at
q and ends at p .

We now prove that Mc.q;p/ is a smooth manifold of dimension �q ��p � 1 when
f W M !R satisfies the Morse–Bott–Smale transversality condition with respect to
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the metric g , the Morse functions fk W Ck!R satisfy the Morse–Smale transversality
condition with respect to the restriction of g to Ck for all k D 1; : : : ; l , and the stable
and unstable manifolds of the Morse–Smale functions fi W Ci !R and fj W Cj !R
are transverse to certain beginning and endpoint maps. Our proof uses fibered product
constructions on smooth manifolds with corners similar to those found in [7].

Definition 3.7 (Morse–Bott–Smale transversality) A Morse–Bott function f W M !
R is said to satisfy the Morse–Bott–Smale transversality condition with respect to a
given Riemannian metric g on M if for any two connected critical submanifolds C

and C 0 , Wf
u.q/ intersects Wf

s.C 0/ transversely in M , ie Wf
u.q/ t Wf

s.C 0/ �M ,
for all q 2 C .

Note Given a Morse function on a Riemannian manifold it is always possible to perturb
the Riemannian metric to make the Morse–Smale transversality condition hold with
respect to the perturbed metric (see [1, Theorem 2.20]). However, there are examples
of Morse–Bott functions which do not satisfy the Morse–Bott–Smale transversality
condition with respect to any Riemannian metric on the manifold (see [22, Section 2]).

Let Ck and Ck0 be two connected critical submanifolds of f , and let Wf
u.Ck/ and

Wf
s.Ck0/ denote the unstable and stable manifolds of Ck and Ck0 with respect to

the flow of �rf . The Morse–Bott–Smale transversality assumption implies that the
moduli space of gradient flow lines of f ,

Mf .Ck ;Ck0/D .Wf
u.Ck/\Wf

s.Ck0//=R;

is either empty or a smooth manifold of dimension �k��k0Cdim Ck�1. Moreover, the
beginning and endpoint maps @�WMf .Ck ;Ck0/! Ck and @CWMf .Ck ;Ck0/! Ck0

are smooth, and the beginning point map @� is a submersion (see [7, Lemma 5.19]).

Now assume that the following moduli spaces and fibered products are nonempty. Then
for distinct k; k 0; k 00 2 f1; 2; : : : ; lg and t 2RC D ft 2R j t � 0g we can consider the
fibered product

.RC �Mf .Ck ;Ck0//�Ck0
Mf .Ck0 ;Ck00/ //___

���
�
�

Mf .Ck0 ;Ck00/

@�
��

RC �Mf .Ck ;Ck0/
'tı@Cı�2 // Ck0 ;

where �2 denotes projection onto the second component and 't denotes the gradient
flow of fk0 along the critical submanifold Ck0 for time t 2RC . This fibered product is
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a smooth manifold with boundary because @�WMf .Ck0 ;Ck00/! Ck0 is a submersion,
and its dimension is

.�k ��k0Cdim Ck/C .�k0 ��k00Cdim Ck0 �1/�dim Ck0 D �k ��k00Cdim Ck �1

(see [7, Lemma 4.5 and Lemma 5.21]). Similarly, for any set of distinct integers
fj1; j2; : : : ; jn�1g � f1; 2; : : : ; lg such that the following moduli spaces are nonempty,
the iterated fibered product�
RC �Mf .Cj ;Cj1

/
�
�Cj1

�
RC �Mf .Cj1

;Cj2
/
�
�Cj2

� � �

�Cjn�2

�
RC �Mf .Cjn�2

;Cjn�1
/
�
�Cjn�1

Mf .Cjn�1
;Ci/

is a smooth manifold with corners because @� ı�2W RC �Mf .Ck ;Ck0/! Ck is a
submersion and a stratum submersion for all k; k 0 D 1; : : : ; l . We will denote this
smooth manifold with corners by Mc

n.Cj ;Cj1
; : : : ;Cjn�1

;Ci/. Its dimension is

.�j ��j1
C dim Cj /

C .�j1
��j2

C dim Cj1
/� dim Cj1

C � � �

C .�jn�2
��jn�1

C dim Cjn�2
/� dim Cjn�2

C .�jn�1
��i C dim Cjn�1

� 1/� dim Cjn�1
D �j ��i C dim Cj � 1;

which is independent of j1; j2; : : : ; jn�1 . Note that we have smooth beginning and
endpoint maps

@�WMc
n.Cj ;Cj1

; : : : ;Cjn�1
;Ci/ �! Cj ;

@CWMc
n.Cj ;Cj1

; : : : ;Cjn�1
;Ci/ �! Ci :

We can now state our transversality assumptions for the stable and unstable manifolds
Wfi

s.p/ and Wfj
u.q/ of the Morse–Smale functions fi W Ci!R and fj W Cj !R with

respect to these beginning and endpoint maps.

Definition 3.8 The stable and unstable manifolds Wfi

s.p/ and Wfj
u.q/ are transverse

to the beginning and endpoint maps if for any set (possibly empty) of distinct integers
fj1; j2; : : : ; jn�1g � f1; 2; : : : ; lg such that the space Mc

n.Cj ;Cj1
; : : : ;Cjn�1

;Ci/ is
not empty the map

Mc
n.Cj ;Cj1

; : : : ;Cjn�1
;Ci/

.@�;@C/
�����! Cj �Ci

is transverse and stratum transverse to Wfj
u.q/�Wfi

s.p/.

Note When fj1; j2; : : : ; jn�1g D∅ we have Mc
1
.Cj ;Ci/DMf .Cj ;Ci/.
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Lemma 3.9 There exist arbitrarily small perturbations of fi W Ci!R and fj W Cj!R
to smooth Morse–Smale functions zfi and zfj such that all the stable and unstable
manifolds of zfi and zfj are transverse to the beginning and endpoint maps. Moreover,
there exist open neighborhoods of zfi and zfj consisting of smooth Morse–Smale
functions whose stable and unstable manifolds are all transverse to the beginning and
endpoint maps.

Proof Let fj1; j2; : : : ; jn�1g � f1; 2; : : : ; lg be a (possibly empty) set of distinct
integers such that the moduli space Mc

n.Cj ;Cj1
; : : : ;Cjn�1

;Ci/ is not empty, and let
X be a stratum of Mc

n.Cj ;Cj1
; : : : ;Cjn�1

;Ci/. Let

Es
fi
W Rdim Ci��

i
p �!Wfi

s.p/� Ci and Eu
fj
W R�

j
q �!Wfj

u.q/� Cj

be the surjective smooth embeddings from Section 2, where p 2 Cr.fi/, q 2 Cr.fj /,
and we have identified T s

p Ci DRdim Ci��
i
p and T u

q Cj DR�
j
q . The stable and unstable

manifolds Wfj
s.p/ and Wfi

u.q/ are transverse to .@�; @C/W X ! Cj �Ci if and only if
the map�

Eu
fj
;Es
fi

�
� .@�; @C/W

�
R�

j
q �Rdim Ci��

i
p
�
�X �! .Cj �Ci/� .Cj �Ci/

is transverse to the diagonal �� .Cj �Ci/� .Cj �Ci/.

For any r � 2 the set of C r Morse–Smale functions on a smooth Riemannian manifold
.M;g/ is an open and dense subset of the set of all C r functions on M , and the phase
diagram of a Morse–Smale function is stable under small C r perturbations [26]. Thus
there exists a neighborhood Nfi

� C r .M;R/ of fi such that zfi 2Nfi
implies that zfi

is a Morse–Smale function with critical points of the same index and near the critical
points of fi . Similarly, there exists a neighborhood Nfj � C r .M;R/ of fj such that
zfj 2Nfj implies that zfj is a Morse–Smale function with critical points of the same

index and near the critical points of fi . Moreover, we can choose these neighborhoods
small enough so that the maps

Es
W Nfi

�! C r
�
Rdim Ci��

i
p ;Ci

�
and Eu

W Nfj �! C r
�
R�

j
q ;Cj

�
defined by sending zfi 2Nfi

to the embedding Es
zfi

(with respect to the critical point zp
near p ) and zfj 2Nfj to the embedding Eu

zfj
(with respect to the critical point zq near q )

are well defined and of class C r . In particular, we can choose the neighborhoods small
enough so that we can identify T s

zp
CiDT s

p CiDRdim Ci��
i
p and T u

zq
Cj DT u

q Cj DR�
j
q .

The map

.Eu
�Es/�.@�; @C/W

�
Nfj �Nfi

�
�
�
R�

j
q�Rdim Ci��

i
p�X

�
�! .Cj�Ci/�.Cj�Ci/
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defined by�
.Eu
�Es/� .@�; @C/

���
zfj ; zfi

�
� .x;y; 
 /

�
D
�
Eu
zfj
.x/;Es

zfi
.y/
�
� .@�.
 /; @C.
 //

is of class C r (see [2, Theorem 12.3]) and transverse to �� .Cj �Ci/� .Cj �Ci/.
Hence, by the transversality density theorem [2, Theorem 19.1] the set of Morse–Smale
functions . zfj ; zfi/ 2Nfj �Nfi

such that�
Eu
zfj
;Es
zfi

�
� .@�; @C/W

�
R�

j
q �Rdim Ci��

i
p
�
�X �! .Cj �Ci/� .Cj �Ci/

is transverse to � is residual (and hence dense) in Nfj �Nfi
for r � 2 large enough,

eg r > 3 dim M .

