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Dehn surgery on knots of wrapping number 2

YING-QING WU

Suppose K is a hyperbolic knot in a solid torus V intersecting a meridian disk D

twice. We will show that if K is not the Whitehead knot and the frontier of a regular
neighborhood of K[D is incompressible in the knot exterior, then K admits at most
one exceptional surgery, which must be toroidal. Embedding V in S3 gives infinitely
many knots Kn with a slope rn corresponding to a slope r of K in V . If r surgery
on K in V is toroidal then either Kn.rn/ are toroidal for all but at most three n , or
they are all atoroidal and nonhyperbolic. These will be used to classify exceptional
surgeries on wrapped Montesinos knots in a solid torus, obtained by connecting the
top endpoints of a Montesinos tangle to the bottom endpoints by two arcs wrapping
around the solid torus.
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1 Introduction

A Dehn surgery on a hyperbolic knot K in a compact 3–manifold is exceptional if the
surgered manifold is nonhyperbolic. When the manifold is a solid torus, the surgery is
exceptional if and only if the surgered manifold is either a solid torus, reducible, toroidal,
or a small Seifert fibered manifold whose orbifold is a disk with two cone points. Solid
torus surgeries have been classified by Berge [1], Gabai [7; 8] and Scharlemann [19];
there is no reducible surgery. For toroidal surgery, Gordon and Luecke [11] showed
that the surgery slope must be either an integral or a half integral slope. By Gordon
and the author [12], this is also true for small Seifert fibered surgeries.

In this paper we study Dehn surgery on hyperbolic knots K in a solid torus V with
wrapping number 2. The wrapping number wrap.K/ of a knot K in a solid torus V

is defined to be the minimal geometric intersection number of K with a meridional
disk D of V , and the winding number wind.K/ of K is the algebraic intersection
number of K with D . Thus if K is a knot in a solid torus V with wrap.K/D 2 then
wind.K/D 0 or 2. It follows from the results above that there is no reducible or solid
torus surgery on such a hyperbolic knot. We would like to know if there are toroidal or
small Seifert fibered surgeries on such a knot.
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Exceptional surgery does exist on some knots with wrapping number 2. If K in V

has a spanning surface which is either a punctured torus or a punctured Klein bottle
then surgery on K along the boundary slope of this surface is toroidal. A well-known
example of knots in solid tori that admit multiple exceptional surgeries is the Whitehead
knot, obtained by deleting an open neighborhood of a component of the Whitehead
link in S3 . It admits a total of five exceptional surgeries, two toroidal and three small
Seifert fibered.

For the case of knots with winding number 2, consider the knot obtained by putting a
Montesinos tangle T Œ�1=2; 1=3� horizontally in the solid torus V and then connecting
the top endpoints to the bottom endpoints by two strings running around the solid
torus; see Figure 5.1(b), where V is the complement of the dotted circle. It is called
a wrapped Montesinos knot and denoted by K1.�1=2; 1=3/; see Section 5 for more
details. We will show that this knot admits three exceptional surgeries, two toroidal
and one small Seifert fibered; see Proposition 2.2. We suspect that these are the only
examples of knots with wrapping number 2 that admit multiple exceptional surgeries.

Conjecture 1.1 Suppose that K is a hyperbolic knot of wrapping number 2 in a
solid torus V and K is not the Whitehead knot or the wrapped Montesinos knot
K1.�1=2; 1=3/. Then K admits no small Seifert fibered surgery and at most one
toroidal surgery.

Let D be a meridian disk intersecting K twice. Cutting .V;K/ along D produces
a 2–string tangle .B; �/. Let X be the tangle space B � IntN.�/, and let @hX be
the frontier of X in V . It can be shown that for the knot K DK1.1=2; 1=3/ above,
this surface @hX is compressible. This is a very special property since most 2–string
tangle spaces have incompressible boundary. For example, if � is a Montesinos tangle
of length at least 2 then @.B � IntN.�// is incompressible unless � is equivalent
to T Œ1=2;p=q�; see the author [23]. The following theorem shows that the above
conjecture is true if @hX is incompressible. Denote by .V;K; r/ the manifold obtained
by r surgery on a knot K in a 3–manifold V .

Theorem 3.8 Suppose K is a hyperbolic knot with wrap.K/D2 in a solid torus V , K

is not the Whitehead knot, and @hX is incompressible in X . Then K admits at most
one exceptional surgery .V;K; r/, which must be a toroidal surgery and r an integral
slope.

Note the surface @hX is always incompressible if K is hyperbolic and wind.K/D 0,
hence the above theorem shows that Conjecture 1.1 is true for knots with wind.K/D 0.
Since the Whitehead knot admits five exceptional surgeries, it is surprising to see that
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no other knots with wind.K/D 0 and wrap.K/D 2 have more than one exceptional
surgeries.

We now consider knots obtained by embedding .V;K/ in the 3–sphere. Let '0 be
a standard embedding, and 'n the composition of '0 with n right hand full twists
of V along a meridian disk. Denote by Kn D 'n.K/ and by rn D 'n.r/, for a fixed
slope r of K . Denote by Kn.rn/ the surgery on Kn along the slope rn . Clearly
Kn.rn/ is obtained by Dehn filling .V;K; r/ on @V , hence if .V;K; r/ is hyperbolic
then most Kn.rn/ are hyperbolic. In general it might be possible that .V;K; r/ is
nonhyperbolic while infinitely many Kn.rn/ are hyperbolic. However, we will show
that this does not happen when wrap.K/D 2.

Theorem 4.3 Suppose wrap.K/D 2, and .V;K; r/ is nonhyperbolic. Then Kn.rn/

is nonhyperbolic for all but at most three n. Moreover, one of the following holds:
(1) there is an n0 such that Kn.rn/ is toroidal unless jn� n0j � 1;
(2) Kn.rn/ is atoroidal for all n, and there exist q1; q2 2 Z such each Kn.rn/ is

either reducible or has a small Seifert fibration with q1; q2 as the indices of two
of its singular fibers.

Thus if .V;K; r/ is nonhyperbolic then Kn.rn/ is either toroidal for all but at most
three n, or is never toroidal. This property is useful in determining whether .V;K; r/
is hyperbolic; see the proof of Theorem 5.5.

Up to homeomorphism there are essentially two ways to make wrapped Montesinos links
from a Montesinos tangle T Œt1; : : : ; tk �, denoted by K0Œt1; : : : ; tk � and K1Œt1; : : : ; tk �;
see Section 5 for detailed definitions. The above theorems will be used to prove the
following classification theorem, which shows that there are no other exceptional Dehn
surgeries on wrapped Montesinos knots in solid tori besides the well-known examples
and the ones mentioned above. In particular, Conjecture 1.1 is true for these knots. Here
two pairs .K; r/ and .K0; r 0/ are equivalent if there is an obvious homeomorphism
of V taking one to the other; see Section 5 for detailed definitions. We may assume
that K ¤KaŒ0� or KaŒ1=q� as otherwise K is nonhyperbolic.

Theorem 5.5 Suppose K D Ka.t1; : : : ; tk/ � V is not equivalent to Ka.0/ or
Ka.1=q/ for any integer q . Let .V;K; r/ be an exceptional surgery. Then .K; r/
is equivalent to one of the following pairs. The surgery is small Seifert fibered for
r D 1; 2; 3 in (1) and r D 7 in (4), and toroidal otherwise.

