Volume 13, issue 2 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The three smallest compact arithmetic hyperbolic $5$–orbifolds

Vincent Emery and Ruth Kellerhals

Algebraic & Geometric Topology 13 (2013) 817–829
Bibliography
1 M Belolipetsky, V Emery, On volumes of arithmetic quotients of $\mathrm{PO}(n,1)^\circ$, $n$ odd, Proc. Lond. Math. Soc. 105 (2012) 541 MR2974199
2 , The Bordeaux database
3 V O Bugaenko, Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring $\mathbf{Z}[(\sqrt{5}+1)/2]$, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1984) 6 MR764026
4 H Cohen, F Diaz y Diaz, M Olivier, Computing ray class groups, conductors and discriminants, Math. Comp. 67 (1998) 773 MR1443117
5 V Emery, Du volume des quotients arithmétiques de l'espace hyperbolique, PhD thesis, University of Fribourg (2009)
6 S Freundt, QaoS online database
7 H C Im Hof, Napier cycles and hyperbolic Coxeter groups, Bull. Soc. Math. Belg. Sér. A 42 (1990) 523 MR1316209
8 R Kellerhals, Scissors congruence, the golden ratio and volumes in hyperbolic $5$–space, Discrete Comput. Geom. 47 (2012) 629 MR2891254
9 H Klingen, Über die Werte der Dedekindschen Zetafunktion, Math. Ann. 145 (1961/1962) 265 MR0133304
10 V S Makarov, The Fedorov groups of four-dimensional and five-dimensional Lobačevskiĭspace, from: "Studies in General Algebra", Kišinev. Gos. Univ., Kishinev (1968) 120 MR0259735
11 J Milnor, The Schläfli differential equality, from: "Collected papers", Publish or Perish (1994) MR1277810
12 A Mohammadi, A Salehi Golsefidy, Discrete subgroups acting transitively on vertices of a Bruhat–Tits building, Duke Math. J. 161 (2012) 483 MR2881229
13 G Prasad, Volumes of $S$–arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. (1989) 91 MR1019962
14 È B Vinberg, Discrete groups generated by reflections in Lobačevskiĭ spaces, Math. USSR Sb. 1 (1967) 429 MR0207853
15 D Zagier, H Gangl, Classical and elliptic polylogarithms and special values of $L$–series, from: "The arithmetic and geometry of algebraic cycles" (editors B B Gordon, J D Lewis, S Müller-Stach, S Saito, N Yui), NATO Sci. Ser. C Math. Phys. Sci. 548, Kluwer Acad. Publ. (2000) 561 MR1744961