Since there are only finitely many subsets fj1; j2; : : : ; jn�1g � f1; 2; : : : ; lg, finitely
many critical points of fi and fj , and finitely many strata X , we can intersect finitely
many such residual sets to obtain a residual (and hence dense) subset R�Nfj �Nfi

such that

Mc
n.Cj ;Cj1

; : : : ;Cjn�1
;Ci/

.@�;@C/
�����! Cj �Ci

is transverse and stratum transverse to Wzfj
u.zq/�Wzfi

s. zp/ for all zq in Cr. zfj / and zp
in Cr. zfi/ whenever . zfj ; zfi/ 2 R. Also, since the space of smooth Morse–Smale
functions on M is dense in the space of C r Morse–Smale functions on M , the
openness of transversal intersection theorem [2, Theorem 18.2] implies that we can
find open neighborhoods of smooth functions arbitrarily close to fj and fi consisting
of Morse–Smale functions zfj and zfi with . zfj ; zfi/ 2R.

Note The critical points of fi and fj may not be preserved by the perturbations in
the preceding lemma. However, it is possible to choose the perturbations so that the
phase diagrams of fi and fj do not change [26]. In particular, the number of critical
points of index k remains the same for all k D 1; : : : ;m, which also follows from [14,
Rigidity Theorem 1.19].

The next theorem should be compared with [16, Theorem A.12], whose proof uses
the modern infinite-dimensional techniques of Floer homology. [16, Theorem A.12] is
proved under the assumption that the Riemannian metric g on M is generic, which is
necessary to ensure that a certain Fredholm operator used in the proof of the theorem
is surjective.

Theorem 3.10 Assume that f satisfies the Morse–Bott–Smale transversality con-
dition with respect to the Riemannian metric g on M , fk W Ck ! R satisfies the
Morse–Smale transversality condition with respect to the restriction of g to Ck for all
k D 1; : : : ; l , and the unstable and stable manifolds Wfj

u.q/ and Wfi

s.p/ are transverse
to the beginning and endpoint maps.
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(1) When nD 0; 1 the set Mc
n.q;p/ is either empty or a smooth manifold without

boundary.

(2) For n> 1 the set Mc
n.q;p/ is either empty or a smooth manifold with corners.

(3) The set Mc.q;p/ is either empty or a smooth manifold without boundary.

In each case the dimension of the manifold is �q ��p � 1. When M is orientable and
Ck is orientable for all k D 1; : : : ; l , the above manifolds are orientable.

Proof For more details concerning the notation and dimension formulas used in the
following we refer the reader to [7, Sections 3 and 4]. We first prove statements (1)
and (2) using pullback constructions. A gluing theorem is then used to show that the
space Mc

�n.Cj ;Ci/ consisting of flow lines with at most n cascades beginning at any
point in Cj and ending at any point in Ci is a manifold without boundary. Pulling back
Wfj

u.q/�Wfi

s.p/ via the beginning and endpoint maps on Mc
�l
.Cj ;Ci/ then shows

that Mc.q;p/ is a smooth manifold without boundary of dimension �q ��p � 1.

The space Mc
0
.q;p/ is empty unless i D j , and when i D j the theorem follows

from the fact that fj satisfies the Morse–Smale transversality condition. For the case
nD 1 note that the assumption that

Mc
1.Cj ;Ci/

.@�;@C/
�����! Cj �Ci

is transverse to Wfj
u.q/�Wfi

s.p/ implies that

Mc
1

�
Wfj

u.q/;Wfi

s.p/
� def
D .@�; @C/

�1
�
Wfj

u.q/�Wfi

s.p/
�

is either empty or a smooth manifold. In the second case, the codimension of the
manifold Mc

1
.Wfj

u.q/;Wfi

s.p// is dim Cj ��
j
q C�

i
p , and hence

dimMc
1.Wfj

u.q/;Wfi

s.p//D �j C�
j
q � .�i C�

i
p/� 1

since
dimMc

1.Cj ;Ci/D �j ��i C dim Cj � 1

(see [4, Theorem 5.11]). This shows that Mc
1
.q;p/ D Mc

1
.Wfj

u.q/;Wfi

s.p// is a
smooth manifold without boundary of dimension �q ��p � 1.

Now assume that n > 1 and the following moduli spaces and fibered products are
nonempty. Then for distinct j1; j2; : : : ; jn�1 2 f1; 2; : : : ; lg the assumption that

Mc
n.Cj ;Cj1

; : : : ;Cjn�1
;Ci/

.@�;@C/
�����! Cj �Ci

Algebraic & Geometric Topology, Volume 13 (2013)



252 Augustin Banyaga and David E Hurtubise

is transverse and stratum transverse to Wfj
u.q/�Wfi

s.p/ implies that

Mc
n

�
Wfj

u.q/;Cj1
; : : : ;Cjn�1

;Wfi

s.p/
� def
D .@�; @C/

�1
�
Wfj

u.q/�Wfi

s.p/
�

is a smooth manifold with corners of dimension �q ��p � 1. This shows that

Mc
n.q;p/ D

[
fj1;:::;jn�1g

Mc
n

�
Wfj

u.q/;Cj1
; : : : ;Cjn�1

;Wfi

s.p/
�

is a smooth manifold with corners of dimension �q ��p � 1, where the union is taken
over all sets of distinct integers fj1; : : : ; jn�1g � f1; 2; : : : ; lg. This completes the
proof of statements (1) and (2).

We now use a gluing theorem to define smooth charts on

Mc
�n.Cj ;Ci/

def
D

n[
kD0

Mc
k.Cj ;Ci/;

where Mc
k
.Cj ;Ci/ denotes the union of Mc

k
.Cj ;Cj1

; : : : ;Cjk�1
;Ci/ over all sets of

distinct integers fj1; : : : ; jk�1g � f1; 2; : : : ; lg when k > 1. For distinct k; k 0; k 00 in
f1; 2; : : : ; lg there exists an " > 0 and a smooth injective local diffeomorphism

GWMf .Ck ;Ck0/�Ck0
Mf .Ck0 ;Ck00/� .�"; 0/ �!Mf .Ck ;Ck00/

onto an end of Mf .Ck ;Ck00/, where the fibered product is taken with respect to the
beginning and endpoint maps @� and @C . (See for instance [3, Appendix A.3] or
[7, Theorem 4.8].) Let �W .�";1/ ! .�";1/ be a smooth map that is smoothly
homotopic to

�.t/D

�
t t � 0;

0 t � 0;

and satisfies

�.t/D

�
t t � "=2;

0 t � 0:

For " > 0 sufficiently small we can replace the maps 't ı@C ı�2 in the iterated fibered
product that defines Mc

n.Cj ;Cj1
; : : : ;Cjn�1

;Ci/ with the maps '�.t/ ı @C ı �2 and
obtain a smooth manifold with corners that is smoothly diffeomorphic to the original
manifold. Moreover, if we choose " > 0 small enough, then Wfj

u.q/ and Wfi

s.p/ will
still be transverse to the beginning and endpoint maps from the modified fibered product
space.

Using the maps '�.t/ ı @C ı�2 and @� we consider the fibered product

..�";1/�Mf .Cj ;Ck//�Ck
Mf .Ck ;Ci/;
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where k 2 f1; 2; : : : ; lg. The part of this smooth manifold where �" < t < 0 is
diffeomorphic to an end of Mc

1
.Cj ;Ci/ by the above gluing theorem, and the part of

the space where t �0 is diffeomorphic to Mc
2
.Cj ;Ck ;Ci/. Therefore, there are smooth

charts on the above manifold around the points where t D 0 which are compatible
with the smooth charts on Mc

1
.Cj ;Ci/ and the smooth charts on Mc

2
.Cj ;Ck ;Ci/.

This shows that the space Mc
�2
.Cj ;Ci/ of unparameterized flow lines with at most

2 cascades from Cj to Ci is a smooth manifold without boundary of dimension
�j ��i C dim Cj � 1.