(1) K DK0.2/ (the Whitehead knot), r D 0; 1; 2; 3; 4.
(2) K DKa.n/, n> 2, r D 0 if aD 0, and r D 2n otherwise.
(3) K DKa.1=q1; 1=q2/, jqi j � 2, and r is the pretzel slope.
(4) K DK1.�1=2; 1=3/, r D 6; 7; 8.
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These results will be used to study Seifert fibered surgery on Montesinos knots in S3 .
We will show that 6C 4n and 7C 4n surgeries on hyperbolic .�2; 3; 2nC 1/ pretzel
knots are Seifert fibered; see Corollary 2.3 below. It will be proved in a forthcoming
paper by the author [21] that there are only finitely many other Seifert fibered surgeries
on hyperbolic Montesinos knots of length 3.

2 Preliminaries and examples

Given a submanifold F of a manifold M , let N.F / be a regular neighborhood of F

in M . When F has codimension 1 and is properly embedded, denote by M jF the
manifold obtained by cutting M along F . If K is a knot in M , denote by .M;K; r/

the manifold obtained from M by Dehn surgery on K along a slope r on @N.K/.
When M D S3 , simply denote .S3;K; r/ by K.r/.

A cusped manifold is a compact 3–manifold M with a specified vertical bound-
ary @vM , which is a disjoint union of annuli and tori on @M . The closure of @M�@vM
is the horizontal boundary of M , denoted by @hM . If M is an I –bundle over a
compact surface F then it has a natural cusped manifold structure with @vM the annuli
over @F . Conversely, a cusped manifold M is considered an I –bundle only if it is
an I –bundle with @vM defined above. A surface F properly embedded in M with
@F � @hM is an h–essential surface if it is incompressible, and has no boundary
compressing disk disjoint from @vM .

Let K be a hyperbolic knot in a solid torus V with wrap.K/ D 2. Let D be a
meridional disk of V intersecting K twice. Cutting V along D , we obtain a 3–ball B .
Let � DK\B be the 2–string tangle in B . Denote by X D B � IntN.�/ the tangle
space. Clearly X is irreducible, and the hypothesis that K is hyperbolic implies that X

is also atoroidal. Define the vertical boundary of X to be @vX D @V \X . Then the
horizontal boundary @hX is the disjoint union of two copies of a once punctured torus
when wind.K/D 0, or a single twice punctured torus when wind.K/D 2.

Let Y D N.D [K/ and define @vY D @V \ Y . Then we can write V D X [� Y ,
where �W @hX ! @hY is a homeomorphism. The surgery manifold can then be written
as .V;K; r/DX [� .Y;K; r/.

Fix a trivial embedding of V in S3 . Let K0 be the core of S3�V . If K is a knot in V

then LDK0[K is a link in S3 . Conversely, if LDK0[K is a two component link
in S3 and K0 is trivial then K is a knot in V DS3�IntN.K0/. We use the convention
that a trivial circle K0 with a dot represents the component that need to be deleted,
so the link LDK0 [K � S3 represents the pair .V;K/ with V D S3 � IntN.K0/.
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The preferred meridian-longitude pair .m; l/ of K in S3 (see Rolfsen [18]) is then
considered the preferred meridian-longitude pair of K in V . This sets up a coordinate
system for the slopes on @N.K/, so a slope ql C pm is represented by a rational
number p=q , or 1=0 if .p; q/D .1; 0/.

Let C be the core of V . Fix a meridian-longitude pair .m0; l0/ of @V . We can
re-embed V in S3 by an orientation preserving homeomorphism 'nW V ! V such
that l0 is mapped to the curve l0C nm0 on @V . Denote by Kn D 'n.K/. Thus Kn

is obtained from K by n right hand full twists along a disk bounded by K0 . If r is
a slope on @N.K/, let rn be the corresponding slope 'n.r/ on @N.Kn/. We have
rnD rCn�wind.K/2 , hence rnD r if wind.K/D0, and rnD rC4n if wind.K/D2.

..
..

..
..

..
..

.a/ .b/ .c/

Figure 2.1

Example 2.1 (1) Let K be the Whitehead knot in V as shown in Figure 2.1(a). Then
.V;K; r/ is toroidal for r D 0; 4, and is Seifert fibered for r D 1; 2; 3; see Gordon and
the author [13, Lemma 7.1] and Brittenham and the author [3, Lemma 2.3]. Cutting
.V;K/ along a meridional disk produces a tangle .B; �/ as shown in Figure 2.1(b),
which will be called the Whitehead tangle.

(2) Suppose K has a spanning surface F in V which is a once punctured torus or
Klein bottle with boundary slope r . Then F becomes a closed surface yF in .V;K; r/,
which is either a Klein bottle or a nonseparating torus. Since .V;K; r/ is irre-
ducible [19], the boundary of a regular neighborhood of yF is incompressible in
.V;K; r/, hence .V;K; r/ is toroidal. In particular, any hyperbolic pretzel knot in
solid torus as shown in Figure 2.1(c) admits a toroidal surgery along the boundary of
its pretzel surface.

Note that Kn.rn/ is obtained from .V;K; r/ by attaching a solid torus to @V along
the slope l0�nm0 on @V , hence if .V;K; r/ is hyperbolic then Kn.rn/ is hyperbolic
for all but finitely many n.
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.a/ .b/ .c/

.d/ .e/ .f/

.g/ .h/ .i/ .j/

Figure 2.2

Proposition 2.2 Let K be the knot in solid torus as shown in Figure 2.2(a). Then
.K;V; 8/ and .K;V; 6/ are toroidal, and .K;V; 7/ is small Seifert fibered with two
singular fibers of indices 3 and 5, respectively.

Proof Rotating along a horizontal axis of the knot diagram gives a double branched
cover of .S3;L/ over the pair .S3; �/ in Figure 2.2(b), where � is a pair of arcs
represented by the thick curves in the figure. The thin circle C in Figure 2.2(b) is
the image of the axis and hence forms the branch set. The neighborhoods of the two
components of LDK0 [K in Figure 2.2(a) project to regular neighborhoods of �,
which are 3–balls B1;B2 respectively, where B1 is represented by the lower thick arc
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in Figure 2.2(b). Let B be the closure of the complement of B1 , and let � D C \B .
Then .B;B2; �/ can be deformed to that in Figure 2.2(c) and then further to that in
Figure 2.2(d).

Since V is the exterior of K0 , the above shows that .V;N.K// is the double branched
cover of .B;B2/ branched over � . Put �2 D � \B2 , and denote by .B; �.s// the
tangle obtained from .B; �/ by replacing the subtangle .B2; �2/ with a rational tangle
of slope s with respect to certain coordinate system on @B2 , set up so that �2 has
slope 1. Let r0 be the slope on @N.K/ which covers a curve of slope 0 on @B2 .
Then by the Montesinos trick [17], .V;K; r0� s/ is then the double branched cover
of B branched along the tangle �.s/, and .V;K; r0� s/ is Seifert fibered if and only
if .B; �.s// is a Montesinos tangle.

To determine the slope r0 , consider the pretzel surface for the knot K in Figure 2.2(a).
It is a once punctured Klein bottle F . The boundary of F is the pretzel framing �,
and one can show that it is a curve of slope 8 on @N.K/ with respect to the preferred
meridian-longitude of K . The projection of F is a disk F 0 intersecting the axis at one
arc and two individual points, and the boundary of F 0 contains an arc �0 on @B2 which
is the projection of the above pretzel framing and will be called the pretzel framing
on @B2 . In Figure 2.2(b) B2 is the thick dark arc. Its boundary then contains a pair of
arcs connecting the 4 branch points, called the blackboard framing. In our case these
two framings are actually the same because F 0 has boundary on the blackboard framing
except at the two crossings of the dark curve, which contribute �2 and 2 respectively
to the pretzel framing and therefore cancel. One can check that the blackboard framing
is unchanged under the isotopy from Figure 2.2(b) to Figure 2.2(d) and therefore
represents the 0 slope on @B2 . It follows that the pretzel slope 8 is the r0 if we set up
the coordinates on @B in the standard way, ie the horizontal arcs connecting the branch
points represent slope 0 and the vertical arcs represent 1. It follows that .V;K; 8� s/

is the double branch cover of .B; �.s//. In particular, K.7/ and K.6/ are the double
branched cover of .B; �.1// and .B; �.2//, respectively.

