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Some Ramsey-type results on
intrinsic linking of n–complexes

CHRISTOPHER TUFFLEY

Define the complete n–complex on N vertices, Kn
N

, to be the n–skeleton of an
.N � 1/–simplex. We show that embeddings of sufficiently large complete n–
complexes in R2nC1 necessarily exhibit complicated linking behaviour, thereby
extending known results on embeddings of large complete graphs in R3 (the case
n D 1) to higher dimensions. In particular, we prove the existence of links of the
following types: r –component links, with the linking pattern of a chain, necklace
or keyring; 2–component links with linking number at least � in absolute value;
and 2–component links with linking number a nonzero multiple of a given integer
q . For fixed n the number of vertices required for each of our results grows at most
polynomially with respect to the parameter r , � or q .

57Q45; 57M15, 57Q35

1 Introduction

In the 1980s Sachs [15] and Conway and Gordon [1] proved that an embedding of the
complete graph K6 in R3 necessarily contains a pair of disjoint cycles that form a
nonsplit link. This fact is expressed by saying that K6 is intrinsically linked. Conway
and Gordon also showed that every embedding of K7 in R3 contains a cycle that
forms a nontrivial knot, and we say that K7 is intrinsically knotted.

Since these papers, the study of intrinsic knotting and linking has been pursued in
several directions, and we refer the reader to Ramírez Alfonsín [14] for a survey of
some known results. One such direction is to show that embeddings of larger complete
graphs necessarily exhibit more complex knotting and linking behaviour. Restricting
our attention to linking, Flapan, Pommersheim, Foisy and Naimi [4] and Fleming
and Diesl [6] have shown that embeddings of sufficiently large complete graphs must
contain nonsplit r –component links; Flapan [2] has shown that they must contain
2–component links with high linking number; and Fleming [5] has extended work by
Fleming and Diesl [6] to show that, given an integer q , they must contain 2–component
links with linking number a nonzero multiple of q .
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We will refer to results such as those described above as Ramsey-type results on intrinsic
linking. Perhaps the strongest results in this direction are those of Negami [12] and
Flapan, Mellor and Naimi [3]. Restricting attention to embeddings with a projection
that is a “good drawing”, Negami shows that, given a link L, for n;m sufficiently
large every such embedding of the complete bipartite graph Kn:m contains a link that
is ambient isotopic to L. The restriction to embeddings with a projection that is a
good drawing excludes local knots in the edges, which is necessary but not sufficient
(Negami [13]) for the result to hold. With no restriction on the embedding, Flapan,
Mellor and Naimi show that intrinsic knotting and linking are arbitrarily complex
in the following sense: Given positive integers r and ˛ , embeddings of sufficiently
large complete graphs contain r –component links in which the second coefficient of
the Conway polynomial of each component, and the linking number of each pair of
components, is at least ˛ in absolute value.

Extending the result of Sachs [15] and Conway and Gordon [1] in another direction,
we may consider embeddings of n–complexes in Rd . By a general position argument
every n–complex embeds in R2nC1 , and a pair of disjoint n–spheres in R2nC1

have a well-defined linking number (the homology class of one component in the nth

homology group of the complement of the second, which is isomorphic to Z), so
we take d D 2nC 1. Define the complete n–complex on N vertices, Kn

N
, to be the

n–skeleton of an .N � 1/–simplex. Then Lovász and Schrijver [9, Corollary 1.1],
Taniyama [19], Melikhov [11, Example 4.7] and Melikhov [10, Example 4.9] show by
various arguments that Kn

2nC4 is intrinsically linked, in the sense that every embedding
in R2nC1 contains a pair of disjoint n–spheres that have nonzero linking number.
Since K1

N
Š KN this specialises to the K6 result in the case n D 1. The .nC 1/–

fold join .K0
4
/�.nC1/ has also been shown to be intrinsically linked in this sense, by

M Skopenkov [18].

We may also consider links in which the components are of different dimensions.
For l < k Segal and Spież [16] construct a k –complex Q containing subcomplexes
†k Š Sk and †l Š S l , such that Q embeds in RkClC1 , and moreover in every such
embedding the images of †k and †l are homologically linked. See also Freedman,
Krushkal and Teichner [7] for an example and application of such a complex in the
case .k; l/ D .2; 1/. We refer the reader to A Skopenkov [17] for a survey of these
and other results on higher-dimensional intrinsic linking, and their implications for
questions of embeddability of complexes in Rd .

The purpose of this paper is to establish some Ramsey-type results for embeddings
of complete n–complexes in R2nC1 . Our results are already known for embeddings
of complete graphs in R3 , and our arguments will typically mimic the proof of the
corresponding 1–dimensional result. However, in the case of Theorem 1.4 we will
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obtain a better bound for n D 1 than that previously known; and in addition, some
constructions used in the arguments require modifications in higher dimensions. These
modifications are needed for two main reasons: Firstly, @DnDSn�1 is disconnected for
nD1, but not for n�2; and secondly, triangulations of Dn have simpler combinatorics
for nD 1 than they do for n� 2.

We note that for n� 2 an n–sphere does not knot in R2nC1 for reasons of codimension.
Thus, we will not seek to establish any results on intrinsic knotting of complete n–
complexes in R2nC1 . A question of interest is to determine for which n there is an
n–complex which embeds in RnC2 , and which is intrinsically knotted in the sense that
every such embedding contains a nontrivially knotted n–sphere.

1.1 Statement of results

In what follows, a k –component link means k disjoint n–spheres embedded in R2nC1 .
Given a 2–component link L1[L2 we will write `k.L1;L2/ for their linking number,
and `k2.L1;L2/ for their linking number mod two. For fi; j g D f1; 2g the integral
linking number is given by the homology class ŒLi � in Hn.R2nC1�Lj IZ/Š Z.

Our first result is similar to Flapan et al [4, Theorems 1 and 2], and shows that
embeddings of sufficiently large complete n–complexes necessarily contain nonsplit
r –component links. Moreover, the number of vertices required grows at most linearly
with respect to each of r and n.

Theorem 1.1 Let r 2N , r � 2.

