Volume 13, issue 2 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
On the construction of functorial factorizations for model categories

Tobias Barthel and Emily Riehl

Algebraic & Geometric Topology 13 (2013) 1089–1124
Bibliography
1 B van den Berg, R Garner, Topological and simplicial models of identity types, ACM Trans. Comput. Log. 13 (2012) 44 MR2893018
2 F Borceux, Handbook of categorical algebra, $1$, Encyclopedia of Mathematics and its Applications 50, Cambridge Univ. Press (1994) MR1291599
3 B Chorny, A generalization of Quillen's small object argument, J. Pure Appl. Algebra 204 (2006) 568 MR2185618
4 J Cockett, Category theory for computer science (2009)
5 M Cole, Many homotopy categories are homotopy categories, Topology Appl. 153 (2006) 1084 MR2203021
6 M Cole, Mixing model structures, Topology Appl. 153 (2006) 1016 MR2203016
7 R Garner, Cofibrantly generated natural weak factorisation systems arXiv:math/0702290
8 R Garner, Understanding the small object argument, Appl. Categ. Structures 17 (2009) 247 MR2506256
9 R Garner, Homomorphisms of higher categories, Adv. Math. 224 (2010) 2269 MR2652207
10 M Grandis, W Tholen, Natural weak factorization systems, Arch. Math. (Brno) 42 (2006) 397 MR2283020
11 G M Kelly, A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Austral. Math. Soc. 22 (1980) 1 MR589937
12 L G J Lewis, The stable category and generalized Thom spectra, ProQuest LLC, Ann Arbor, MI (1978) MR2611772
13 P J Malraison Jr., Fibrations as triple algebras, J. Pure Appl. Algebra 3 (1973) 287 MR0331381
14 M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 MR1806878
15 J P May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975) MR0370579
16 J P May, K Ponto, More concise algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press (2012) MR2884233
17 J P May, J Sigurdsson, Parametrized homotopy theory, Mathematical Surveys and Monographs 132, American Mathematical Society (2006) MR2271789
18 E Riehl, Algebraic model structures, New York J. Math. 17 (2011) 173 MR2781914
19 R Schwänzl, R M Vogt, Strong cofibrations and fibrations in enriched categories, Arch. Math. (Basel) 79 (2002) 449 MR1967263
20 A Strøm, Note on cofibrations, Math. Scand. 19 (1966) 11 MR0211403
21 A Strøm, Note on cofibrations, II, Math. Scand. 22 (1968) 130 MR0243525
22 A Strøm, The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1972) 435 MR0321082
23 R Williamson, Cylindrical homotopy theory arXiv:1304.0867