Continuing by induction, for distinct j1; j2; : : : ; jn�12f1; 2; : : : ; lg the fibered product�
.�";1/�Mf .Cj ;Cj1

/
�
�Cj1

�
.�";1/�Mf .Cj1

;Cj2
/
�
�Cj2

� � �

�Cjn�2

�
.�";1/�Mf .Cjn�2

;Cjn�1
/
�
�Cjn�1

Mf .Cjn�1
;Ci/

with respect to the maps '�.t/ ı @C ı �2 and @� ı �2 is a smooth manifold. The
part of the space where �" < tk < 0 for some k is diffeomorphic to an end of
Mc
�n�1

.Cj ;Ci/, and the part of the space where tk � 0 for all k is diffeomorphic to
Mc

n.Cj ;Cj1
; : : : ;Cjn�1

;Ci/. Thus, the space Mc
�n.Cj ;Ci/ of unparameterized flow

lines with at most n cascades from Cj to Ci is a smooth manifold without boundary
of dimension �j ��i C dim Cj � 1. Moreover,

Mc
�n.Cj ;Ci/

.@�;@C/
�����! Cj �Ci

is transverse to Wfj
u.q/�Wfi

s.p/. The pullback of Wfj
u.q/�Wfi

s.p/ under this map is
the space of unparameterized flow lines with at most n cascades from q to p :

Mc
�n.q;p/D

n[
kD0

Mc
k.q;p/:

Hence, for any 0� n� l the space Mc
�n.q;p/ is either empty or a smooth manifold

without boundary of dimension �q ��p � 1. Taking nD l we see that Mc.q;p/ is
either empty or a smooth manifold without boundary of dimension �q ��p � 1.

Now, an orientation on M and orientations on Cj for all j D 1; : : : ; l determine
orientations on the above fibered products by the results in [7, Section 5.2]. If we
choose the gluing diffeomorphisms to be compatible with these orientations, then we
obtain an orientation on Mc.q;p/.

4 Broken flow lines with cascades

We will now consider the compactness properties of Mc.q;p/. In general, Mc.q;p/

will be a noncompact manifold because a sequence of unparameterized flow lines with
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cascades from q to p may converge to a broken flow line with cascades from q to
p . Throughout this section we will assume that f satisfies the Morse–Bott–Smale
transversality condition with respect to the Riemannian metric g on a compact smooth
manifold M , fk W Ck ! R satisfies the Morse–Smale transversality condition with
respect to the restriction of g to Ck for all k D 1; : : : ; l , and the unstable and stable
manifolds Wfj

u.q/ and Wfi

s.p/ are transverse to the beginning and endpoint maps. It
is well known that any sequence of unparameterized gradient flow lines between two
critical points of a Morse–Smale function must have a subsequence that converges to
a broken flow line. However, making this statement precise requires a discussion of
the topology on the space of broken flow lines. The topology on the space of broken
flow lines can be defined in several ways, including as the compact open topology
(after picking specific parameterizations for the flow lines), in terms of Floer–Gromov
convergence, and using the Hausdorff metric (after identifying a broken flow line with
its image). For a detailed discussion concerning different ways to define the topology on
the space of broken flow lines of a Morse–Smale function and proofs that the resulting
spaces are homeomorphic see [23].

To prove a similar result for cascades we first need to explain what we mean by a
broken flow line with cascades. Roughly speaking, a broken flow line with cascades is
a concatenation of unparameterized flow line with cascades that either flows along an
intermediate critical submanifold for infinite time or rests at an intermediate critical
point of one of the Morse functions fk W Ck ! R for some k D 1; : : : ; l for infinite
time. To make this more precise, recall that a flow line with cascades is of the form
..xk/1�k�n; .tk/1�k�n�1/, where tk 2 RC D ft 2 R j t � 0g. In particular, tk <1,
but we might have tk D 0 for some k . If tk D 0 for some k , then the flow line
with cascades “looks like” it contains a broken flow line. That is, if tk D 0, then
limt!1 xk.t/D limt!�1 xkC1.t/ and .xk ;xkC1/ is a broken flow line of the Morse–
Bott function f W M ! R. However, .xk ;xkC1; 0/ is an unbroken flow line with 2

cascades.

Since a flow line with cascades must begin and end at critical points of the Morse
functions chosen on the critical submanifolds, it’s clear that .xk ;xkC1/ should not be
called a broken flow line with cascades when limt!1 xk.t/D limt!�1 xkC1.t/ is not
a critical point of fjk

W Cjk
!R. In order to be consistent, we will not call .xk ;xkC1/

a broken flow line with cascades even if limt!1 xk.t/D limt!�1 xkC1.t/D r is a
critical point of fjk

W Cjk
! R. Instead, we will always assume that the time spent

resting at the intermediate critical point is zero, unless the time is otherwise specified.
That is, we will identify .xk ;xkC1/ with the flow line with 2 cascades .xk ;xkC1; 0/.

In general, suppose that we have an n–tuple of unparameterized flow lines with cascades
.v1; : : : ; vn/ such that v1 begins at q 2 Cr.fj /, vn ends at p 2 Cr.fi/, and v� begins
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where v��1 ends for 2� � � n. Suppose that v� is represented by�
.x�k/1�k�n� ; .t

�
k /1�k�n��1

�
and v��1 is represented by�

.x��1
k /1�k�n��1

; .t��1
k /1�k�n��1�1

�
:

The statement that v� begins where v��1 ends means that there is a critical point
r of one of the Morse functions fk W Ck ! R for some k D 1; : : : ; l such that
limt!1 x��1

n��1
.t/ 2 Wfk

s.r/ and limt!�1 x�n� .t/ 2 Wfk

u.r/. So, it appears that
.v��1; v�/ differs from an unparameterized flow line with cascades in that .v��1; v�/

flows along the intermediate critical submanifold Ck for infinite time. However, if
limt!1 x��1

n��1
.t/D limt!�1 x�n� .t/D r , then .v��1; v�/ determines an unparameter-

ized flow line with n��1Cn� cascades where the time spent resting at the intermediate
critical point q is 0, ie the unparameterized flow line with cascades represented by�

.x��1
k /1�k�n��1

; .x�k/1�k�n� ; .t
��1
k /1�k�n��1�1; 0; .t

�
k /1�k�n��1

�
:

In this case, we will identify .v��1; v�/ with the unparameterized flow line with
cascades represented by the above tuple.

It is interesting to consider what this convention means for a Morse–Smale function
f W M ! R. Suppose that p; q; r 2 Cr.f /, 
1 is a gradient flow line from q to
r and 
2 is a gradient flow line from r to p . Then with this convention we are
identifying the broken gradient flow line represented by .
1; 
2/ with the flow line
with 2 cascades .
1; 
2; 0/. In fact, for a Morse–Smale function this convention means
that the only truly broken flow lines with cascades have representations of the form
..xk/1�k�n; .tk/1�k�n�1/, where tk D1 for some k .

Definition 4.1 A broken flow line with cascades from q 2 Cr.fj / to p 2 Cr.fi/ is an
n–tuple of unparameterized flow lines with cascades .v1; : : : ; vn/ such that v1 begins
at q , vn ends at p , and v� begins where v��1 ends for 2 � � � n, subject to the
following restriction: If the last cascade of v��1 and the first cascade of v� meet at a
critical point of one of the Morse functions fk W Ck !R for some k D 1; : : : ; l , then
the time spent resting at the critical point is infinity.

A sequence of unparameterized flow lines with cascades from q 2Cr.fj / to p 2Cr.fi/

must have a subsequence that converges to a broken flow line with cascades from q to
p . This is proved in [16, Theorem A.10] with respect to Floer–Gromov convergence
[16, Definition A.9]. Our approach to this theorem will be in terms of the Hausdorff
metric.
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Definition 4.2 Let .X; d/ be a compact metric space and let K1 and K2 be nonempty
closed subsets of X . The Hausdorff distance between K1 and K2 is defined to be

dH .K1;K2/Dmax
�

sup
x12K1

inf
x22K2

d.x1;x2/; sup
x22K2

inf
x12K1

d.x1;x2/
�

D inf
˚
" > 0 jK1 �N".K2/ and K2 �N".K1/

	
;

where N".K/D
S

y2K fx 2X j d.x;y/� "g.

Note The Hausdorff distance on the set of all nonempty closed subsets Pc.X / of
a compact metric space .X; d/ is a metric, and the two definitions of the Hausdorff
metric given above are equivalent. Moreover, the space Pc.X / is itself compact in the
topology determined by the Hausdorff metric. (See for instance [24, Section 7.3].)

We would now like to identify a broken flow line with cascades with a closed subset of
some compact metric space. For broken flow lines without cascades this is done by
identifying a broken flow line of a Morse–Bott–Smale function with its image in the
compact manifold M (see [18, Section 2]). However, a flow line with cascades may
have a cascade xk that ends at a critical point. In this case the parameter tk records the
time spent resting at the critical point instead of time spent flowing along the critical
submanifold. Hence, the map that sends a broken flow line with cascades to its image
in M is not injective. To make this map injective we should keep track of the times
tk , in addition to the image of the broken flow line.

Following [29] we make the following definition.

Definition 4.3 Define the compactification of R to be RDR[f˙1g equipped with
the structure of a bounded manifold by the requirement that  W R! Œ�1; 1� given by

 .t/D
tp

1C t2

be a diffeomorphism.

We also make the following definition regarding the different gradient flows.