(a) For N � .2nC 4/.r � 1/ every embedding of Kn
N

in R2nC1 contains an r –
component link L1[L2[ � � � [Lr such that

(1) `k2.Li ;LiC1/¤ 0

for i D 1; : : : ; r � 1.

(b) If r � 3 then for N � .2nC 4/r every embedding of Kn
N

in R2nC1 contains
an r –component link L1 [L2 [ � � � [Lr satisfying Equation (1) for i D 1; : : : ; r

(subscripts taken mod r ).

The link of Theorem 1.1(a) resembles a chain, and the link of Theorem 1.1(b) resembles
a necklace, except that there is no requirement that nonadjacent components do not also
link. Our next result generalises Fleming and Diesl [6, Lemma 2.2], and yields links
that resemble a bunch of keys on a keyring. However, there is again no requirement
that the “keys” do not also link each other, and following Flapan et al [3] we call such a
link a generalised keyring. Generalised keyrings will play a crucial role in establishing
our results for 2–component links, in Theorems 1.3–1.5.
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Theorem 1.2 For a natural number r define

�n.r/D 4r2.2nC 4/C nC

�
4r2� 2

n

�
C 1:

Then every embedding of Kn
�n.r/

in R2nC1 contains an .r C 1/–component link
R[L1[L2[ � � � [Lr such that

`k2.R;Li/D 1

for i D 1; : : : ; r .

Observe that �n.r/ grows quadratically in r and linearly in n. The existence of
generalised keyrings in embeddings of Kn

N
for N sufficiently large may be established

by following Fleming and Diesl’s argument, or that of Flapan et al [3, Lemma 1]; the
Fleming–Diesl argument leads to a bound that grows exponentially with respect to r ,
and so we will follow the argument of Flapan et al, as this leads to the polynomial
bound given above. For nD 1 the term nCd.4r2�2/=neC1 of �n is not needed, so
it suffices to take �1.r/D 24r2 . This bound follows from Flapan et al [3, Lemma 1],
although they do not state the bound explicitly.

Our last three results concern linking number in 2–component links. The first extends
Flapan [2, Theorem 2] to higher dimensions (although our proof will be based on a
technique from Flapan et al [3, Lemma 2], as this leads to a better bound in higher
dimensions):

Theorem 1.3 Let � 2N be given, and let

N D �n.2�� 1/C nC

�
2�� 1

n

�
C 1:

Then every embedding of Kn
N

in R2nC1 contains a two-component link L[J such
that, for some orientation of the components, `k.L;J /� �.

Our last two results concern divisibility of the linking number. Fleming and Diesl [6]
showed that for q D 3 or q a power of two, embeddings of sufficiently large complete
graphs in R3 necessarily contain 2–component links with linking number a nonzero
multiple of q , and Fleming [5] later extended this to all q 2N . We now extend this
further to embeddings of complete n–complexes in R2nC1 , and by slightly modifying
Fleming’s argument, reduce the number of vertices required from exponentially many
to only polynomially many. We state and prove two results in this direction: the first
is for q arbitrary, and the second is for q prime, where a simpler argument leads to a
bound with much slower growth.
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Theorem 1.4 Let q be a positive integer. Then for N sufficiently large every embed-
ding of Kn

N
in R2nC1 contains a two-component link R[S such that `k.R;S/D kq

for some k ¤ 0. The minimum number of vertices required is no greater than
c.nC 1/

�
2nC4
nC1

�
qnC2 (c a constant), which for fixed n grows polynomially in q .

When q is prime, a much simpler argument leads to a bound with growth O.q2/

instead of O.qnC2/:

Theorem 1.5 Suppose that the positive integer q is prime. Then the conclusion of
Theorem 1.4 holds for

N � �n.2q� 1/C nC

�
2q� 3

n

�
C 1:

Since the proof of Theorem 1.5 is simpler than that of Theorem 1.4 we will prove it
first, in Section 4.2, and then prove Theorem 1.4 later in Section 6.

For nD 1, Theorem 1.4 may be proved using a total of

4q2.6C 15.q� 1//D 12q2.5q� 3/

vertices, in contrast to the exponentially many required by Fleming [5, Theorem 3.1].
This reduction to polynomial growth comes about for two reasons. The first is that we
use Flapan et al’s rather than Fleming and Diesl’s construction of a generalised keyring,
as this requires only polynomially many rather than exponentially many vertices. The
second savings comes from modifying the method by which the keys of the keyring
are combined, so that each key requires roughly 3q vertices rather than O.qlog q/. In
fact it should be possible to reduce the number of vertices required further, by a factor
of about 2

3
, because for nD 1 our method really only requires the keys to have about

2q vertices.

Clearly, the number of vertices required by Theorem 1.4 grows at most exponentially
with respect to n, because

�
m
k

�
� 2m . More precisely, Stirling’s formula may be used

to show that asymptotically we have

c.nC 1/

�
2nC 4

nC 1

�
qnC2

� C
p

n4nqnC2;

for some constant C .

1.2 Discussion

We briefly discuss the existence of more complex links in embeddings of large complete
complexes in R2nC1 .
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1.2.1 More complex keyrings Each of Theorems 1.3–1.5 is proved by converting a
suitable generalised keyring R[L1 [ � � � [Lm into a two component link R[L0 ,
where L0 is formed as a connected sum of some of the Li (and perhaps an additional
disjoint component S ). Starting with a generalised keyring with mr keys, and working
with them m at a time, we may therefore construct a link R[L0

1
[ � � � [L0r in which

each linking number `k.R;L0i/ satisfies the conclusion of the theorem. It follows for
example that for q 2N and N sufficiently large, every embedding of Kn

N
in R2nC1

contains a link R[L0
1
[� � �[L0r in which each linking number `k.R;L0i/ is a nonzero

multiple of q .

