Volume 13, issue 2 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
On the construction of functorial factorizations for model categories

Tobias Barthel and Emily Riehl

Algebraic & Geometric Topology 13 (2013) 1089–1124
Bibliography
1 B van den Berg, R Garner, Topological and simplicial models of identity types, ACM Trans. Comput. Log. 13 (2012) 44 MR2893018
2 F Borceux, Handbook of categorical algebra, $1$, Encyclopedia of Mathematics and its Applications 50, Cambridge Univ. Press (1994) MR1291599
3 B Chorny, A generalization of Quillen's small object argument, J. Pure Appl. Algebra 204 (2006) 568 MR2185618
4 J Cockett, Category theory for computer science (2009)
5 M Cole, Many homotopy categories are homotopy categories, Topology Appl. 153 (2006) 1084 MR2203021
6 M Cole, Mixing model structures, Topology Appl. 153 (2006) 1016 MR2203016
7 R Garner, Cofibrantly generated natural weak factorisation systems arXiv:math/0702290
8 R Garner, Understanding the small object argument, Appl. Categ. Structures 17 (2009) 247 MR2506256
9 R Garner, Homomorphisms of higher categories, Adv. Math. 224 (2010) 2269 MR2652207
10 M Grandis, W Tholen, Natural weak factorization systems, Arch. Math. (Brno) 42 (2006) 397 MR2283020
11 G M Kelly, A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Austral. Math. Soc. 22 (1980) 1 MR589937
12 L G J Lewis, The stable category and generalized Thom spectra, ProQuest LLC, Ann Arbor, MI (1978) MR2611772
13 P J Malraison Jr., Fibrations as triple algebras, J. Pure Appl. Algebra 3 (1973) 287 MR0331381
14 M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 MR1806878
15 J P May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975) MR0370579
16 J P May, K Ponto, More concise algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press (2012) MR2884233
17 J P May, J Sigurdsson, Parametrized homotopy theory, Mathematical Surveys and Monographs 132, American Mathematical Society (2006) MR2271789
18 E Riehl, Algebraic model structures, New York J. Math. 17 (2011) 173 MR2781914
19 R Schwänzl, R M Vogt, Strong cofibrations and fibrations in enriched categories, Arch. Math. (Basel) 79 (2002) 449 MR1967263
20 A Strøm, Note on cofibrations, Math. Scand. 19 (1966) 11 MR0211403
21 A Strøm, Note on cofibrations, II, Math. Scand. 22 (1968) 130 MR0243525
22 A Strøm, The homotopy category is a homotopy category, Arch. Math. (Basel) 23 (1972) 435 MR0321082
23 R Williamson, Cylindrical homotopy theory arXiv:1304.0867