Definition 4.4 Let f W M !R be a Morse–Bott function on a Riemannian manifold
.M;g/ with critical set Cr.f /D

`l
jD1Cj , and let fj W Cj !R be a Morse function

on the critical submanifold Cj for j D 1; : : : ; l . We define the flow of ff; f1; : : : ; flg

on M to be the action �W R�M !M given on a point x 2M for time t 2R by

�t .x/D

(
'
f
t .x/ if x 62 Cr.f /D C1[ � � � [Cl ;

'
fj
t .x/ if x 2 Cj for some j D 1; : : : ; l;
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where 'ft denotes the 1–parameter group of diffeomorphisms generated by �rf and
'
fj
t denotes the 1–parameter group of diffeomorphisms generated by �rfj (with

respect to the restriction of g to Cj ) for all j D 1; : : : ; l . We extend this action to R
by taking limits as t approaches ˙1.

Note The flow of ff; f1; : : : ; flg defines a map �W R�M !M that is smooth when
restricted to R� .M �Cr.f // or to R�Cr.f /.

We now explain how to identify a broken flow line with cascades with an element
of the compact metric space Pc.M /�Rl , where l is the number of components of
Cr.f /D

`l
jD1Cj . Recall that the space of all nonempty closed subsets of M , Pc.M /,

is a compact metric space with respect to the Hausdorff metric. For the metric on R we
will use the totally bounded metric determined by the diffeomorphism  W R! Œ�1; 1�.
That is, for x;y 2R we define

d.x;y/D

ˇ̌̌̌
xp

1Cx2
�

yp
1Cy2

ˇ̌̌̌
2 Œ0; 2�

and note that d has a unique continuous extension to a metric on R. The space
Pc.M /�Rl is then a compact metric space with respect to the product metric.

We will map a broken flow line with cascades .v1; : : : ; vn/ to its image Im.v1; : : : ; vn/

in M and the time tj spent flowing along or resting on each critical submanifold Cj

for all j D 1; : : : ; l . This gives a nonempty closed subset of M and an l –tuple in Rl ,
ie an element Im.v1; : : : ; vn/� .t1; : : : ; tl/ 2 Pc.M /�Rl .

More explicitly, we define Im.v1; : : : ; vn/�M for a broken flow line with cascades
.v1; : : : ; vn/ as follows. Let � 2 f1; : : : ; ng and suppose that the unparameterized flow
line with n� cascades v� has a parameterization�

.x�k/1�k�n� ; .t
�
k /1�k�n��1

�
;

where x�
k
2 C1.R;M / and t�

k
2RC . Then the image of v� in M is defined to be

Im.v�/D
n�[

kD1

x�k.R/ [
n��1[
kD1

�Œ0;t�
k
�.x

�
k.1//�M;

where �Œ0;t�
k
�.x

�
k
.1//D

S
0�t�t�

k
�t .x

�
k
.1// and x�

k
.1/D limt!1 x�

k
.t/. This defi-

nition is clearly independent of the parameterization, and we define Im.v1; : : : ; vn/�M

to be the union of the images of v� for all �D 1; : : : ; n. Note that Im.v1; : : : ; vn/ is the
image of a continuous injective path between two critical points which is R–equivariant
with respect to the flow � of ff; f1; : : : ; flg.
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For the other components we map .v1; : : : ; vn/ to an l –tuple of elements .t1; : : : ; tl/
in Rl that records the time spent flowing along or resting on each critical submanifold.
Explicitly, the j –th component of this map is defined to be:8̂̂̂<̂

ˆ̂:
0 if the image of .v1; : : : ; vn/ does not intersect Cj ,
tj if for some � D 1; : : : ; n the cascade v� flows along or rests on

the critical submanifold Cj for finite time tj ,
1 otherwise.

Altogether, this defines an injective map

.v1; : : : ; vn/ 7! Im.v1; : : : ; vn/� .t1; : : : ; tl/ 2 Pc.M /�Rl :

Definition 4.5 The topology on the space of broken flow lines with cascades is defined
by the requirement that the above injection be a homeomorphism onto its image.

For q 2 Cr.fj / and p 2 Cr.fi/ we will identify the space of broken flow lines with
cascades from q to p with its image under the above injection and denote this space
by Mc.q;p/� Pc.M /�Rl .

Theorem 4.6 The space Mc.q;p/ is compact, and the injection defined above re-
stricts to a continuous embedding

Mc.q;p/ ,!Mc.q;p/� Pc.M /�Rl :

Hence, every sequence of unparameterized flow lines with cascades from q to p has a
subsequence that converges to a broken flow line with cascades from q to p .

Proof Since the space Pc.M /�Rl is compact, any sequence of broken flow lines
f.vk

1
; : : : ; vk

nk
/g in Mc.q;p/� Pc.M /�Rl must have a subsequence that converges

to some element CM � .t1; : : : ; tl/ 2 Pc.M /�Rl . We need to show that there exists
a subsequence of f.vk

1
; : : : ; vk

nk
/g (which we still denote by f.vk

1
; : : : ; vk

nk
/g) such

that the limit of this subsequence (which we still denote by CM � .t1; : : : ; tl/) is in
Mc.q;p/� Pc.M /�Rl .

We will first show that there exists a subsequence of f.vk
1
; : : : ; vk

nk
/g such that CM D

Im.v1; : : : ; vn/ for some broken flow line with cascades .v1; : : : ; vn/ from q to p .
To see this, note that since Im.vk

1
; : : : ; vk

nk
/ �M is R–equivariant with respect to

the flow � of ff; f1; : : : ; flg and limk!1 Im.vk
1
; : : : ; vk

nk
/D CM in the Hausdorff

metric, CM is also R–equivariant with respect to the flow � . Moreover for every k ,
Im.vk

1
; : : : ; vk

nk
/ is the image of a continuous injective path from q to p with at most

one point on each level set f �1.y/ for every regular value y of f and at most one
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point on each level set f �1
j .y/ for every value y 2R for all j D1; : : : ; l . Thus, we can

pass to a subsequence of f.vk
1
; : : : ; vk

nk
/g such that the same holds for the limit. This

shows that after passing to an appropriate subsequence we have CM D Im.v1; : : : ; vn/

for some broken flow line with cascades .v1; : : : ; vn/ from q to p .

Now let j 2 f1; : : : ; lg. For .t1; : : : ; tl/ there are two cases to consider: (1) Either the
sequence fIm.vk

1
; : : : ; vk

nk
/g does not intersect the critical submanifold Cj for any k ,

or (2) the sequence fIm.vk
1
; : : : ; vk

nk
/g intersects the critical submanifold Cj for all k

sufficiently large. Otherwise we can pass to a subsequence that fits one of these two
cases. For the first case, note that the limit CM , which is the image of a broken flow
line with cascades, can intersect Cj in at most one point since f decreases along its
gradient flow lines. Thus, for Im.vk

1
; : : : ; vk

nk
/� .tk

1
; : : : ; tk

l
/ 2 Pc.M /�Rl we have

tk
j D 0 for all k , and tj D 0. For the second case, note that since R is a compact metric
space, we can pass to a subsequence such that tk

j ! tj for some tj 2R. By passing to
a subsequence for each j D 1; : : : ; l we obtain an element .t1; : : : ; tl/ 2Rl such that

Im.vk
1 ; : : : ; v

k
nk
/� .tk

1 ; : : : ; t
k
l /! Im.v1; : : : ; vn/� .t1; : : : ; tl/ 2 Pc.M /�Rl

as k !1 and tj records the time .v1; : : : ; vn/ spends flowing along or resting on
each critical submanifold Cj for all j D 1; : : : ; l . Therefore, every sequence of broken
flow lines with cascades from q to p has a subsequence that converges to a broken
flow line with cascades from q to p in Mc.q;p/� Pc.M /�Rl .

To see that the injection defined above restricts to a continuous embedding

Mc.q;p/ ,!Mc.q;p/� Pc.M /�Rl

note that the fibered product and gluing constructions used in the proof of Theorem 3.10
are compatible with the Hausdorff metric. That is, if a sequence of points vk contained
in a smooth chart of Mc.q;p/ converges to a point v in the chart, then

Im.vk/� .tk
1 ; : : : ; t

k
l /! Im.v/� .t1; : : : ; tl/

as k!1.

Corollary 4.7 If �q ��p D 1, then Mc.q;p/ is compact and hence a finite set.

Proof Let vk be a sequence of unparameterized flow lines with cascades from q to p .
By the preceding theorem vk has a subsequence that converges to a broken flow line
with cascades .v1; : : : ; vn/ from q to p . Suppose that v1 ends at a critical point p0

with p0 ¤ p . Then Theorem 3.10 implies that �q > �p0 > �p , which contradicts the
assumption that �q ��p D 1. Thus, p0 D p , nD 1, and every sequence in Mc.q;p/

has a subsequence that converges to an element of Mc.q;p/. Therefore, Mc.q;p/ is
a compact zero-dimensional manifold, ie a finite set of points.
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The preceding corollary allows us to make the following definition under the following
assumptions:

(1) f satisfies the Morse–Bott–Smale transversality condition with respect to the
Riemannian metric g on M .