1.2.2 More complex linking patterns Flapan et al [3, Theorem 1] show that intrinsic
linking of graphs in R3 is arbitrarily complex in the following sense: Given natural
numbers r and �, for N sufficiently large every embedding of KN in R3 contains
an r –component link in which all pairwise linking numbers are at least � in absolute
value. We believe that, with minor adaptions to higher dimensions, their work shows
that intrinsic linking of n–complexes in R2nC1 is arbitrarily complex in this sense
also. The main adaption needed is to use our Lemma 2.5 in place of the 1–dimensional
construction it replaces in higher-dimensional arguments. This adaption requires the
addition of some extra vertices (to create the auxiliary sphere S0 of the lemma), and is
illustrated in the proofs of Lemma 3.2 and Theorem 1.3. These are based respectively
on [3, Lemma 1] and a technique from the proof of [3, Lemma 2].

A step in their argument is to show that, for N sufficiently large, every embedding of
KN in R3 contains a link X1[ � � � [Xm[Z1[ � � � [Zm such that

`k2.Xi ;Zj /D 1

for 1� i; j �m (Flapan et al [3, Proposition 1]). We observe that this step certainly
extends to embeddings of complete n–complexes in R2nC1 , as their proof is a purely
combinatorial argument that depends only on [3, Lemma 1] and the existence of
generalised keyrings, which we extend here to higher dimensions as Lemma 3.2 and
Theorem 1.2 respectively.

1.3 Organisation

The paper is organised as follows. We begin with some technical preliminaries in
Section 2, and then prove Theorems 1.1 and 1.2 concerning many-component links in
Section 3. In Section 4 we prove two of our results on linking numbers in 2–component
links, Theorems 1.3 and 1.5.

We then construct some triangulations of an M–simplex in Section 5, as further
technical preliminaries needed for our proof of our divisibility result Theorem 1.4.
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This result is proved in Section 6. As a further application of the triangulations of
Section 5 we conclude the paper in Section 7 with an alternate proof of Theorem 1.3,
without the polynomial bound on the number of vertices required. This introduces an
additional technique that may be used to prove Ramsey-type results on intrinsic linking
of n–complexes.

2 Technical preliminaries I: Spheres and discs in K n
N

In this section we construct some subcomplexes of Kn
N

that are needed for our proofs.
As an aid to understanding, in Section 2.1 we first illustrate the role the corresponding
subcomplexes of KN play in studying intrinsic linking of graphs in R3 .

2.1 Tactics

A common technique of [2], [3], [4], [5] and [6] in proving Ramsey-type results for
graphs is the use of connected sums and the additivity of linking number. These may be
used to convert a link with several components to one with fewer components, but more
complicated linking behaviour. We illustrate this technique by sketching the proofs
for n D 1 of the four-to-three Lemmas 3.1 and 7.2. The n D 1 case of Lemma 7.2
corresponds to Flapan [2, Lemma 2], and Lemma 3.1 is a mod two version of this
result that is similar to Flapan et al [4, Lemma 1].

(a) (b) (c) (d)

X

X1

X2

Y1

Y1

Y2

Y2

v1

v2

w1

w2

Figure 1: Illustrating the proof of Lemma 3.1 (the four-to-three lemma for
mod two linking number) in the case nD 1 .

Suppose that the 4–component link Y1 [X1 [X2 [ Y2 in Figure 1(a) is part of an
embedding of KN in R3 , and that we wish to replace the cycles X1 and X2 with a
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(a) (b) (c)

X

X1

X2

Y1 Y1

Y2 Y2

v1

v2

v3

v4

w1

w2

w3

w4

Figure 2: Illustrating the proof of Flapan’s [2, Lemma 2], the nD 1 case of
our Lemma 7.2 (the four-to-three lemma for integral linking number).

single cycle X linking both Y1 and Y2 mod two. We choose vertices v1; v2 on X1

and w1; w2 on X2 , and consider the edges .vi ; wi/ as in Figure 1(b). Together with
X1 and X2 these give us a collection of cycles (Figure 1(c)) whose linking numbers
with each of Y1 and Y2 sum to zero mod two; and taking the connected sum of a
suitably chosen subset as in Figure 1(d) we get the desired cycle X .

Working now with integer coefficients, consider the link Y1[X1[X2[Y2 in Figure 2(a).
Our goal here is to replace this with a three component link L[Z [W such that
`k.L;Z/ is nonzero, and `k.L;W / is at least as large as `k.X2;Y2/ in absolute
value. We again do this by constructing a series of cycles that sum to zero with X1 and
X2 , but now in order to ensure we can find one linking Y2 with the correct sign it is
necessary to have at least q > j`k.X2;Y2/j such cycles. This is achieved by choosing
vertices v1; : : : ; vq on X1 and w1; : : : ; wq on X2 , such v1; : : : ; vq are encountered
in increasing order following the orientation of X1 , and w1; : : : ; wq are encountered
in decreasing order following the orientation of X2 . The needed cycles are formed by
connecting X1 and X2 using the edges .v1; w1/; : : : ; .vq; wq/, as in Figure 2(b), and
a suitable connected sum (Figure 2(c)) then gives us the desired 3–component link.

To prove analogous results in higher dimensions we will regard the intervals Œv1; vq �

and Œw1; wq � as identically triangulated discs D1 �X1 and D2 �X2 , and the corre-
spondence vi 7! wi as an orientation reversing simplicial isomorphism �W D1!D2

mapping one triangulation to the other. Given this data we then construct the collection
of edges .vi ; wi/, which we regard as a complex C homeomorphic to D.0/

1
� I real-

ising the restriction of � to the zero skeleton of D1 . The pair of edges .vi ; wi/ and
.viC1; wiC1/ may then be seen as a copy of S0 � I , which we cap with the intervals
Œvi ; viC1�; Œwi ; wiC1� to create a copy of S1 .

Triangulations of an interval have very simple combinatorics, and in Figure 2(b) it
didn’t matter that there was an additional vertex between w2 and w3 . Thus, Flapan’s
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argument only requires that each component has at least q vertices. In order to use
similar techniques when n� 2 we will impose the more stringent requirement that our
link components contain identically triangulated copies of Dn . Additional work will
then be required to ensure that our links contain such discs.

2.2 Cylinders, spheres and discs in K n
N

We now construct the needed subcomplexes of Kn
N

.