Since 8 is the pretzel slope, by Example 2.1(2) we see that .V;K; 8/ is toroidal. This
can be verified as follows. The tangle �.0/ is shown in Figure 2.2(e), which can be
deformed to that in Figure 2.2(f). Note that it has a closed component which bounds a
disk D intersecting the other components at two points. The boundary of a regular
neighborhood of D is then a Conway sphere, which lifts to the incompressible torus
in K.8/ bounding a twisted I –bundle over the Klein bottle.

The tangle �.1/ is shown in Figure 2.2(g) and (h). Without fixing the endpoints of the
strings on the outside sphere it is equivalent to the .�1=3;�1=5/ Montesinos tangle.
Hence its double branched cover .V;K; 7/ is a small Seifert fiber space with two
singular fibers of indices 3 and 5, respectively.
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The tangle �.2/ is shown in Figure 2.2(i), which deforms to that in Figure 2.2(j).
There is an obvious Conway sphere bounding a .1=2;�1=4/ Montesinos tangle, and
its outside is not a product, hence it lifts to an essential torus in .V;K; 6/, bounding a
small Seifert fiber space with two singular fibers of indices 2 and 4 respectively.

The following result shows that each pretzel knot of type .�2; 3; 2nC 1/ admits at
least two Seifert fibered surgeries, with slopes 6C 4n and 7C 4n. In particular, when
nD 3 it gives the well-known results that 18 and 19 surgeries on the .�2; 3; 7/ pretzel
knot are lens spaces; see Fintushel and Stern [5]. Denote by M.r1; r2; r3/ the closed
3–manifold which is the double branched cover of S3 with branch set the Montesinos
link K.r1; r2; r3/. To make the statement simple, we do allow r3 D 0 in this theorem,
in which case K.r1; r2; r3/ is actually the connected sum of two 2–bridge knots, and
M.r1; r2; r3/ is reducible.

Corollary 2.3 Let Kn be the .�2; 3; 2nC 1/ pretzel knot in S3 . Then we have
Kn.7C4n/DM.�1=3; 3=5; 1=.n�2// and Kn.6C4n/DM.1=2;�1=4; 2=.2n�5//.
In particular, they are Seifert fibered manifolds for all n, except that when n D 2,
K2.15/DM.�1=3; 3=5; 1=0/ is reducible.

Proof Let rnD rC4n, where r D 6; 7. Recall that Kn is obtained from K�V �S3

by n right hand full twists along a meridian of V , so Kn.rn/ is obtained from .V;K; r/

by attaching a solid torus V 0 on the outside so that a meridian of V 0 is attached to
the curve � D l0 � nm0 . By the Montesinos trick, Kn.rn/ is the double branched
cover of S3 along the link L obtained from .B; �.8 � r// by attaching a rational
tangle .B0; � 0/ to the outside of B .

To calculate the slope of .B0; � 0/, note that m0 and l0 project to curves of slope 0=1

and 1=0, respectively. One can then check that the curve � projects to a curve �0

of slope �1=n on @B . Since the map @B0 ! @B is orientation reversing, �0 is of
slope 1=n on @B0 . We may assume that � has been isotoped to bound a meridian
disk D in V 0 which is disjoint from the branch axis. Then �0 bounds a disk in B0

disjoint from the tangle strings. It follows that .B0; � 0/ is of slope 1=n.

For r D 7, the tangle .B; �.1// in Figure 2.2(h) is a Montesinos tangle of length 2, and
Kn.7C4n/ is the double branched cover of the link obtained by attaching a 1=n tangle
to the outside of .B; �.1//, which one can check is the link K.�1=3; 3=5; 1=.n� 2//.
Hence Kn.7C 4n/DM.�1=3; 3=5; 1=.n� 2//. It is a Seifert fiber space (possibly a
lens space) unless nD 2, which gives the reducible 15 surgery on the .3; 5/ torus knot.
For rD6, note the union of .B0; � 0/ and the tangle .B; �.2// in Figure 2.2(j) is the Mon-
tesinos link K.1=2;�1=4; 2=.2n�5//, thus Kn.6C4n/DM.1=2;�1=4; 2=.2n�5//,
which is a small Seifert fiber space for any n.
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3 Surgery on K � V with wrap.K /D 2

Throughout this section we will assume K�V is a hyperbolic knot with wrap.K/D 2,
intersecting a meridian disk D of V twice. Recall that Y D N.D [K/, .B; �/ is
the tangle obtained by cutting .V;K/ along D and X D V � Int.Y /D B � IntN.�/.
Let r be a nontrivial slope such that .V;K; r/ is nonhyperbolic. Denote by Kr the
dual knot in .V;K; r/ and .Y;K; r/.

Lemma 3.1 Suppose wrap.K/ D 2 and @hX is incompressible in X . If X is an
I –bundle with @hX the @I –bundle then K is the Whitehead knot in V .

Proof If wind.K/D0 then @hX is the disjoint union of two copies of a once punctured
torus. Hence the hypothesis above implies that X is a product Q� I , where Q is a
once punctured torus, and @vX D @Q� I . Recall that X D B � IntN.�/. Let �1; �2

be the two strands of � . Adding N.�1/ to X produces a D � I with a 1–handle H1

attached to D � 1, and �1 is the core of H1 . Similarly N.�2/ can be considered as
a 2–handle attached to the solid torus X [N.�1/. Since the result is a 3–ball, the
core of the 2–handle N.�2/ intersects the meridian of X [N.�1/ at a single point.
It is now clear that � D �1 [ �2 is the tangle shown in Figure 2.1(b), hence K is a
Whitehead knot in V .

If wind.K/ D 2 then @hX is a twice punctured torus, hence if X is an I –bundle
then it must be a twisted I –bundle over a once punctured Klein bottle P , so we can
properly embed P in X � B � S3 . This is impossible because the union of P and a
disk on @B would be a closed Klein bottle embedded in B3 .

An isotopy class Œ˛� of a nontrivial simple closed curve ˛ on @hX is called an annular
slope if ˛ is not parallel to a boundary component on the surface @hX , and there is an
h–essential annulus A in X with ˛ as a boundary component. Note that it is possible
that the other boundary component of A could be a boundary parallel curve on @hX

and hence would not be an annular slope.

Lemma 3.2 Suppose @hX is incompressible and X is not an I –bundle. Then there is
a nonseparating curve ˛ on each component of @hX which is disjoint from any annular
slope of @hX up to isotopy.

Proof Let .W; @hW / be the characteristic pair of the pair .X; @hX /, as defined by
Jaco and Shalen in [16]. Then @hW DW \ @hX is a subsurface of @hX , and each
boundary component of @hW is a nontrivial curve on @hX . By the definition of
characteristic pair, @hW contains all annular slopes on @hX up to isotopy.
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First assume wind.K/D 0, so each component F of @hX is a once punctured torus.
It is easy to see that if the result is false then some component G of @hW \F is full
in the sense that F �G is in a collar of @F ; hence it is a once punctured torus. Let W0

be the component of W containing G . Since G is not a double cover of any other
surface, W0 must be a trivial I –bundle, so @hW0�G is also a once punctured torus,
which must be on @hX �F . By Lemma 3.1 X is not an I –bundle, hence AD @vW0

is an essential annulus in X , cutting off a compact 3–manifold M with @M a single
torus. Since X is atoroidal and @hX is incompressible, we see that @M must be
compressible inside of M , so X being irreducible (since K is hyperbolic) implies
that M is a solid torus. Since X is not an I –bundle, we see that A runs at least twice
along the longitude of M . It follows that the union of A and an annulus in Y parallel
to @vY forms an essential torus in V � IntN.K/, contradicting the assumption that K

is a hyperbolic knot in V .