(2) fk W Ck !R satisfies the Morse–Smale transversality condition with respect to
the restriction of g to Ck for all k D 1; : : : ; l .

(3) For all .i; j / and for each pair of critical points .q;p/ 2 Cr.fj /�Cr.fi/ the
unstable and stable manifolds Wfj

u.q/ and Wfi

s.p/ are transverse to the beginning
and endpoint maps.

Recall that the total index of a critical point of fj was defined in Definition 3.4 as the
Morse index relative to fj plus the Morse–Bott index of the critical submanifold Cj . Let
CrD

Sl
jD1 Cr.fj / be the set of critical points of the Morse functions fj W Cj!R, and

let Crk �Cr be the subset of critical points whose total index is k for all kD 0; : : : ;m.

Definition 4.8 Define the k –th chain group C c
k
.f / to be the free abelian group

generated by the critical points of total index k of the Morse–Smale functions fj for
all j D 1; : : : ; l , and define nc.q;pIZ2/ to be the number of flow lines with cascades
between a critical point q of total index k and a critical point p of total index k � 1

counted mod 2. Let

C c
� .f /˝Z2 D

mM
kD0

C c
k .f /˝Z2

and define a homomorphism @c
k
W C c

k
.f /˝Z2! C c

k�1
.f /˝Z2 by

@c
k.q/D

X
p2Crk�1

nc.q;pIZ2/p:

The pair .C c
� .f /˝Z2; @

c
�/ is called the cascade chain complex with Z2 coefficients.

In the appendix to [16] there is a continuation theorem that implies that the cascade
chain complex with Z2 coefficients is, in fact, a chain complex whose homology is
isomorphic to the singular homology H�.M IZ2/. We will not prove this here. Instead,
we will use the Morse–Smale functions fj W Cj ! R for j D 1; : : : ; l to define an
explicit perturbation of f W M !R to a Morse–Smale function h"W M !R such that
for every k D 0; : : : ;m

Crk.h"/D
[

�jCnDk

Crn.fj /;

where �j is the Morse–Bott index of the critical submanifold Cj .
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By proving a correspondence theorem, we will show that for any q in Cr.fj / and p in
Cr.fi/ with �q��pD1 there is a one-dimensional trivial cobordism between Mc.q;p/

and Mh".q;p/. This cobordism induces an orientation on Mc.q;p/, which allows
us to define the above homomorphism @c

� over Z. Moreover, the cobordism shows
that @c

� is a boundary operator that agrees with the Morse–Smale–Witten boundary
operator of h" up to sign.

5 The correspondence theorem

In this section we define a 1–parameter family of Morse–Smale functions h"W M !R
in terms of an explicit perturbation of the Morse–Bott–Smale function f W M ! R.
For any " > 0 the critical set of h" is given by Cr.h"/D

Sl
kD1 Cr.fk/, and the index

of a critical point p 2 Cr.h"/ agrees with the total index of p .

We prove a correspondence theorem which says that for any ">0 sufficiently small there
is a bijection between unparameterized flow lines with cascades and unparameterized
gradient flow lines of h"W M ! R between any two critical points p; q 2 Cr.h"/
with �q � �p D 1. The correspondence theorem allows us to count the number of
unparameterized flow lines with cascades between q 2 Crk.h"/ and p 2 Crk�1.h"/

with sign, which defines an integer nc.q;p/ 2 Z.

The integers nc.q;p/ define a homomorphism @c
k

analogous to the Morse–Smale–
Witten boundary operator such that @c

k
D�@k (where @k denotes the Morse–Smale–

Witten boundary operator of h" ). This shows directly that @c
k�1
ı @c

k
D 0 and the

homology of the cascade chain complex .C c
� .f /; @

c
�/ is isomorphic to the homology of

the Morse–Smale–Witten chain complex .C�.h"/; @�/. The Morse Homology Theorem
then implies that the homology of the cascade chain complex with integer coefficients
is isomorphic to the singular homology H�.M IZ/.

5.1 An explicit perturbation

The following perturbation technique, based on [3], the Morse–Bott Lemma, and a
folk theorem proved in [1], produces an explicit Morse–Smale function h"W M !R
arbitrarily close to a given Morse–Bott–Smale function f W M !R such that h" D f

outside of a neighborhood of the critical set Cr.f /. A similar technique was used in
[6] to give a proof of the Morse–Bott inequalities with somewhat different orientation
assumptions than the classical “half-space” method using the Thom Isomorphism
Theorem (see [8], [15, Appendix C], and [25, Section 2.6]).

Let f W M!R be a Morse–Bott–Smale function on a finite-dimensional smooth closed
Riemannian manifold .M;g/. Let Tj be a small open tubular neighborhood around
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each connected component Cj � Cr.f / for every j D 1; : : : ; l with local coordinates
.u; v; w/ consistent with those from the Morse–Bott Lemma 3.2. By “small” we mean
that the following conditions hold:

(1) Each Tj is contained in the union of the domains of the charts from the Morse–
Bott Lemma.

(2) For i ¤ j we have Ti \ Tj D ∅ and f decreases by at least three times
maxfvar.f;Tj / j j D 1; : : : ; lg along any gradient flow line from Ti to Tj ,
where var.f;Tj /D supff .x/ j x 2 Tj g� infff .x/ j x 2 Tj g.

(3) If f .Ci/¤ f .Cj /, then var.f;Ti/C var.f;Tj / <
1
3
jf .Ci/�f .Cj /j.

(4) For every flow line with n cascades between critical points of relative index
one ..xk/1�k�n; .tk/1�k�n�1/, the image of xk for k D 1; : : : ; n intersects the
closure of exactly two of the tubular neighborhoods fTj g

l
jD1

(see Definition 3.5
and Corollary 4.7).

In addition, we will assume that the tubular neighborhoods are small enough so that
f W M !R still satisfies the Morse–Bott–Smale transversality condition after modify-
ing the Riemannian metric on the tubular neighborhoods to make the charts from the
Morse–Bott Lemma isometries on Tj with respect to the standard Euclidean metric on
Rm for all j D 1; : : : ; l . From now on we will assume that the Riemannian metric g

has been so modified, ie the charts from the Morse–Bott Lemma are isometries on the
tubular neighborhoods with respect to g and the standard Euclidean metric on Rn .

Pick positive Morse functions fk W Ck !R satisfying the Morse–Smale transversality
condition with respect to the restriction of g to Ck for all k D 1; : : : ; l such that for
all i; j D 1; : : : ; l and for every pair of critical points .q;p/ 2 Cr.fj /� Cr.fi/ the
unstable and stable manifolds Wfj

u.q/ and Wfi

s.p/ are transverse to the beginning and
endpoint maps (see Lemma 3.9). For every k D 1; : : : ; l extend fk W Ck ! R to a
function on Tk by making fk W Tk ! R constant in the directions normal to Ck , ie
fk is constant in the v and w coordinates coming from the Morse–Bott Lemma. Let
zTk � Tk be a smaller open tubular neighborhood of Ck with the same coordinates
as Tk , and let �k be a smooth bump function which is constant in the u coordinates,
equal to 1 on zTk , equal to 0 outside of Tk , and strictly decreasing on Tk �

zTk with
respect to jvj and jwj.

Finally, choose " > 0 small enough so that

sup
Tk�

zTk

"kr�kfkk < inf
Tk�

zTk

krf k
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for all k D 1; : : : ; l , and define

h" D f C "

� lX
kD1

�kfk

�
:

The function h"W M !R is a Morse function close to the Morse–Bott–Smale function
f , and the critical points of h" are exactly the critical points of the Morse–Smale
functions fj for j D 1; : : : ; l . Moreover, if q 2 Cj is a critical point of fj W Cj !R
of index �j

q , then q is a critical point of h" of index �h"
q D �j C�

j
q , where �j is the

Morse–Bott index of Cj .

Lemma 5.1 There exists an arbitrarily small perturbation of the Riemannian metric g

such that h"0 W M !R is Morse–Smale for all 0< "0 � " with respect to the perturbed
metric. The perturbed metric can be chosen so that it agrees with g on the union of the
tubular neighborhoods fTj g

l
jD1

.

Proof Let f"ig
1
iD1

be a countable dense subset of .0; "/. For every 1� i <1 we can
apply [1, Theorem 2.20] to conclude that there is a residual subspace Ri of the open
unit ball K1 in a Banach space K such that the function h"i

W M !R is Morse–Smale
with respect to the Riemannian metric g C ki for all ki 2 Ri . Moreover, we can
choose the function � W M ! Œ0;1/ in the statement of [1, Theorem 2.20] to be zero
on
Sl

jD1 Tj so that ki D 0 on
Sl

jD1 Tj for all 1� i <1.