Lemma 2.1 Let .S1;D1/ and .S2;D2/ be disjoint subcomplexes of Kn
N

each home-
omorphic to .Sn;Dn/. Suppose that there is a simplicial isomorphism

�W D1 �!D2:

Let D
.n�1/
i be the .n� 1/–skeleton of Di . Then there is a subcomplex C of Kn

N
and

a homeomorphism
ˆW D

.n�1/
1

� I �! C

such that

(1) all vertices of C lie on D1[D2 ;

(2) C \Si DD
.n�1/
i for i D 1; 2;

(3) ˆ restricts to the identity on D
.n�1/
1

� f0g; and

(4) ˆD � on D
.n�1/
1

� f1g.

We note that the subcomplex C may be regarded as the mapping cylinder of the
restriction of � to the .n� 1/–skeleton.

Proof To construct C we use the subdivision of �m � I into .mC 1/–simplices
used in the proof of the homotopy invariance of singular homology (see for example
Hatcher [8, page 112]). Label the vertices of D1 arbitrarily as v0; v1; : : : ; vM , and label
the vertices of D2 as w0; w1; : : : ; wM so that wi D �.vi/. Now, for each m–simplex
ı D Œvi0

; : : : ; vim
� of D.n�1/

1
, with i0 < i1 < � � �< im , we have

ı� I Š C.ı/D

m[
jD0

Œvi0
; : : : ; vij ; wij ; : : : ; wim

�:

Since m � n� 1 each .mC 1/–simplex involved in this union is a simplex of Kn
N

,
and we obtain a subcomplex of Kn

N
homeomorphic to ı � I , meeting D1 and D2 in

ı� f0g D ı and ı� f1g D �.ı/ respectively. In addition, all vertices of C.ı/ belong
to D1[D2 .

Algebraic & Geometric Topology, Volume 13 (2013)



1588 Christopher Tuffley

Let ıl denote the simplex Œvi0
; : : : ; yvil

; : : : ; vim
� belonging to @ı , where the hat indi-

cates that vil
is omitted. An m–simplex belonging to C.ı/ is of one of several possible

types:

(1) The simplex Œvi0
; : : : ; vim

�D ı or Œwi0
; : : : ; wim

�D �.ı/.

(2) One of the simplices

Œvi0
; : : : ; yvil

; : : : ; vij ; wij ; : : : ; wim
�;

Œvi0
; : : : ; vij ; wij ; : : : ; ywil

; : : : ; wim
�;

with l fixed and j ¤ l , which together make up C.ıl/.

(3) A simplex of the form Œvi0
; : : : ; vij ; wij C1

; : : : ; wim
�, which is interior to ı� I .

Inductively, this implies that if ı0 is a simplex of ı , then C.ı0/ is a subcomplex of
C.ı/, and the diagram

ı0 � I ����! ı� I

Š

??y ??yŠ
C.ı0/ ����! C.ı/

commutes. Moreover, our construction ensures that C.ı1/ and C.ı2/ are disjoint
unless ı1 and ı2 intersect, in which case C.ı1/\C.ı2/D C.ı1\ ı2/. Thus, taking
the union of C.ı/ over all .n � 1/–simplices of D.n�1/

1
we obtain a subcomplex

C of Kn
N

homeomorphic to D.n�1/
1

� I meeting Si in D.n�1/
i for each i , and the

homeomorphism ˆ may be constructed satisfying the given conditions.

Corollary 2.2 Let .S1;D1/ and .S2;D2/ be disjoint subcomplexes of Kn
N

each
homeomorphic to .Sn;Dn/. Suppose that there is an orientation reversing simplicial
isomorphism

�W D1 �!D2;

and let �1; : : : ; �k be the n–simplices of D1 . Then there exist subcomplexes
P0;P1; : : : ;Pk of Kn

N
such that

(1) the vertices of P0;P1; : : : ;Pk all lie on S1[S2 ;

(2) Pi Š Sn for each i ;

(3) P0\Sj D Sj nDj for i D 1; 2;

(4) Pi \S1 D�i , Pi \S2 D �.�i/ for i � 1; and
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(5) as an integral chain we have

S1CS2C

kX
iD0

Pi D 0:

Remark 2.3 Condition (1) implies that if A is a subcomplex of Kn
N

disjoint from
S1[S2 , then A is disjoint from Pi for all i .

Proof We obtain the required spheres Pi using the subcomplex C and homeomorphism
ˆW D.n�1/

1
� I ! C constructed in Lemma 2.1 above. For each i D 1; : : : ; k let

Pi D�i [�.�i/[ˆ.@�i � I/;

and let
P0 D S1 nD1[S2 nD2[ˆ.@D1 � I/:

Then Lemma 2.1 ensures that each Pi is a subcomplex of Kn
N

satisfying conditions (1)–
(4) above.

To obtain (5) we must orient each sphere Pi . For i � 1 we orient Pi so that �i receives
the opposite orientation from Pi as it does from S1 , and we orient P0 analogously
using the disc S1 nD1 . This ensures that �]�i receives opposite orientations from
S2 and Pi also, since � is orientation reversing on �i with respect to both S2

and Pi (on Pi Š Sn it is induced by reflection in an equatorial Sn�1 ). Similar
considerations apply to P0 , as � extends to a (not necessarily simplicial) orientation
reversing homeomorphism .S1;S1 nD1/! .S2;S2 nD2/.

It remains to consider the subcomplexes C.ı/, for ı an .n� 1/–simplex of D1 . Each
such simplex belongs to two n–simplices of S1 , and receives opposite orientations from
each (since @S1 D 0/; consequently, each subcomplex C.ı/ belongs to two spheres
Pi and Pj , and is also oppositely oriented by each. This completes the proof.

Remark 2.4 The n–spheres Pi of Corollary 2.2 may be expressed explicitly as chains
as follows. We assume throughout that all simplices of D1 are written with the labels
on their vertices in increasing order.

For each m–simplex ı D Œvi0
; : : : ; vim

� of D
.n�1/
1

define

P.ı/D
mX

jD0

.�1/j Œvi0
; : : : ; vij ; wij ; : : : ; wim

�:

Let "i 2 f˙1g be the coefficient of �i in the chain S1 , and set

Pi D�"i.�i CP.@�i/��].�i//
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for i � 1, and
P0 D .D1�S1/C .D2�S2/CP@D1:

We verify below that @Pi D 0, and that S1CS2C
P

i Pi D 0.