Now assume wind.K/D 2. Then @hX is a twice punctured torus, so if @hX � @hW

does not contain a nonseparating curve then some component G of @hW is a once
or twice punctured torus. Let W0 be the component of W containing G . Since @hX

has genus one, there is no room for another copy of G , hence W0 must be a twisted
I –bundle over a once punctured Klein bottle R. In particular, @hW0 must be a twice
punctured torus, so @hX �@hW0 is a pair of annuli. We can then extend an embedding
of R in W0 to an embedding of R in X with @R� @vX � @B . The union of R with
a disk on the boundary of B would then be a closed Klein bottle embedded in the
3–ball B , which is impossible.

Lemma 3.3 Suppose K � V is a hyperbolic knot with wrap.K/D 2. Then

(1) @hY is incompressible in .Y;K; r/ for all nontrivial r ;

(2) if r is an integral slope then .Y;K; r/ is an I –bundle with @vY as its vertical
surface;

(3) if r is a nontrivial nonintegral slope then any h–essential annulus Q in .Y;K; r/
can be isotoped to be disjoint from the dual knot Kr .

Proof Recall that Y DN.D[K/, where D is a meridian disk of V intersecting K

twice. Let D1 be a meridian disk of K in Y with @D1�@hY , and let Y1DN1.D1[K/

be a smaller regular neighborhood of D1 [K such that Y1 \ @Y D @D1 � I . Then
the frontier of Y1 is an annulus A, cutting Y into Y1 and another manifold W .
When wind.K/ D 0, W is a product T1 � I , where T1 is a once punctured torus;
when wind.K/ D 2, the manifold W is a twisted I –bundle over a Klein bottle. In
either case W is an I –bundle with @vY as its vertical boundary. Note that @hW is
incompressible, and A is an annulus on @hW , which is incompressible in W .
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It is clear that Y1 is a solid torus with K as a core, hence V 0 D .Y1;K; r/ is a solid
torus for all r . When r is an integral slope, A runs along the longitude of V 0 once,
hence .Y;K; r/DW [A .Y1;K; r/ is homeomorphic to the I –bundle W with @vY
preserved. When r is a nontrivial nonintegral slope, A runs along the longitude of V 0

more than once. By a standard innermost circle outermost arc argument one can show
that @hY is incompressible in .Y;K; r/.

If Q is an h–essential annulus in .Y;K; r/ then it can be isotoped so that Q\A has
no arc component, so Q\ .Y1;K; v/ is a set of incompressible annuli, which can then
be isotoped to be disjoint from Kr .

Lemma 3.4 Suppose K is a hyperbolic knot in V with wrap.K/D 2, K is not the
Whitehead knot, and @hX is incompressible in X . Then

(1) .V;K; r/ is irreducible, @–irreducible, and is not Seifert fibered;

(2) if r is not in integral slope then .V;K; r/ is hyperbolic.

Proof (1) The irreducibility and @–irreducibility follows from [1; 8; 19]. It also
follows from Lemma 3.3 because @hX is an essential surface in .V;K; r/ and there is
no reducing sphere or compressing disk of @V disjoint from @hX .

Suppose .V;K; r/ is Seifert fibered. By Waldhausen [20], any incompressible surface
in a Seifert fibered space is either horizontal or vertical. Since @hX is not an annulus or
torus, it must be horizontal, so both X and Y .r/ are I –bundles with @hX D @hY as
their horizontal surface. On the other hand, by Lemma 3.1 this is impossible unless K

is the Whitehead knot in V , which has been excluded.

(2) If T is an essential torus in .V;K; r/ then it must intersect @hX because both
.Y;K; r/ and X are atoroidal. Using a standard cut and paste argument one can show
that T can be isotoped so that each component of T \X and T \ .Y;K; r/ is an
h–essential annulus. If r is not an integral slope then by Lemma 3.3(3) the annuli
T \ .Y;K; r/ can be isotoped to be disjoint from Kr , so T would be an essential
torus in V �K , contradicting the assumption that K is hyperbolic.

A curve ˛ on a surface F is orientation preserving if the orientation of F does not
change when traveling through ˛ . Alternatively, ˛ is orientation preserving if its
regular neighborhood is an annulus, not a Möbius band.

Lemma 3.5 Up to isotopy there are exactly two orientation preserving essential simple
closed curves on a Klein bottle F .
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Proof Let ˛ be a curve cutting F into an annulus A. Suppose ˇ is another orientation
preserving essential simple closed curve, which intersects ˛ minimally but is not
isotopic to ˛ . Then ˛ cuts ˇ into a set of essential arcs C on A. One can show that C

has exactly two components as otherwise ˇ would either be orientation reversing
(if jˇ\˛j is odd) or contain more than one component (if jˇ\˛j> 2). Therefore any
other such curve is obtained from ˇ by Dehn twists along ˛ . It is easy to check Dehn
twisting ˇ once along ˛ produces a curve isotopic to ˇ , hence the result follows.

We note that the two curves ˛; ˇ in the above proof are essentially different as ˛
cuts F into an annulus while ˇ cuts F into two Möbius bands. Define an orientation
preserving essential simple closed curve  on a surface F to be of type I or type II
according to whether F j is orientable or not. Thus the curve ˛ above is of type I
and ˇ of type II. If C is an annular slope of a twisted I –bundle W over F and
'W W ! F the I –fibration, then up to isotopy C is a boundary component of a
vertical annulus. Hence we can define C to be of type I or type II according to whether
'.C / is of type I or II on F .

Given a compact surface F , denote by yF the closed surface obtained from F by
capping off each boundary component with a disk. Two curves C1;C2 on F are
weakly equivalent, denoted by C1 � C2 , if they are isotopic on yF .

Let W be a twisted I –bundle over a once punctured Klein bottle R. Let �W be the
manifold obtained by attaching a 2–handle to W along @vW . Then �W is a twisted
I –bundle over the Klein bottle yR. Denote by 'W @hW ! @ �W the inclusion map.
Let C1 be a type I annular slope on @hW . There are infinitely many annular slopes
on F that intersect C1 essentially, but the following shows that these are all weakly
equivalent.

Denote by I.C1;C2/ the algebraic intersection number between two curves C1;C2 ,
which is well defined up to sign on any orientable surfaces.

Lemma 3.6 Let C1 be a type I annular slope on @hW . Then there is a type II annular
slope C2 on @hW intersecting C1 at a single point, such that if C3 is an annular slope
on @hW then it is either weakly equivalent to C2 , or isotopic on @hW to a curve
disjoint from C1 . In particular, I.C3;Ci/D 0 for some i D 1; 2.

Proof Fix I –bundle structures of W and �W and let �W W !R and y�W �W ! yR be
the projection maps. We may assume that C1 is a boundary component of a vertical
annulus A1 . Then �.A1/D �.C1/D ˛1 is a type I curve on R. Let ˛2 be a type II
curve on R intersecting ˛1 minimally at two points as given in the proof of Lemma 3.5,
and let C2 be a boundary component of ��1.˛2/. The two intersection points of
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˛1 \ ˛2 lift to two points of C1 \ �
�1.˛2/, one on each component of ��1.˛2/.