For any k 2
T1

iD1 Ri the Riemannian metric gC k is a metric that agrees with g

on
Sl

jD1Tj such that h"i
W M ! R is Morse–Smale with respect to gC k for all

1 � i <1. Moreover, since
T1

iD1 Ri is dense in K1 we can choose k 2
T1

iD1 Ri

arbitrarily close to zero. This completes the proof of the lemma since the set of Morse–
Smale gradient vector fields is an open and dense subset of the space of all gradient
vector fields on a Riemannian manifold [26].

Note that we can choose the perturbation of the Riemannian metric small enough so
that f W M ! R still satisfies the Morse–Bott–Smale transversality condition with
respect to the perturbed metric and for all .i; j / and for every pair of critical points
.q;p/ 2 Cr.fj /� Cr.fi/ the unstable and stable manifolds Wfj

u.q/ and Wfi

s.p/ are
still transverse to the beginning and endpoint maps.

Lemma 5.2 Let p; q 2 Cr.h"/ with �q ��p D 1, and let 0< "0 � ". If h"0 W M !R
and h"W M !R are Morse–Smale with respect to the same Riemannian metric, then
the number of gradient flow lines of h"0 from q to p is equal to the number of gradient
flow lines of h" from q to p .
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Proof The lemma will be proved by constructing a one-dimensional compact smooth
manifold with boundary MF21

.q;p/ that is a trivial cobordism between Mh".q;p/

and Mh"0
.q;p/.

Using the notation in [7, Section 6], we take f1Dh" , f2Dh"0 , and a smooth homotopy
F21W M �R! R that is strictly decreasing in its second component such that for
some large T � 0 we have

F21.x; t/D

8<:
h".x/� �.t/ if t < �T;
yht .x/ if �T � t � T;

h"0.x/� �.t/ if t > T;

where yht .x/ is an approximation to 1
2
.T � t/.h".x/��.t//C

1
2
.T C t/.h"0.x/��.t//

that makes F21 smooth and �W R! .�1; 1/ is a smooth strictly increasing function
such that limt!�1 �.t/D�1 and limt!C1 �.t/D 1. The moduli space of gradient
flow lines of F21W M �R!R has a component

MF21
.q;p/D

�
WF21

u.q/\WF21

s.p/
�
=R

of dimension 1 (see [7, Lemma 6.2]) that can be compactified to a smooth manifold
with boundary MF21

.q;p/ using piecewise gradient flow lines (see [7, Theorem 6.4]).

Moreover, the boundary of the compactified space consists of the fibered products

@MF21
.q;p/DMh".q;p/�p MF21

.p;p/
a

MF21
.q; q/�q Mh0"

.q;p/:

Since
Mh".q;p/�p MF21

.p;p/�Mh".q;p/;

MF21
.q; q/�q Mh0"

.q;p/�Mh0"
.q;p/;

and F21W M �R! R is strictly decreasing in its second component, MF21
.q;p/

is a one-dimensional trivial cobordism between Mh".q;p/ and Mh0"
.q;p/. Thus,

Mh".q;p/ and Mh0"
.q;p/ have the same number of elements.

Remark The moduli space MF21
.q;p/ used in the preceding proof is, in the language

of [29], a space of �–parameterized trajectories between the trivial regular homotopies
h" and h"0 (see [29, Definition 2.29]). A general moduli space of �–parameterized
trajectories is constructed in [29, Theorem 2, Section 2.3.2], and its compactification is
discussed in [29, Section 2.4.4].

In summary, we have a Riemannian metric g on M and a 1–parameter family of
Morse functions h"W M ! R such that the following conditions hold for all " > 0

sufficiently small and for all k D 1; : : : ; l :
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(1) The function h0 D f W M !R satisfies the Morse–Bott–Smale transversality
condition with respect to the metric g .

(2) The functions h"W M !R and fk W Ck !R satisfy the Morse–Smale transver-
sality condition with respect to g .

(3) For all i; j D 1; : : : ; l and for each pair of critical points .q;p/2Cr.fj /�Cr.fi/

the unstable and stable manifolds Wfj
u.q/ and Wfi

s.p/ are transverse to the
beginning and endpoint maps.

(4) The function h" D f outside of the union of the tubular neighborhoods Tk .

(5) The function h" D f C "fk on the smaller tubular neighborhoods zTk .

(6) The charts from the Morse–Bott Lemma within the tubular neighborhoods Tk

are isometries with respect to the metric on M and the standard Euclidean metric
on Rm .

(7) In the local coordinates .u; v; w/ of a tubular neighborhood Tk we have f D
f .C / � jvj2 C jwj2 , �k depends only on the v and w coordinates, and fk

depends only on the u coordinates. In particular, rf ? rfk on Tk by the
previous condition.

(8) The gradient rf dominates "r�kfk on Tk �
zTk .

(9) For q;p 2 Cr.h"/ with �q � �p D 1, the number of gradient flow lines of h"
from q to p is independent of " > 0.

Lemma 5.3 Let " > 0 be small enough so that the above conditions hold, and let
f"�g

1
�D1

be a decreasing sequence such that 0< "� � " for all � and lim�!1 "� D 0.
Let q;p 2 Cr.h"/, and suppose that 
"� 2Mh"�

.q;p/ for all � . Then there exists a
broken flow line with cascades 
 2Mc.q;p/ and a subsequence of fIm.
"� /g

1
�D1

that
converges to Im.
 / in the Hausdorff topology.

Proof Let q 2 Cj , p 2 Ci , and 
"� 2Mh"� .q;p/ where lim�!1 "� D 0. Recall
that outside of the open tubular neighborhoods fTkg

l
kD1

we have h"� D f , and inside
Tk we have

h"� D f C "��kfk ;

where rf ? rfk , 0 � �k � 1, and fk > 0. Moreover, rh"� D rf C "�rfk

on the smaller open tubular neighborhood zTk � Tk , and rf dominates "�r�kfk

on Tk �
zTk . By passing to a subsequence of f
"� g

1
�D1

we may assume that there
exists a set of distinct integers fj1; j2; : : : ; jn�1g � f1; 2; : : : ; lg such that for all
� we have Im.
�/ \ Tjk

¤ ∅ for all k D 1; : : : ; n � 1 and Im.
�/ \ Tk D ∅ if
k 2 f1; 2; : : : ; lg� fi; j1; j2; : : : ; jn�1; j g. Since Pc.M / is compact in the Hausdorff
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topology, there exists a subsequence of f
"� g
1
�D1

, which we still denote by f
"� g
1
�D1

,
such that the compact sets

C"� D Im.
"� /�
�

Ti [

n�1[
kD1

Tjk
[Tj

�
converge to some compact set C 2 Pc.M / as � ! 1. The interior of each C"�
is locally invariant under the flow of �rf , and hence the interior of the limit C is
also locally invariant with respect to the flow of �rf . Moreover, for every regular
value y of f the level set f �1.y/ contains at most one element of C"� for each � ,
and hence we can pass to a subsequence of f
"� g

1
�D1

such that the same holds for C .
Therefore, there exists a subsequence of f
"� g

1
�D1

, which we still denote by f
"� g
1
�D1

,
and gradient flow lines x1; : : : ;xn of �rf (not necessarily distinct) such that

Im.
"� /�
�

Ti [

n�1[
kD1

Tjk
[Tj

�
�!

n[
kD1

Im.xk/�

�
Ti [

n�1[
kD1

Tjk
[Tj

�
in the Hausdorff topology as �!1. Moreover, since rh"� Drf C "�r�kfk and
there is a positive lower bound for krf k on Tk �

zTk for all k D 1; : : : ; l we have

Im.
"� /�
�
zTi [

n�1[
kD1

zTjk
[ zTj

�
�!

n[
kD1

Im.xk/�

�
zTi [

n�1[
kD1

zTjk
[ zTj

�
in the Hausdorff topology as �!1 . We will order the gradient flow lines x1; : : : ;xn

as in Definition 3.5, ie xk.t/ flows into Tjk
as t increases for all k D 1; : : : ; n� 1.

On the tubular neighborhood zTj we have rh"� D rf C "�rfj , where rf ? rfj ,
and hence there is a subsequence of f
"� g

1
�D1

such that Im.
"� / \ zTj converges
to a curve consisting of the union of Im.x1/\ zTj and a (possibly broken) gradient
flow line of fj from q to limt!�1 x1.t/. Similar statements apply to the tubular
neighborhood zTi .

For each tubular neighborhood zTj1
; : : : ; zTjn�1

there are two cases to consider:

(1) There exists a neighborhood U � zTjk
of Cjk

such that Im.
"� /\U D∅ for
all � .

(2) For every neighborhood U � zTjk
of Cjk

we have Im.
"� /\U ¤∅ for all �
sufficiently large.

Otherwise we can pass to a subsequence of f
"� g
1
�D1

such that one of these cases
applies. In the first case, there is a positive lower bound for krf k on Im.
"� /\ zT jk

independent of � , and hence rh"� converges to rf on Im.
"� /\ zTjk
as � !1.
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Thus, xk.t/ and xkC1.t/ are the same gradient flow line of f , and Im.
"� /\ zTjk

converges to Im.xk/\ zT jk
as �!1.