Suitably adapted, the calculation in Hatcher [8, page 112] shows that

@P D �]� id]�P@;

so for i � 1 we have

�"i@Pi D @�i C @P@�i � @�]�i

D @�i C�]@�i � id] @�i �P@2�i ��]@�i D 0:

Similarly

@P0 D @.D1�S1/C @.D2�S2/C @P@D1

D @D1C @D2C�]@D1� id] @D1�P@2D1

D @D1C @D2� @D2� @D1 .�]@D1 D @�]D1 D�@D2/

D 0;

as required. Summing, we have D1 D
Pk

iD1 "i�i , so

kX
iD1

Pk D�

kX
iD1

"i�i �P@
kX

iD1

"i�i C�]

kX
iD1

"i�i D�D1�P@D1C�]D1

D�D1�P@D1�D2

D�P0�S1�S2;

and it follows that S1CS2C
Pk

iD0 Pi D 0.

2.3 connected sums of several spheres

Our next technical lemma takes several spheres S1; : : : ;Sk and an additional sphere
S0 , and constructs a sphere S meeting each of S1; : : : ;Sk in a single n–simplex. The
case n D 1, k D 3 is illustrated in Figure 3. This lemma is an adaption to higher
dimensions of a construction used by Flapan et al [3] in the case nD 1. In that case the
additional sphere S0 is not needed, as it is only necessary to choose edges joining Si to
SiC1 and Sk to S1 . This depends on the fact that the cylinder S0�I is disconnected,
and our additional sphere S0 is necessary for n� 2, when Sn�1 � I is connected.

Lemma 2.5 Let S0;S1; : : : ;Sk be disjoint subcomplexes of Kn
N

each homeomorphic
to Sn , and suppose that S0 has at least k n–simplices. Then there is a subcomplex S
of Kn

N
such that:
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(1) The vertices of S all lie on S0[ � � � [Sk .

(2) S is homeomorphic to Sn .

(3) For i D 1; : : : ; k there is an n–simplex ıi of Si such that S \Si D ıi .

Moreover, if each sphere Si is oriented, then S may be chosen and oriented such that
ıi receives opposite orientations from S and from Si .

S0 S

S1 S1

S2 S2

S3 S3

ı1 ı2

ı3

Figure 3: Illustrating Lemma 2.5 in the case nD 1 , k D 3 . The sphere S0 is
used to construct a sphere S meeting Si in a single n–simplex ıi for i D

1; 2; 3 .

Proof We will assume that the Si are oriented. Choose an n–simplex ıi belonging
to Si for each i � 1, distinct n–simplices ı0i belonging to S0 for i D 1; : : : ; k , and
orientation reversing simplicial isomorphisms �i W ıi ! ı0i . Applying Corollary 2.2 to
the pairs .Si ; ıi/ and .S0; ı

0
i/ we obtain a sphere Qi with all its vertices on Si [S0 ,

and such that Qi meets Si in ıi and S0 in ı0i . Note that this implies Qi\Qj D ı
0
i\ı

0
j .

We set T0 D S0 , and for i D 1; : : : ; k we inductively define Ti to be the complex
obtained from Ti�1 and Qi by omitting the interior of the disc ı0i . Then at each stage
Ti is an n–sphere, because it is the result of gluing two discs along their common
boundary @ı0i , and setting S D Tk we obtain the desired subcomplex.

To conclude this section we establish a bound on the number of vertices required to
construct an n–sphere with a specified number of n–simplices.

Lemma 2.6 Given ` 2N there is a triangulation of Sn with nC `C 1 vertices and
`nC 2 n–simplices.

Proof We construct the triangulation from a suitable triangulation of DnC1 with `
.nC1/–simplices. For i D 1; : : : ; ` let �i be an .nC1/–simplex, and choose distinct
n–simplices ıi , �i belonging to �i . Choose a simplicial isomorphism �i W ıi! �iC1
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for each i D 1; : : : ; `� 1, and let D be the .nC 1/–disc that results from gluing the
�i according to the �i . We claim that S D @D is the required triangulated n–sphere.

The union �1[ � � � [�` has a total of `.nC 2/ n–simplices, of which 2.`� 1/ are
identified in pairs to form D . The n–simplices involved in the identifications lie in the
interior of D , and the rest on the boundary, so S has `.nC 2/� 2.`� 1/D `nC 2

n–simplices, as claimed. Similarly, each gluing identifies 2.nC 1/ vertices in pairs,
leaving a total of `.nC 2/� .nC 1/.`� 1/D `CnC 1; alternately, we may carry the
gluings out sequentially, and we see that we start with nC 2 vertices, and each gluing
adds just one, for a total of .nC 2/C .`� 1/D nC `C 1.

To complete the proof we show that the vertices of D all lie on S . For nD 1 a circle
with `C 2 edges necessarily has `C 2 vertices, by Euler characteristic; while for
n� 2 each vertex of �i belongs to at least three n–simplices, and so to at least one
n–simplex belonging to @D after the identifications.

Corollary 2.7 If k 2 N and N � nCdk=neC 1 then Kn
N

contains a subcomplex
S Š Sn with at least kC 2 n–simplices.

Proof Set `D dk=ne. Then ` 2N and `� k=n, so the construction of Lemma 2.6
yields an n–sphere S in Kn

N
with at least kC 2 n–simplices.

3 Many-component links

We now prove Theorems 1.1 and 1.2, thereby showing that embeddings of sufficiently
large complete complexes necessarily contain nonsplit links with many components.

3.1 Necklaces and chains

In this section we establish Theorem 1.1. The key step is the following lemma, which
plays the role of Flapan et al [4, Lemma 1].