Hence C1 intersects C2 at a single point.

Assume C3 is another annular slope on F . We may assume it is a boundary component
of a vertical annulus A3 , so ˛3 D �.A3/ is an orientation preserving essential simple
closed curve on R. By Lemma 3.5 ˛3 is isotopic to either ˛1 or ˛2 on yR. Cutting R

along ˛1 produces a once punctured annulus, hence it is easy to see that if ˛3 is
isotopic to ˛1 on yR then it is also isotopic to ˛1 on R, in which case C3 can be
isotoped to be disjoint from C1 . If ˛3 is isotopic to ˛2 then C3 is isotopic to a
component of y��1.˛2/ on @ �W . Since the two components of y��1.˛2/ are parallel to
each other, we see that C3 is isotopic to C2 on @ �W and hence is weakly equivalent
to C2 on @W .

Lemma 3.7 Suppose wind.K/ D 2. Let r be an integral slope and Kr the dual
knot in .Y;K; r/. Let ˛ be a simple closed curve on @hY which is isotopic to Kr in
.Y;K; r/, let ˇ be an annular slope on @hY intersecting ˛ essentially at one point, as
given in Lemma 3.6. Suppose s ¤ r is another integral slope on @N.K/. Then ˇ is
not weakly equivalent to an annular slope of @hY in .Y;K; s/.

Proof By the proof of Lemma 3.3, .Y;K; r/ is obtained from an I –bundle W over R

by attaching a solid torus V 0 along a longitudinal annulus of V 0 , and Kr is the core
of V 0 . It is easy to see that ˛ is a type I annular slope. The identity map of W extends
to a homeomorphism  W .Y;K; s/! .Y;K; r/, and the restriction of  on @Y is a
Dehn twist �n

˛ along ˛ , where nD s� r ¤ 0. In particular, the curve ˇ is mapped to
ˇ0 D �n

˛ .ˇ/ on @h.Y;K; r/. We have jI.ˇ0; ˛/j D 1 and jI.ˇ0; ˇ/j D jnj ¤ 0; hence
by Lemma 3.6 ˇ0 is not weakly equivalent to an annular slope of @h.Y;K; r/. Since
the homeomorphism  W .Y;K; s/! .Y;K; r/ maps ˇ to ˇ0 , it follows that ˇ is not
weakly equivalent to an annular slope of @h.Y;K; s/.

Theorem 3.8 Suppose K is a hyperbolic knot with wrap.K/D2 in a solid torus V , K

is not the Whitehead knot, and @hX is incompressible in X . Then K admits at most
one exceptional surgery .V;K; r/, which must be a toroidal surgery and r an integral
slope.

Proof By Lemma 3.4 .V;K; r/ is irreducible and not a solid torus or small Seifert
fiber space, and it is also atoroidal when r is not an integral slope. Hence we need
only show that K admits at most one integral toroidal surgery.

First assume wind.K/D 2. By Lemma 3.2 there is a nonseparating curve  on @hX

which is disjoint from all annular slopes of X up to isotopy. Suppose .V;K; r/ is
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toroidal. Let ˛; ˇ be the annular slopes on @hY D @h.Y;K; r/ as given in Lemma 3.7.
Let qW @hX ! @hY be the gluing map. We claim that q. /� ˇ .

Let T be an essential torus in .Y;K; r/ intersecting @X minimally. Since @hX is
incompressible, each component of A1 D T \X and A2 D T \ .Y;K; r/ is an h–
essential annulus. In particular, each boundary component of A1 is either an annular
slope of X or boundary parallel, hence by the above we may assume  \ @A1 D∅,
so q. /\ @A2 D ∅. On the other hand, each boundary component of A2 is either
parallel to a boundary component of @hY , or is an annular slope of .Y;K; r/; hence by
Lemma 3.6 we may assume that it is either disjoint from ˛ or weakly equivalent to ˇ . If
no component of @A2 is weakly equivalent to ˇ then @A2 can be isotoped to be disjoint
from ˛ , hence T can be isotoped to be disjoint from Kr because by definition Kr

is isotopic to ˛ . This contradicts the assumption that K is hyperbolic. Therefore
at least one component C of @A2 satisfies C � ˇ ; in particular, it is nonseparating.
Since C and q. / are disjoint and they are both nonseparating curves on the punctured
torus @hY , we have C � q. /, hence the claim q. /� ˇ follows.

Now if s is another toroidal slope of K then by the above, ˇ � q. / is also an annular
slope on @h.Y;K; s/, which contradicts Lemma 3.7, completing the proof for the case
of wind.K/D 2.

The proof for the case of wind.K/D 0 is similar. In this case .Y;K; r/ is a product
F �I . Let Fi DF � i for i D 0; 1. Let qW @hX ! @hY DF0[F1 be the gluing map,
and Gi D q�1.Fi/. By Lemma 3.2 there is a nonseparating curve i on Gi which is
disjoint from all annular slopes of X up to isotopy. Let  0i be the curve q.i/ on Gi .
We claim that  0

0
;  0

1
cobound an annulus and hence is homologous in .Y;K; r/.

Let T be an essential torus in .V;K; r/. As above, the hyperbolicity of K implies
that there is a component A0 of A1 D T \ .Y;K; r/ which cannot be isotoped off Kr .
Let ˇi DA0\Fi . Since each side of A0 must be adjacent to an essential annulus in X ,
we see that q�1.ˇi/ is an annulus slope on Gi . Since Gi is a once punctured torus,
any annular slope on Gi is a nonseparating curve disjoint from i and therefore must
be isotopic to i . If follows that  0i is isotopic to ˇi on Fi , hence A0 can be isotoped
to have @A0 D  0

0
[  0

1
, and the claim follows.

For the same reason, if s is another integral toroidal slope of K then  0
0

and  0
1

must
also be homologous in .Y;K; s/. On the other hand, as in the proof of Lemma 3.7,
there is a homeomorphism  W .Y;K; r/! .Y;K; s/ which is the identity map on F0

and the Dehn twist map �n
˛ on F1 , where n D r � s ¤ 0 and ˛ is the curve on F1

isotopic to Kr in .Y;K; r/. Since A0 cannot be isotoped off Kr ,  0
1

has essential
intersection with ˛ , hence  . 0

1
/ is not homologous to  0

0
in .Y;K; s/ if s ¤ r , a

contradiction.
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4 Surgery on Kn

As in Section 1, define Kn D 'n.K/ and rn D 'n.r/, where 'nW V ! S3 is the
composition of the standard embedding of V into S3 with n full right hand twists
along a meridian disk of V , and r is a slope of K . If .V;K; r/ is a small Seifert
fiber manifold then Kn.rn/ is either small Seifert fibered or reducible, hence is always
nonhyperbolic. In general, if .V;K; r/ is toroidal then it is possible that Kn.rn/ may
be hyperbolic for infinitely many n; however, this will not happen if wind.K/D 2. The
main result of this section shows that if wrap.K/D 2 and .V;K; r/ is toroidal then
either Kn.rn/ is toroidal for all but at most three n, or it is atoroidal and nonhyperbolic
for all n. In particular, it can be hyperbolic for at most three n; see Theorem 4.3 for
more details.

Let D be a meridional disk of V with n1 D jD \Kj D 2, and T an essential torus
in .V;K; r/ such that nD n2 D jT \Kr j is minimal. Let E.K/ be the knot exterior
V �IntN.K/. Denote by Q1 the punctured disk D\E.K/, and by Q2 the punctured
torus T \E.K/. Considering the disks D \N.K/ and T \N.Kr / as fat vertices,
and the arc components of Q1\Q2 as edges, we obtain graphs �1; �2 on D and T ,
respectively, with ni vertices on �i . Denote by m the meridional slope of K , and by
�D�.m; r/ the distance (ie the geometric intersection number) between m and r .
By [11] we have �� 2. Each boundary component of Q1 intersects each component
of Q2 at � points; hence each vertex of �1 has valence n�, and each vertex of �2

has valence n1�D 2�.