In the second case, limt!1 xk.t/ 2 Cjk
since Im.
"� / \ f

�1.y/ converges to
Im.xk/ \ f

�1.y/ for any y > f .Cjk
/ with Im.
"� / \ f

�1.y/ 2 zT jk
. Similarly,

limt!�1 xkC1.t/2Cjk
. Also, Im.
"� /\ zT jk

converges to the union of Im.xk/\ zT jk
,

Im.xkC1/\ zT jk
and a curve in Cjk

from limt!1 xk.t/ to limt!�1 xkC1.t/. Since
rh"� Drf C "�rfjk

in zTjk
where rf ?rfjk

, the curve in Cjk
must be a subset

of the image of a (possibly broken) gradient flow line of fjk
. Therefore, there exists a

subsequence of f
"� g
1
�D1

and a broken flow line with cascades 
 2Mc.q;p/ such
that fIm.
"� /g

1
�D1

converges to Im.
 / in the Hausdorff topology.

5.2 Correspondence theorem

Throughout this subsection we will assume that the function

h" D f C "

� lX
kD1

�kfk

�
and the Riemannian metric g on M satisfy all the conditions listed above. The main
goal of this subsection is to prove the following.

Theorem 5.4 (Correspondence of moduli spaces) Let p; q2Cr.h"/ with �q��pD1.
For any sufficiently small " > 0 there is a bijection between unparameterized cascades
and unparameterized gradient flow lines of the Morse–Smale function h"W M ! R
between q and p ,

Mc.q;p/ !Mh".q;p/:

We will prove this theorem using results from geometric singular perturbation theory
[20]. In particular, we will use the exchange lemma for fast-slow systems (see Jones [21]
and Schecter [27; 28]). Roughly speaking, the exchange lemma says that a manifold
M0 that is transverse to the stable manifold of a normally hyperbolic locally invariant
submanifold C will have subsets that flow forward in time under the full fast-slow
system to be near subsets of the unstable manifold of C . The exchange lemma can be
viewed as a generalization of the �–lemma, which applies to hyperbolic fixed points
(see for instance [4, Theorem 6.17 and Corollary 6.20]).

In our setup, we have tubular neighborhoods Tj of the critical submanifolds Cj for
all j D 1; : : : ; l and local coordinate charts on Tj that are isometries with respect to
the standard Euclidean metric on Rm . We also have smaller tubular neighborhoods
zTj � Tj such that within the smaller tubular neighborhoods the negative gradient

Algebraic & Geometric Topology, Volume 13 (2013)



268 Augustin Banyaga and David E Hurtubise

flow of h"W T ! R constitutes a fast-slow system because rh" D rf C "rfj and
rf ?rfj . Moreover, we have coordinates .u; v; w/ where the function f j zTj depends
only on the .v; w/ coordinates, which are the fast variables, and the function fj j zTj

depends only on the u variables, which are the slow variables.

Proof of Theorem 5.4 Let q 2 Cr.fj / and p 2 Cr.fi/. An unparameterized cas-
cade 
 2Mc.q;p/ can be represented by a flow line with n cascades from q to p :
..xk/1�k�n; .tk/1�k�n�1/, where tk is the time spent flowing along (or resting on)
the intermediate critical submanifold Cjk

. For 1� k � n�1, let yk W R! Cjk
be the

parameterized gradient flow line of fjk
W Cjk

!R satisfying yk.0/D limt!1 xk.t/

and yk.tk/D limt!�1 xkC1.t/ (as in Definition 3.5). Assume that yk.0/¤ yk.tk/

for any 1� k � n� 1. This last condition is required in order to apply the exchange
lemma, and it holds whenever �q ��p D 1. To see this, note that if yk.0/D yk.tk/

then there is a piecewise gradient flow line of f from the beginning of xk to the end
of xkC1 . Hence, there is a 1–parameter family of gradient flow lines of f from the
beginning of xk to the end of xkC1 by the gluing theorem for Morse–Bott moduli
spaces (see the proof of Theorem 3.10). Each of these gradient flow lines determines a
unique flow line with cascade from q to p , and hence dimMc.q;p/� 1.

For every 1 � k � n � 1, let Sk � Cjk
be a tubular neighborhood of the image

yk.Œ0; tk �/ that is diffeomorphic to some contractible open subset Uk �Rdim Cjk . The
tubular neighborhood Sk exists because yk.Œ0; tk �/ is contractible and hence has a
trivial normal bundle in Cjk

. Similarly, the normal bundle of Sk �M is trivial, and
hence Sk has a contractible tubular neighborhood in zTjk

. This establishes Fenichel
coordinates .u; v; w/ near Sk . (See [21, Proposition 1 and Section 6], but note that
we do not need Sk to vary with ".)

Let Bk
�;Uk

be a small “box” in the phase space Rm with respect to the Fenichel
coordinates near Sk , eg

Bk
�;Uk

D
˚
.u; v; w/ 2Rm

ˇ̌
jvj<�; jwj<�; u 2 Uk

	
for some small �> 0, and let Bk denote the image of Bk

�;Uk
in M . We will show

that for � > 0 and " > 0 sufficiently small there exist submanifolds Mk �Wh"
u .q/

that satisfy the following conditions for every 1� k � n� 1:

(D1) �jk
� dim Mk � �jk

C dim Cjk
� 1.

(T1) There exists a point qk 2Mk \Bk such that Mk tqk
Wf

s.Sk/.

(T2) The omega limit set Jk D!.Mk\Wf
s.Sk/\Vk/�Sk with respect to the flow

of �rf is a manifold of dimension dim Mk ��jk
, where Vk is a small enough

open neighborhood of qk to ensure that Mk \Wf
s.Sk/\Vk is a manifold, and

rfjk
is not tangent to Jk .
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(T3) The tangent space to Mk at qk intersects the tangent space of Wf
s.!.qk// in a

zero-dimensional space.

(I1) If Im.
"/\Mk ¤ ∅ for some 
" 2Mh".q;p/, then Im.
 0"/\Mk ¤ ∅ for
every 
 0" 2Mh".q;p/ with dH .Im.
 0"/; Im.
 //� dH .Im.
"/; Im.
 //.

The manifold M1 exists as long as " > 0 is small enough so that the conditions listed
in the previous subsection hold. That is, the conditions in the previous subsection
imply that limt!�1 x1.t/ 2 Wh"

u .q/ and Wf
u.limt!�1 x1.t// t Wf

s.S1/. Thus,
we can find a small open neighborhood in Wh"

u .q/ around the point r1 where the
image of x1 intersects the boundary of Tj with a cross section that intersects Wf

s.S1/

transversally. This cross section flows forward under the flow of �rh" to a submanifold
zM1 of dimension �q � 1 that intersects B1\Wf

s.S1/ at some point q1 . The Morse–
Bott–Smale transversality condition implies that �j1

< �j (see [7, Lemma 3.6]), and
hence �j1

� �j C�
j
q � 1D �q � 1D dim zM1 . If dim zM1 � �j1

C dim Cj1
� 1, then

we can take M1 D
zM 1 . Otherwise, we can find a small open ball M1 �

zM 1 of
dimension �j1

C dim Cj1
� 1 that satisfies the above conditions. Thus, M1 exists and

dim M1 Dminf�q � 1; dim Cj1
C�j1

� 1g.

We will see by induction using the exchange lemma that for �>0 and ">0 sufficiently
small Mk �Wh"

u .q/ exists for k D 2; : : : ; n� 1. For this purpose, assume that �> 0

and " > 0 are small enough so that the conditions listed in the previous subsection
hold, the exchange lemma applies around Sk for all k D 1; : : : ; n� 1, and M1 exists.
Assume that for some k there exists a submanifold Mk �Wh"

u .q/ that satisfies the
above conditions, and let M �

k
and J�

k
denote the manifolds obtained by flowing

Mk and Jk forward in time with respect to �rh" on the time interval Œ0;1/. The
dimension of M �

k
is dim Mk C 1, and dim J�

k
D dim M �

k
��jk

.