Lemma 3.1 (The four-to-three lemma for mod two linking number) Let Y1[X1[

X2 [ Y2 be a 4–component link contained in some embedding of Kn
N

in R2nC1 ,
satisfying

`k2.X1;Y1/D `k2.X2;Y2/D 1:

Then there is an n–sphere X in Kn
N

, all of whose vertices lie on X1[X2 , such that

`k2.Y1;X /D `k2.X;Y2/D 1:
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Proof If `k2.X1;Y2/D 1 then we may simply let X DX1 , and if `k2.X2;Y1/D 1

then we may simply let X DX2 . So suppose that

`k2.X1;Y2/D `k2.X2;Y1/D 0:

Choose n–simplices ı1 , ı2 belonging to X1 , X2 respectively, and apply Corollary 2.2
to the pairs .X1; ı1/, .X2; ı2/ to obtain spheres P0 , P1 satisfying

X1CX2CP0CP1 D 0:

In the homology groups Hn.R2nC1�Yi IZ=2Z/ we have

ŒX1�C ŒX2�C ŒP0�C ŒP1�D 0;

and since ŒX1�C ŒX2�D 1 in each group we have also ŒP0�C ŒP1�D 1 in each group.
Hence, for each i , precisely one of ŒP0�, ŒP1� must equal 1 in Hn.R2nC1�Yi IZ=2Z/.

If ŒP1� takes the same value in both groups then we are done by setting X D P0

if ŒP1� D 0 in both groups, and X D P1 if ŒP1� D 1. Otherwise, without loss
of generality suppose that ŒP1� is zero in Hn.R2nC1 � Y1IZ=2Z/ and nonzero in
Hn.R2nC1 � Y2IZ=2Z/, and let X be the n–sphere obtained from X1 and P1 by
omitting the interior of the simplex ı1 . Then

ŒX �D ŒX1�C ŒP1�D

�
ŒX1�D 1 in Hn.R2nC1�Y1IZ=2Z/;

ŒP1�D 1 in Hn.R2nC1�Y2IZ=2Z/;

and the result follows.

We now prove Theorem 1.1, using the above lemma.

Proof of Theorem 1.1 The proof of part (a) is by induction on r , with the base case
r D 2 given by Taniyama [19], and the inductive step following from Lemma 3.1. Given
an embedding of Kn

.2nC4/r in R2nC1 , choose disjoint copies of Kn
.2nC4/.r�1/ and

Kn
2nC4 contained in the embedding. By the inductive hypothesis the Kn

.2nC4/.r�1/ con-
tains an r –component link L1[L2[� � �[Lr satisfying Equation (1) for iD1; : : : ; r�1,
and the Kn

2nC4 contains a two component link J [ K such that `k2.J;K/ D 1.
Applying Lemma 3.1 to the (ordered) link Lr�1[Lr [J [K we obtain an n–sphere
X with all its vertices on Lr [J such that

`k2.Lr�1;X /D `k2.X;K/D 1:

The link L1[ � � � [Lr�1[X [K is then the desired r –component link.

To prove (b) we apply Lemma 3.1 to suitably chosen components of an .r C 1/–
component link as given by part (a). Given an embedding of Kn

.2nC4/r in R2nC1 ,
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there is an .rC1/–component link L1[L2[� � �[Lr [LrC1 satisfying Equation (1)
for i D 1; : : : ; r . We apply Lemma 3.1 to the (ordered) link Lr [LrC1[L1[L2 to
obtain an n–sphere X , with all its vertices on LrC1[L1 , and satisfying

`k2.Lr ;X /D `k2.X;L2/D 1:

The link L2[ � � � [Lr [X is then the desired r –component link.

3.2 Generalised keyrings

We prove Theorem 1.2 by extending Flapan et al [3, Lemma 1] to higher dimensions
in the following form.

Lemma 3.2 Let Kn
N

be embedded in R2nC1 such that it contains a link

L[J1[ � � � [Jm2 [X1[ � � � [Xm2 ;

where L has at least m2 n–simplices, and `k2.Ji ;Xi/D 1 for all i . Then there is an
n–sphere Z in Kn

N
with all its vertices on L[J1[� � �[Jm2 , and an index set I with

jI j �m=2, such that `k2.Z;Xj /D 1 for all j 2 I .

Proof The argument is that of Flapan et al [3], with the addition of the component L

needed to create the analogue of their cycle C connecting the Ji .

Since L has at least m2 simplices we may apply Lemma 2.5 to the (ordered) link
L[J1[� � �[Jm2 , obtaining an n–sphere S with all its vertices on L[J1[� � �[Jm2

and meeting each sphere Ji in an n–simplex ıi . If at least m=2 of the mod two linking
numbers `k2.S;Xi/ are nonzero then we are done by setting Z D S , so we assume in
what follows that fewer than m=2 of these mod two linking numbers are nonzero.

Following Flapan et al we define M to be the m2 �m2 matrix over Z=2Z with
ij–entry Mij D `k2.Ji ;Xj /. Let ri be the i th row of M . Then MiiD1 for all i , and
Flapan et al use this to show that there are indices i1; : : : ; ik such that

V D ri1
C � � �C rik

has at least m entries that are equal to 1. Let Z be the n–sphere obtained from S and
Ji1
; : : : ;Jik

by omitting the interiors of the simplices ıi1
; : : : ; ıik

. We claim that Z

is the required n–sphere.

Indeed, for j D 1; : : : ;m2 we have

(2) `k2.Z;Xj /D `k2.S;Xj /C

kX
`D1

`k2.Ji`
;Xj /D `k2.S;Xj /CVj ;
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where Vj D
Pk
`D1`k2.Ji`

;Xj / is the j th entry of V . By construction at least m

of the Vj are nonzero, and by assumption fewer than m=2 of the `k2.S;Xj / are
nonzero. Hence there are at least m�m=2Dm=2 indices j for which Vj D 1 while
`k2.S;Xj / D 0. Consequently, the set I D f1 � j � m2 j `k2.S;Xj / ¤ Vj g has
at least m=2 elements. But `k2.Z;Xj / D 1 if and only if j 2 I , by (2), so we are
done.

We now obtain Theorem 1.2 as a corollary to Lemma 3.2 and Corollary 2.7.