This describes the standard way of creating useful graphs from the intersection pattern
of surfaces, before and after doing Dehn surgery. We refer the readers to Culler, Gordon,
Luecke and Shalen [4] and also [12] for standard terms and basic results related to
intersection graphs, such as Scharlemann cycles, extended Scharlemann cycles, and
signs of vertices. In particular, the minimality of n and wrap.K/D 2 imply that there
are no trivial loops in �i , so �1 is a set of n� parallel edges. Each vertex of �i has a
sign. An edge of �i is a positive edge if the two vertices on its endpoints are of the
same sign. There is a one to one correspondence between edges of �1 and �2 . The
Parity Rule of [4, page 279] says that an edge is positive on one graph if and only if
it is negative on the other. If wind.K/D 2 then we have that both vertices of �1 are
positive, and hence all edges on �1 are positive edges, and all edges on �2 are negative
edges. Similarly if wind.K/D 0 then we have that all edges of �1 are negative and
all edges of �2 are positive.
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Lemma 4.1 Suppose K � V has wind.K/D wrap.K/D 2. If .V;K; r/ is toroidal
then it contains an essential torus T such that

(1) if n> 2 then �1 has no extended Scharlemann cycle;

(2) nD 2 or 4;

(3) �D 1;

(4) T bounds a small Seifert fiber space.

Proof (1) This is found in Boyer and Zhang [2, Lemma 2.9] or Gordon and
Luecke [10, Theorem 3.2]. An extended Scharlemann cycle can be used to find
an essential torus in .V;K; r/ which has fewer intersections with Kr , contradicting
the minimality of n.

(2) The parity rule implies that n must be even as otherwise there would be an edge
in �1 with the same label on its two endpoints, so it would be a positive edge on
both graphs. If n > 4 then the n parallel positive edges of �1 contain an extended
Scharlemann cycle, contradicting (1); see the author [25, Lemma 1.4].

(3) Assume �� 2. If nD 4 then �1 has an extended Scharlemann cycle, a contradic-
tion. Hence we may assume nD 2. By Gordon [9, Lemma 2.1], no two edges can be
parallel on both graphs, so we must have �D 2, and the four edges of �2 are mutually
nonparallel on �2 . A disk face E of �2 then has four edges. Now cut V along D ,
let D1;D2 be the two copies of D on B D V jD , and let � D �1[ �2DK\B be the
two strings of K in B . Then the neighborhood of D1[D2[�1[�2 is a solid torus V 0

in B . The boundary curve of E runs four times along � , twice along each �i . Since
all segments of @E on D and @N.�/ are essential arcs, we see that @E intersects a
meridian of �i twice in the same direction, hence V 0[N.E// is a punctured projective
space in the 3–ball B , which is impossible.

(4) We now have �D1 and nD2 or 4. The edges of �1 form one or two Scharlemann
cycles, according to whether n D 2 or 4; see Figure 4.1. By [4, Lemma 2.5.2] the
essential torus T is separating in .V;K; r/. It cuts .V;K; r/ into two regions; the one
containing @V is called the white region, and the other one the green region. From
Figure 4.1 we can see that the Scharlemann disk G bounded by a Scharlemann cycle
e1 [ e2 is in the green region since there is no extended Scharlemann cycle. When
shrinking each fat vertex of 2 to a point, e1[ e2 becomes a loop on T , which must
be essential by [2, Lemma 2.8]. Let H be the part of N.Kr / in the green region. Then
N.T [H [G/ has two torus boundary components, and the one T 0 inside the green
region has fewer intersections with Kr . By the choice of T , this T 0 must bound a solid
torus V 0 . The green region is now the union of two solid tori V 0 and V 00DN.H [E/
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with V 0 \ V 00 an annulus, hence T being essential implies that V 0 [ V 00 is a small
Seifert fiber space bounded by T , whose orbifold is a disk with two cone points.

1

2

2

1

.a/

1
2
3

4

2
1
4

3

.b/
Figure 4.1

Lemma 4.2 Suppose K � V has wrap.K/D 2. If .V;K; r/ is toroidal then �D 1,
and it contains an essential torus T such that either T is nonseparating or it bounds a
small Seifert fiber space.

Proof The conclusion holds if .V;K; r/ contains a nonseparating torus, so we may
assume that all essential tori in .V;K; r/ are separating. If .V;K; r/ contains a Klein
bottle F then T D @N.F / must be incompressible as otherwise .V;K; r/ would
be reducible. T is also not parallel to @V , otherwise .V;K; r/ D N.F / would be
atoroidal. Hence T is an essential torus bounding the small Seifert fiber space N.F /

and the result follows. Therefore we may also assume that .V;K; r/ contains no Klein
bottle.

The case wind.K/D 2 is covered by Lemma 4.1, so we assume wind.K/D 0. The
two vertices of �1 on D are now antiparallel, so all edges of �1 are negative. By
Gordon and the author [14, Lemma 2.3(1)], if �1 has more than n parallel negative
edges then T would be nonseparating, contradicting the assumption above. Hence we
must have �D 1.

By the proof of [14, Lemma 2.2(3)], the n edges form mutually disjoint essential cycles
of equal length on �2 . All vertices on the same cycle are parallel; since T is separating,
the number of positive vertices is equal to that of negative vertices, hence we have an
even number of cycles.

On the twice punctured disk D\X , the edges e1; : : : ; en cut it into one annulus and
n� 1 rectangles D1; : : : ;D2n�1 . As before, call the two components of .V;K; r/jT
the white region W and the green region G , with the white region containing @V .
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Then n=2 of the rectangles D2i�1 are in the green region. Also, the Dehn filling solid
torus N.Kr / is cut by T into n components H1; : : : ;Hn , with H2i�1 in the green
region, and each H2i�1 is incident to two of the rectangles. It follows that if we shrink
each H2i�1 to an arc ˛i then

S
.H2i�1[D2i�1/ becomes a set of annuli or Möbius

bands containing these ˛i , with boundary on the above cycle. But since the two ends
of ˛i are of opposite signs, which by the above are on different cycles, we see that
there is no Möbius band in the above union, so they are all annuli.

Let A be one of these annuli. Then @A cuts T into two annuli A1;A2 . Since we
assumed that .V;K; r/ contains no Klein bottle, each A[Ai is a torus instead of
Klein bottle, hence the frontier of N.T [ A/ consists of three tori T0 [ T1 [ T2 ,
with T1;T2 in the green region. One can check that each Ti has fewer intersections
with Kr than T , hence by the minimality of n we see that each Ti bounds a solid
torus Vi , which must be disjoint from T [A as otherwise it would contain @V and
hence have at least two boundary components, contradicting the assumption that Vi

are solid tori. It now follows that G is homeomorphic to the manifold obtained by
gluing V1;V2 along an annulus. The incompressibility of T then implies that G is a
small Seifert fiber space with orbifold a disk with two cone points.

Theorem 4.3 Suppose wrap.K/D 2, and .V;K; r/ is nonhyperbolic. Then Kn.rn/

is nonhyperbolic for all but at most three n. Moreover, one of the following holds:

(1) there is an n0 such that Kn.rn/ is toroidal unless jn� n0j � 1;

(2) Kn.rn/ is atoroidal for all n, and there exist q1; q2 2 Z such each Kn.rn/ is
either reducible or has a small Seifert fibration with q1; q2 as the indices of two
of its singular fibers.