Let x"
kC1

.t/ be the gradient flow line of h" through the point rkC1 where the image
of xkC1.t/ intersects the boundary of Tjk

. We have

lim
t!�1

x"kC1.t/ D lim
t!�1

yk.t/:

Hence, as long as " > 0 is sufficiently small, the point where x"
kC1

.t/ exits the box
Bk will be in Wf

u.J�
k
/. Choose a small open disk Dk in Wf

u.J�
k
/ of dimension

dim M �
k

around this point. The exchange lemma implies that by decreasing " > 0 we
can find an open disk zDk in M �

k
as close as we like to Dk . (See for instance [21,

Theorem 6.5], [20, Lemma 6], or [28, Theorem 2.3].) In this context “close” can be in
the sense of [4, Definition 6.13] or “close” in the sense that zDk can be expressed as
the graph of a vector valued function over Dk that goes to zero exponentially along
with its derivatives up to finite order as "! 0 [28].
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Bk

Dk

D0
k

Mk

Sk

J�
k

qk

rk zrk

rkC1

u

v
w

x"
k
.t/

xkC1.t/x"
kC1

.t/

xk.t/

yk.0/

yk.tk/

The open disk Dk flows forward in finite time under the flow of �rh" to a neighbor-
hood D0

k
of rkC1 , and the open disk zDk flows forward under the same flow to an

open set zDk
0 in M �

k
close to D0

k
. In fact, inside Tjk

the disks zDk and Dk get closer
under the forward time flow of �rh" . The Morse–Bott–Smale transversality condition
implies that D0

k
t Wf

s.SkC1/, and hence zDk
0 t Wf

s.SkC1/ if zDk
0 is close enough to

D0
k

since the collection of maps transverse to a given submanifold is locally stable (see
for instance [4, Theorem 5.16] or [17, Theorem 3.2.1]). Thus, we can decrease " > 0,
if necessary, to obtain an open set zDk

0 �M �
k

such that zDk
0 t Wf

s.SkC1/. Moreover,
rkC1 2D0

k
\Wf

s.SkC1/¤∅, and hence there exists a point zrkC1 2
zDk
0\Wf

s.SkC1/

such that zDk
0 tzrkC1

Wf
s.SkC1/.

For " > 0 sufficiently small, the point zrkC1 2Wf
s.SkC1/ flows forward in time under

the flow of �rh" to a point qkC1 2 @BkC1 since the tubular neighborhoods fTj g
l
jD1

were chosen small enough so that the image of xkC1 does not intersect the closure of any
of the tubular neighborhoods other than Tjk

and TjkC1
. Moreover, zDk

0 �M �
k

flows
forward in time under the flow of �rh" to a submanifold of Wh"

u .q/ that is transverse
to Wf

s.SkC1/ at qkC1 . Thus, we can find a manifold MkC1 � M �
k
� Wh"

u .q/ of
dimension minfdim Mk ; dim CjkC1

C �jkC1
� 1g that satisfies the above conditions.

This completes the induction. Note that if we have to decrease " > 0 during the
induction, then we also have to modify Mk �Wh"

u .q/. However, " > 0 will only need
to be decreased a finite number of times. Hence, we can find a sufficiently small " > 0

so that Mk �Wh"
u .q/ exists for all k D 1; : : : ; n� 1.
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To summarize, we have shown that for � > 0 and " > 0 sufficiently small there
exist submanifolds Mk �Wh"

u .q/ and points qk such that Mk tqk
Wf

s.Sk/ for all
k D 1; : : : ; n� 1. Moreover, the point qk is the image under the forward time flow
of �rh" of a point zrk 2Wf

s.Sk/\Wh"
u .q/ close to the point rk where the image of

xk.t/ intersects the boundary of Tjk�1
,

M �
n�1 �M �

n�2 � � � � �M �
2 �M �

1 �Wh"
u .q/;

and every gradient flow line in Mh".q;p/ whose image is sufficiently close to the image
of the cascade 
 2Mc.q;p/ intersects M �

n�1
(and hence Mk for all kD 1; : : : ; n�1).

We can now repeat the above argument involving the exchange lemma for Mn�1 to
see that for � > 0 and " > 0 sufficiently small we can find an open neighborhood
zD0

n�1
�M �

n�1
as close as we like to a small open neighborhood D0

n�1
�Wf

u.J�
n�1

/

around the point rn where the image of xn.t/ intersects the boundary of Tjn�1
.

Now recall the assumption that

Mc
n.Cj ;Cj1

; : : : ;Cjn�1
;Ci/

.@�;@C/
�����! Cj �Ci

is transverse and stratum transverse to Wfj
u.q/�Wfi

s.p/ (Definition 3.8). This implies
that

Mf .J
�
n�1;Ci/

@C
��! Ci

is transverse to Wfi

s.p/ at limt!1 xn.t/ 2Wfi

s.p/, since the endpoint map

@CWMc
n.Wfj

u.q/;Cj1
; : : : ;Cjn�1

;Ci/ �! Ci

factors through @CWMf .J
�
n�1

;Ci/!Ci and is transverse to Wfi

s.p/ at limt!1 xn.t/.
Therefore, D0

n�1
trn

Wf
s.Wfi

s.p// as long as D0
n�1

is sufficiently small. Thus if " > 0

is sufficiently small, there exists a point

zrn 2
zD0n�1\Wf

s.Wfi

s.p//

close to rn such that zD0
n�1

tzrn
Wf

s.Wfi

s.p//. The unparameterized gradient flow line
of h" that passes through zrn is an element 
 zrn

2Mh".q;p/ whose image is close to
the image of the cascade in Mc.q;p/ represented by ..xk/1�k�n; .tk/1�k�n�1/.

Also, if �q ��p D 1 then we can choose the D0k small enough so that 
 2Mc.q;p/

is the unique element whose image intersects D0k for all k D 1; : : : ; n� 1. Then if
zD0n�1 is sufficiently close to D0n�1 , the gradient flow line of h" through zrn will be

the unique element of Mh".q;p/ whose image intersects zD0n�1 �M �
n�1

. Thus for
�q ��p D 1 and " > 0 sufficiently small we have defined an injective map

Mc.q;p/ �!Mh".q;p/
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that sends a cascade 
 2Mc.q;p/ to a gradient flow line 
" 2Mh".q;p/ such that
Im.
 / is close to Im.
"/ in the Hausdorff topology. To see that this map is surjective,
first recall that Lemma 5.2 says that if " > 0 is sufficiently small, then the (finite)
number of elements in Mh".q;p/ does not depend on " > 0. So, if the above map
were not surjective, we could pick a decreasing sequence f"�g1�D1

with lim�!1 "�D 0

and a sequence of elements 
"� 2Mh"�
.q;p/ such that 
"� is not in the image of the

map
Mc.q;p/ �!Mh".q;p/ !Mh"�

.q;p/

for all � . Lemma 5.3 would then imply that there exists a subsequence of fIm.
"� /g
1
�D1

(which we still denote by fIm.
"� /g
1
�D1

) that converges to the image of some element

 2Mc.q;p/ DMc.q;p/ in the Hausdorff topology. But if we were to apply the
above construction to 
 , then for � sufficiently large we would get an element 
 zrn

in
Mh"� .q;p/ that intersects an open neighborhood zD0n�1 �M �

n�1 near Wf
u.Cjn�1

/.
Since the sequence fIm.
"� /g

1
�D1

is converging to Im.
 / we must have

Im.
"� /\ zD
0
n�1 ¤∅

for � sufficiently large by condition (I1), and since 
 zrn
is the unique gradient flow line

in Mh"� .q;p/ whose image intersects zD0n�1 , we see that 
"� D 
 zrn
is in the image

of the above map for � sufficiently large. This implies that the above map is surjective
and hence bijective.

5.3 Correspondence of chain complexes

Fix " > 0 small enough so that the conclusion of Theorem 5.4 holds. If we identify
Mc.q;p/ with Mh".q;p/� f0g using Theorem 5.4, then

Mh".q;p/� Œ0; "�

determines a trivial smooth cobordism between

Mc.q;p/ and Mh".q;p/�Mh".q;p/� f"g:

If we choose orientations for the unstable manifolds of h" , then Mh".q;p/ be-
comes an oriented zero–dimensional manifold and there is an induced orientation
on Mh".q;p/� Œ0; "�.

Definition 5.5 Let p; q 2 Cr.h"/ with �q � �p D 1, define an orientation on the
zero-dimensional manifold Mc.q;p/ by identifying it with the left hand boundary of
Mh".q;p/� Œ0; "�.
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An orientation on Mc.q;p/ assigns a C1 or �1 to each point in Mc.q;p/. This
determines an integer nc.q;p/ D #Mc.q;p/ 2 Z. Moreover, the one-dimensional
manifold Mh".q;p/� Œ0; "� consists of finitely many closed intervals where the right
hand boundary is identified with Mh".q;p/. Thus,

nc.q;p/D�nh".q;p/:

Definition 5.6 Define the k –th chain group C c
k
.f / to be the free abelian group

generated by the critical points of total index k of the Morse–Smale functions fj for
all j D 1; : : : ; l , and define nc.q;p/ to be the number of flow lines with cascades
between a critical point q of total index k and a critical point p of total index k � 1

counted with signs determined by the orientations. Let

C c
� .f /D

mM
kD0

C c
k .f /

and define a homomorphism @c
k
W C c

k
.f /! C c

k�1
.f / by

@c
k.q/D

X
p2Crk�1

nc.q;p/p:

Corollary 5.7 (Correspondence of chain complexes) For " > 0 sufficiently small
we have C c

k
.f /D Ck.h"/ and @c

k
D�@k for all k D 0; : : : ;m, where @k denotes the

Morse–Smale–Witten boundary operator determined by the Morse–Smale function h" .
In particular, .C c

� .f /; @
c
�/ is a chain complex whose homology is isomorphic to the

singular homology H�.M IZ).
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