Volume 13, issue 1 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 18
Issue 4, 1883–2507
Issue 3, 1259–1881
Issue 2, 635–1258
Issue 1, 1–633

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Subscriptions
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Author Index
To Appear
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Proof of a stronger version of the AJ Conjecture for torus knots

Anh T Tran

Algebraic & Geometric Topology 13 (2013) 609–624
Abstract

For a knot K in S3, the sl2–colored Jones function JK(n) is a sequence of Laurent polynomials in the variable t that is known to satisfy non-trivial linear recurrence relations. The operator corresponding to the minimal linear recurrence relation is called the recurrence polynomial of K. The AJ Conjecture (see Garoufalidis [Proceedings of the Casson Fest (2004) 291–309]) states that when reducing t = 1, the recurrence polynomial is essentially equal to the A–polynomial of K. In this paper we consider a stronger version of the AJ Conjecture, proposed by Sikora [arxiv:0807.0943], and confirm it for all torus knots.

Keywords
colored Jones polynomial, $A$–polynomial, AJ Conjecture
Mathematical Subject Classification 2010
Primary: 57N10
Secondary: 57M25
References
Publication
Received: 22 November 2011
Accepted: 29 October 2012
Published: 23 March 2013
Authors
Anh T Tran
Department of Mathematics
The Ohio State University
100 Math Tower
231 West 18th Avenue
Columbus OH 43210
USA