Proof By [1; 19] .V;K; r/ is irreducible and not a solid torus, hence it is either a
small Seifert fibered manifold or toroidal. If it is a small Seifert fibered manifold
then (2) holds, where q1; q2 are the indices of the two singular fibers of .V;K; r/.

Suppose .V;K; r/ is toroidal. Let T be an essential torus of .V;K; r/ given by
Lemma 4.2. Note that Kn is obtained by Dehn filling on one component of a hyperbolic
link, hence by the author [22] it is nontrivial for all but at most two adjacent integers n.
By Gabai [6], Kn.rn/ cannot contain a nonseparating sphere if Kn is nontrivial.
Therefore if T is nonseparating then it remains a nonseparating incompressible torus
in Kn.rn/ for all but at most two consecutive n, hence (1) holds.

We may now assume T is separating. By Lemma 4.2, T cuts .V;K; r/ into M1;M2 ,
where M2 contains T0 D @V , and M1 is a small Seifert fiber space. Thus we have
Kn.rn/ D M1 [T M2.rn/. Let q1; q2 be the indices of the singular fibers of M1 .
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By [4, Theorem 2.4.4], if M2 is not a cable space then T is incompressible in M2.rn/

and hence incompressible in Kn.rn/, for all but at most two consecutive n, so again (1)
follows and we are done.

We now assume that M2 is a cable space. Let A be an essential annulus in M2 with
one boundary component on each of T and T0 , and let 0 be the boundary slope of A

on T0 . Let .m; l/ be a meridian-longitude pair of T0 D @V . Then Kn.rn/ is obtained
from .V;K; r/ by Dehn filling on T0 along the slope ˛n D l � nm.

By [4, Theorem 2.4.3], there is a slope 0 on T0 such that T remains incompressible
in M2.˛n/ if �.˛n; 0/� 2. If m¤ 0 then at most three consecutive ˛n satisfy the
above condition and hence (1) holds. Now assume mD 0 . Then M2.˛n/ is a solid
torus for all n, so Kn.rn/ is the union of the small Seifert fiber space M1 and the solid
torus M2.˛n/. If the fiber of M1 is the meridional slope of M2.˛n/ then Kn.rn/ is
reducible, and if not then the Seifert fibration of M1 extends to a small Seifert fiber
structure of Kn.rn/. Hence (2) holds in this case.

5 Surgery on wrapped Montesinos knots

Denote by T Œt1; : : : ; tp � the Montesinos tangle consisting of p rational tangles of
slopes ti ; see Figure 5.1(a) for pD 2, where a circle with label ti represents a rational
tangle of slope ti ¤ 1=0. Up to isotopy we may assume ti are not integers unless
p D 1. We can add two strings to connect the top endpoints to the bottom ones to
make it a knot of wrapping number 2 in a solid torus V . Up to homeomorphism
of V there are two ways to add these two strings, as shown in Figure 5.1(b)-(c),
denoted by K0.t1; : : : ; tp/ and K1.t1; : : : ; tp/, respectively. Recall that the circle
with a dot in these figures represents the component K0 to be removed, so V D

S3 � IntN.K0/. Only one of these is a knot if the two top endpoints of the tangle
belong to different strings. We call these knots wrapped Montesinos knots in solid
tori. Note that if K D Ka.t1; : : : ; tp/ for a D 0; 1 then Kn is a Montesinos knot
M.1=.aC 2n/; t1; : : : ; tp/ DM.t1; : : : ; tp; 1=.aC 2n// in S3 . The purpose of this
section is to determine all exceptional Dehn surgeries on these wrapped Montesinos
knots in solid tori.

As before, we fix a meridian-longitude pair .m0; l0/ of K � V so that it becomes
the preferred meridian-longitude pair of K0 � S3 . A slope r is then represented
by a rational number u=v if it represents ˙.um0 C vl0/ in H1.@N.K//. We first
consider the knot K D K1.�1=2; 1=3/. By Proposition 2.2, K.6/ and K.8/ are
toroidal, and K.7/ is small Seifert fibered. The following lemma shows that there is
no other exceptional surgery on this knot.
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Figure 5.1

Lemma 5.1 Let K D K1.�1=2; 1=3/. Then .V;K; r/ is an exceptional surgery if
and only if r D 6; 7; 8.

Proof Let 'nW V ! S3 be the embedding defined in Section 4. Then Kn D 'n.K/

is the .�2; 3; 1C 2n/ pretzel knot, and we have rn D 'n.r/D r C 4n with respect to
the preferred meridian-longitude of Kn . Assume that .V;K; r/ is nonhyperbolic. By
Theorem 4.3 one of the following holds:

(1) Kn.rn/ is toroidal for all but at most three rn ;

(2) Kn.rn/ is reducible or small Seifert fibered for all n.

If (1) is true then by the author [26] we have r D 8. Hence we assume (2) holds. When
n D �1, Kn is the .�2; 3;�1/ pretzel knot, which can be deformed to the mirror
image of the knot 52 on the knot table. By [3] it admits only three Seifert fibered
surgeries, with slopes 1; 2; 3, respectively, and there is no reducible surgery. Since
rn D r C 4nD r � 4 when nD�1, we have r D 5; 6; 7.

It remains to show .V;K; 5/ is hyperbolic. Let r D 5. The above shows that Kn.rn/

is small Seifert fibered for nD�1. For nD 0; 1; 2, the knot Kn is the .2; 5/, .3; 4/
and .3; 5/ torus knot, respectively, hence Kn.rn/ cannot be toroidal for these four n.
By Theorem 4.3, this implies that if .V;K; 5/ is nonhyperbolic then conclusion (2) of
that theorem must hold, ie there exists q1; q2 such that each Kn.rn/ is either reducible,
or has a small Seifert fibration with q1; q2 as the indices of two of its singular fibers.

For n D 0, Kn is the .2; 5/ torus knot, and rn D r D 5. The cabling slope of K0

is 2 � 5 D 10, hence the Seifert fiber structure of the exterior of K0 extends over
the Dehn filling solid torus, whose core is then a singular fiber of index 10� 5D 5.
Therefore K0.5/ is a small Seifert fibered manifold with three singular fibers of
indices 2; 5; 5, respectively. Similarly, K1 is the .�2; 3; 3/ pretzel knot, which is

Algebraic & Geometric Topology, Volume 13 (2013)



Dehn surgery on knots of wrapping number 2 499

the .3; 4/ torus knot. The cabling slope of K1 is 3� 4D 12, and the surgery slope
is r1 D 5C 4D 9, so that after Dehn surgery the manifold K1.r1/ is a small Seifert
fibered manifold with three singular fibers of indices 3; 4; 3, respectively. We have by
Jaco [15, Theorem VI.17] that Seifert fibrations for these manifolds are unique. This
is then a contradiction to Theorem 4.3 since no pair of indices of the singular fibers
of K0.r0/ match those of K1.r1/.

Lemma 5.2 Let K D K1.�1=2; 1=q/, where jqj � 3 is odd. Let X be the tangle
space as defined in Section 2. Then F D @hX is incompressible unless q D 3.

Proof Let yX be the manifold obtained by attaching a 2–handle to X along the annu-
lus @vX , and let yF D @ yX be the corresponding surface. Note that X is a handlebody
of genus 2, so if F is compressible then there is a nonseparating compressing disk D1 ,
which remains a compressing disk in yX . Let L be the link obtained by adding two
horizontal arcs to the tangle T Œ�1=2; 1=q�. Then yX DE.L/, hence L is a trivial knot.
On the other hand, it is easy to see that L is a .2; q� 2/ torus knot. Since jqj � 3, it
follows that L is trivial if and only if q D 3.