Proof of Theorem 1.2 Recall that

�n.r/D 4r2.2nC 4/C nC

�
4r2� 2

n

�
C 1;

and for ease of notation let ` D d.4r2� 2/=ne. Given an embedding of Kn
�n.r/

in
R2nC1 , choose 4r2 disjoint copies of Kn

2nC4 contained in the embedding, together
with a copy of Kn

nC`C1 . By Taniyama [19] the i th copy of Kn
2nC4 contains a 2–

component link Ji [Xi such that `k2.Ji ;Xi/ D 1, and by Corollary 2.7 the copy
of Kn

nC`C1 contains an n–sphere L with at least 4r2 n–simplices. The result now
follows by applying Lemma 3.2 with mD 2r to the link

L[J1[ � � � [J4r2 [X1[ � � � [X4r2 :

4 Linking number in 2–component links

We now prove Theorems 1.3 and 1.5, concerning the linking number in a 2–component
link. To prove each result we start with a suitable generalised keyring, and combine
some of the “keys” to obtain the second component of the desired link.

4.1 Bounding the absolute value of the linking number from below

Proof of Theorem 1.3 We use a technique of Flapan et al from the proof of their [3,
Lemma 2]. For simplicity of notation let `D d.2��1/=ne, and choose disjoint copies
of Kn

�n.2��1/ and Kn
nC`C1 contained in Kn

N
. Given an embedding of Kn

N
in R2nC1 ,

the copy of Kn
�n.2��1/ contains a generalised keyring R [L1 [ � � � [L2��1 with

2�� 1 keys, by Theorem 1.2, while by Corollary 2.7 the copy of Kn
nC`C1 contains an

n–sphere S with at least 2�C 1 n–simplices.

Orient S arbitrarily, and orient the Li such that `k.R;Li/ > 0 for each i . Applying
Lemma 2.5 to the oriented link LD S [L1[ � � � [L2��1 we obtain an n–sphere S
with all its vertices on L and meeting each Li in a single n–simplex ıi , which receives
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opposite orientations from S and from Li . Set S0 D S , and for i D 1; : : : ; 2�� 1

let Si be the complex obtained from Si�1 and Li by omitting the interior of the disc
ıi . Then Si is an n–sphere, because it is the result of gluing two discs along their
common boundary @ıi , and as a chain we have

(3) Si D S0C

iX
jD1

Lj

for i � 1.

We now consider the linking numbers of the Si with R, by considering Equation (3)
in the group Hn.R2nC1�RIZ/. This gives

`k.R;Si/D ŒSi �D ŒS0�C

iX
jD1

ŒLj �D `k.R;S0/C

iX
jD1

`k.R;Lj /:

As in the proof of [3, Lemma 2] the sequence .`k.R;Si//
2��1
iD0

is strictly increasing,
because the linking numbers `k.R;Li/ are all positive. This sequence must therefore
take 2� distinct values, and the result now follows from the fact that there are only
2�� 1 integers k such that jkj< �.

4.2 The linking number modulo a prime

To prove Theorem 1.5 we will use the following lemma on sums of subsequences of
finite integer sequences, considered modulo a prime p . Given an integer sequence
.`1; : : : ; `m/ we will say that x 2Z is a subsequence sum of .`1; : : : ; `m/ if there is a
subset A� f1; : : : ;mg such that X

i2A

`i D x:

We allow the possibility that A is empty, which implies that 0 is always a subsequence
sum. Then:

Lemma 4.1 Let p 2 N be prime, and let .`1; : : : ; p̀�1/ be a sequence of integers
such that no `i is divisible by p . For any s 2 Z there is a subsequence sum x of
.`1; : : : ; p̀�1/ such that x � s mod p .

We note that the sequence length p� 1 is best possible, because a sequence of length
p�2 that is constant mod p realises exactly p�1 mod p residue classes as subsequence
sums.
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Proof For j D 1; : : : ;p� 1 let †j be the set of mod p residue classes that may be
realised by a subsequence sum of .`1; : : : ; j̀ /. Then †1 D

˚
0; `1

	
, and our goal is to

show that †p�1D
˚
0; 1; : : : ;p� 1

	
. We will do this by showing that j†jC1j� j†j jC1

whenever †j ¤
˚
0; 1; : : : ;p� 1

	
. Since †j �†jC1 it suffices to show that there is

an element of †jC1 that is not an element of †j .

Suppose then that †j ¤
˚
0; 1; : : : ;p� 1

	
, and consider multiples of j̀C1 mod p .

Since j̀C1 6� 0 mod p we have˚
k j̀C1 j 0� k � p� 1

	
D
˚
0; 1; : : : ;p� 1

	
©†j �

˚
0
	
;

so there is some 1� k �p�1 such that k j̀C1 62†j . Consider the least such k . Then
there is a (possibly empty, if k D 1) subset A of f1; : : : ; j g such thatX

i2A

`i � .k � 1/ j̀C1 mod p;

and setting B DA[fj C 1g we haveX
i2B

`i � k j̀C1 mod p:

Hence k j̀C1 belongs to †jC1 but not †j , and we are done.

Proof of Theorem 1.5 The technique is similar to that used in the previous section to
prove Theorem 1.3. Suppose that q is prime, and that N satisfies the inequality

N � �n.2q� 1/C nC

�
2q� 3

n

�
C 1

given in the statement of the theorem. By Theorem 1.2 and Corollary 2.7, N is so
large that every embedding of Kn

N
in R2nC1 contains a generalised keyring

R[L1[ � � � [L2q�1

with 2q�1 keys, and an additional disjoint sphere S with at least 2q�1 n–simplices.
Orient the link S [L1[ � � � [L2q�1 as in the proof of Theorem 1.3, and let S be the
n–sphere that results from applying Lemma 2.5 to this link.

