Volume 13, issue 1 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
A surgery triangle for lattice cohomology

Joshua Evan Greene

Algebraic & Geometric Topology 13 (2013) 441–451
Abstract

Lattice cohomology, defined by Némethi in [Publ. Res. Inst. Math. Sci. 44 (2008) 507–543], is an invariant of negative definite plumbed 3–manifolds which conjecturally computes their Heegaard Floer homology HF+. We prove a surgery exact triangle for the lattice cohomology analogous to the one for HF+. This is a step towards relating these two invariants.

Keywords
Heegaard Floer homology, lattice cohomology, plumbed manifold
Mathematical Subject Classification 2010
Primary: 57R58
Secondary: 57M27, 53D40, 11H55
References
Publication
Received: 12 June 2012
Accepted: 12 October 2012
Published: 6 March 2013
Authors
Joshua Evan Greene
Department of Mathematics
Boston College
Carney Hall
Chestnut Hill, MA 02467
USA