The knot K DKa.1=q1; 1=q2/ in V has an obvious spanning surface which is a once
punctured torus or Klein bottle, called the pretzel surface. Its boundary slope is called
the pretzel slope of K .

Lemma 5.3 Let K D Ka.1=q1; 1=q2/ be a pretzel knot in V , jqi j > 1 and let
fq1; q2g ¤ f�2;˙3g. Then .V;K; r/ is hyperbolic unless r is the pretzel slope.

Proof By Lemma 5.2 and [23, Lemma 3.3] the surface @hX is incompressible, hence
by Theorem 3.8 we see that the knot K � V admits no reducible or Seifert fibered
surgery and at most one toroidal surgery. Since the surgery along the pretzel slope r

contains either a nonseparating torus or a Klein bottle and hence is nonhyperbolic, it is
the only exceptional surgery slope.

Lemma 5.4 Suppose K D K1.�1=2; 2=5/. Then .V;K; r/ admits no exceptional
surgery.

Proof We have Kn DM.�1=2; 2=5; 1=.1C 2n//. Checking the list in [26, Theo-
rem 1.1], we see that Kn admits no toroidal surgery when n> 9, so by Theorem 4.3,
if .V;K; r/ is an exceptional surgery then Kn.rn/ is atoroidal and nonhyperbolic
for all n. In particular, this should be true for n D �1, in which case we have that
Kn D M.�1=2; 2=5;�1/ can be deformed to the 2–bridge knot associated to the
rational number �1=.3� 1=4/D�4=11. On the other hand, by [3] this knot admits
only one exceptional surgery, which produces a toroidal manifold. Hence we have a
contradiction.
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Two Montesinos tangles T Œt1; : : : ; tk � and T Œs1; : : : ; sk � are equivalent if si � ti are
integers, and

P
si D

P
ti , in which case Ka.t1; : : : ; tk/ is isotopic to Ka.s1; : : : ; sk/.

Any ti D 0 can be added or deleted without affecting the knot type. Note that
K D Ka.t1; : : : ; tk/ is isotopic to K0 D Ka.tk ; : : : ; t1/, and is the mirror image of
K00DKa.�t1; : : : ;�tk/, so .V;K; r/ is homeomorphic to .V;K0; r/ and .V;K00;�r/.
When kD1, twisting m times along a meridional disk of V will change KDKa.t1/ to
K000DKa.1=.2mC1=t1//. We will consider these knots K;K0;K00;K000 as equivalent.
We may assume that K is not equivalent to Ka.0/ or Ka.1=q/ as otherwise K is
nonhyperbolic. The following theorem classifies exceptional surgeries on wrapped
Montesinos knots.

Theorem 5.5 Suppose K D Ka.t1; : : : ; tk/ � V is not equivalent to Ka.0/ or
Ka.1=q/ for any integer q . Let .V;K; r/ be an exceptional surgery. Then .K; r/
is equivalent to one of the following pairs. The surgery is small Seifert fibered for
r D 1; 2; 3 in (1) and r D 7 in (4), and toroidal otherwise.

(1) K DK0.2/ (the Whitehead knot), r D 0; 1; 2; 3; 4.

(2) K DKa.n/, n> 2, r D 0 if aD 0, and r D 2n otherwise.

(3) K DKa.1=q1; 1=q2/, jqi j � 2, and r is the pretzel slope.

(4) K DK1.�1=2; 1=3/, r D 6; 7; 8.

Proof First assume that k D 1, so T Œt � is a rational tangle. In this case any K1.t 0/ is
equivalent to some K0.t/. By the above, the reciprocal 1=t has the property that K0.t/

is equivalent to K0.t 0/ if 1=t 0 D 2˙ .1=t/, and by assumption 1=t ¤ 0; 1. Hence up
to equivalence we may assume that 0 < 1=t < 1, ie t D p=q > 1. Note that Kn is
the 2–bridge knot in S3 associated to the rational number r D 1=.2nC q=p/. Hence
if q ¤ 1 then for any n > 1, Kn is not equivalent to a 2–bridge knot associated
to any rational number of type 1=.b1C 1=b2/ with b1; b2 2 Z. It follows from [3,
Theorem 1.1] that all nontrivial surgeries on such Kn are hyperbolic. By Theorem 4.3
this implies that K � V admits no exceptional surgery. For q D 1, t D p=q > 1 is
an integer. If t D 2 then K is the Whitehead knot in V and it is well-known that K

admits exactly five exceptional surgeries as listed in (1). The hyperbolicity of .V;K; r/
for r ¤ 0; : : : ; 4 can also be proved using the argument in the proof of Lemma 5.4
and the classification of exceptional surgeries on 2–bridge knots given in [3]. If t > 2

then K is not the Whitehead knot, and the argument in the proof of Lemma 5.3 shows
that @hX is incompressible, hence by Theorem 3.8 we see that K admits no Seifert
fibered surgery and at most one toroidal surgery. Note that K has a spanning surface F

in V which is a once punctured torus or Klein bottle. As in the proof of Lemma 5.3,
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surgery along the boundary slope of F produces a toroidal manifold, so there is no
other exceptional surgery. The toroidal slope is given in (2).

We now consider the case that k > 1. We may assume that qi � 2 for all i as otherwise
the Montesinos tangle is equivalent to one with fewer rational tangles. If k � 3 then Kn

is a Montesinos knot of length at least 4 for all jnj � 2. By the author [24], we have Kn

admits no exceptional surgery. Hence by Theorem 4.3 we see that K.r/ is hyperbolic
for all nontrivial r , so there is no exceptional surgery.

We now assume that K D Ka.p1=q1;p2=q2/ with qi � 2. Then we have that
Kn D K.p1=q1;p2=q2; 1=2n/ or K.p1=q1;p2=q2; 1=.2nC 1//. By Theorem 4.3,
if .V;K; r/ is exceptional then either Kn.rn/ is toroidal for all but at most three n, or
it is either reducible or atoroidal and Seifert fibered for all n. If K.p1=q1;p2=q2; 1=q3/

admits a toroidal surgery and jq3j> 9 then jpi j D 1 and the surgery slope is the pretzel
slope, by [26]. Hence if Kn.rn/ is toroidal for almost all n then K DKa.1=q1; 1=q2/

and r is the pretzel slope, so (3) holds.

We may now assume Kn.rn/ is reducible or atoroidal and Seifert fibered for all n. As
above, we have Kn DM.p1=q1;p2=q2;1=2n/ or KnDM.p1=q1;p2=q2;1=.2nC 1//,
and by [24] Kn.rn/ cannot be reducible; hence it must be an atoroidal small Seifert
fibered manifold for any n. By the author [27, Theorems 7.2 and 7.3], one of the
following must hold:

(i) Kn is a .q1; q2; q3; d/ pretzel knot or its mirror image, and either d D 0, or
all qi are positive and d D�1. Moreover, either some jqi jD 2 or jqi jD jqj jD 3

for some i ¤ j .

(ii) Kn DK.�1=2;˙2=5; 1=.2nC 1//.

In (i) above, the case d D �1 cannot happen in our case since Kn.rn/ is atoroidal
Seifert fibered for both n positive and negative, contradicting the condition that all qi

are of the same sign (up to taking mirror image of Kn .) Therefore Kn must be a
genuine pretzel knot if (i) holds. It follows that the tangle must be equivalent to
T Œ1=q1; 1=q2� or T Œ�1=2; 2=5�.

The result now follows from Lemmas 5.3 and 5.4.
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