Consider now the linking numbers `k.R;S/ and `k.R;Li/ mod q . If `k.R;Li/� 0

for some i then we are done, so we may assume that all such linking numbers are
nonzero mod q . Then by Lemma 4.1 there is a subset A� f1; : : : ; q� 1g such thatX

i2A

ŒLi ���ŒS � mod q;
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and a subset B � fqC 1; : : : ; 2q� 1g such thatX
i2B

ŒLi ���ŒLq � mod q:

Set C D B [fqg, to obtain a nonempty subset of fq; : : : ; 2q� 1g such thatX
i2C

ŒLi �� 0 mod q:

We now consider the chains

S1 D SC
X
i2A

Li and S2 D S1C

X
i2C

Li :

In the homology group Hn.R2nC1�RIZ/ we have

ŒS1�� ŒS2�� 0 mod q;

and moreover ŒS1� ¤ ŒS2�, because the linking numbers ŒLi � are all positive and C

is nonempty. It follows that at least one of ŒS1� and ŒS2� is nonzero, and since both
chains represent n–spheres we are done.

We note that the argument used above does require q to be prime. For q composite, if
`k.R;S/ is coprime to q and all linking numbers `k.R;Li/ are equal to the same
nontrivial divisor d of q , then no sphere formed from S and the Li as above will link
R with linking number divisible by q . We will therefore use a different strategy in
Section 6 to prove the corresponding result when q may be composite.

5 Technical preliminaries II: Triangulations of an
M–simplex

We now establish some additional technical preliminaries needed to prove Theorem 1.4.
For this theorem we will need to work with links containing identically triangulated
discs Dn with many n–simplices, and to this end we will construct a triangulation of
an M–simplex into many M–simplices.

5.1 The triangulations

For ` 2N let �M
`

be the M–simplex

�D Œ`e1; `e2; : : : ; `eMC1��RMC1;

where e1; e2; : : : ; eMC1 are the standard basis vectors. Then:
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Lemma 5.1 The family of planes

(4)
� jX

kDi

xk 2 Z

ˇ̌̌̌
1� i � j �M

�
subdivides �M

`
into `M M–simplices. The symmetry group of this triangulation is

the dihedral group DMC1 of order 2.M C 1/, with the action given by permutations
of the basis vectors ei that preserve or reverse the cyclic ordering e1; e2; : : : ; eMC1 .

We will call an M–simplex triangulated as in Lemma 5.1 a triangulated M–simplex of
side length `, and denote it by �M .`/.

Remark 5.2 The triangulation �2.`/ is simply the standard division of an equilateral
triangle of side length ` into `2 equilateral triangles of side length 1. In this case
all simplices of the triangulation are isometric. However, for M � 3 the simplices
of the triangulation may no longer all be isometric. This may be seen in the case
�3.2/, where four of the 3–simplices are regular tetrahedra, and the remaining four
are obtained by cutting an octahedron along two of the three planes of symmetry that
pass through four vertices.

Remark 5.3 The .M C1/–cycle .1 2 : : : M C1/ in DMC1 reverses the orientation
of �M

l
if and only if M is odd, and when M is even the order two elements of

DMC1 reverse orientation if and only if M � 2 mod 4. So �M .`/ has an orientation
reversing symmetry if and only if M 6� 0 mod 4.

Proof We proceed by subdividing the simplex

†M
` D fx 2RM

j 0� x1 � x2 � � � � � xM � `g

into `M simplices, and then pull this subdivision back to �M
l

. The chief reason for
working with �M

`
rather than †M

`
is that the symmetries of the triangulation are more

readily seen.

We first observe that for each permutation � 2 SM , the set

ı� D fx 2RM
j 0� x�.1/ � x�.2/ � � � � � x�.M / � 1g

is an M–simplex, and that the collection of such simplices gives a subdivision of IM

into M !–simplices. These simplices are defined by the family of planes

fxi D 0g[ fxi D 1g[ fxj �xi D 0g;
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and translating these according to ZM �RM we see that the family

(5) fxi 2 Z j 1� i �M g[ fxj �xi 2 Z j 1� i < j �M g

gives a subdivision of all of RM into isometric simplices. The planes bounding †M
`

belong to this family, and it follows that the subdivision of RM restricts to a subdivision
of †M

`
. This subdivision must have `M simplices, on purely volumetric grounds.

We now pull this triangulation back to �M
`

via the linear map that sends the vertex
ei of �M

`
to the vertex ei C � � � C eM of †M

`
for i �M , and the vertex eMC1 to

the vertex 0. Let f�ig be the dual basis to feig. Then �i pulls back to �1C � � �C�i ,
and we see that the family (5) pulls back to the family (4). This linear map induces an
affine homeomorphism between †M

`
and �M

`
, and so these planes give us the desired

triangulation.

To see that the symmetry group is DMC1 , we observe that on the plane
P

xi D `

containing �M
`

, the conditions

jX
kDi

xk 2 Z and
i�1X
kD1

xk C

MC1X
kDjC1

xk 2 Z

are equivalent. Thus, each family of planes defining the subdivision may be viewed as a
division of a necklace of M C1 beads into two connected components, and conversely.
Symmetries of the triangulation therefore correspond to precisely those permutations
of the beads that preserve adjacency, giving us DMC1 .

Construction 5.4 For M � n C 1 we define Kn
M .`/ to be the subcomplex of

�M�1.`/ consisting of precisely those simplices lying entirely within the n–skeleton
.�M�1

`
/.n/ Š Kn

M
. Each n–simplex of .�M�1

`
/.n/ lies in an n–dimensional coor-

dinate plane, and is isometric to �n
`

; intersecting the family of planes (4) with this
subspace subdivides this simplex into a �n.`/. Thus Kn

M .`/ is a space homeomorphic
to Kn

M
, with each n–simplex of Kn

M
mapping onto a copy of �n.`/. As such we

will call it a triangulated complete n–complex on M vertices of side length `.

5.2 Counting the vertices

The number of vertices in a �k.`/ is equal to the number of nonnegative integer
solutions to the equation

x1Cx2C � � �CxkC1 D `;

and the number of vertices in the interior of a �k.`/ is the number of positive integer
solutions to this equation. These numbers are

�
kC`

k

�
and

�
`�1

k

�
D
�
`�1
`�k�1

�
respectively.
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Counting the vertices of a �M .`/ according to the open simplex of �M
`

that they
belong to we find that it has

(6)
MX

kD0

�
M C 1

kC 1

��
`� 1

`� k � 1

�
D

�
`CM

M

�
vertices (the two sides are the coefficient of x` in .1Cx/MC1.1Cx/`�1D.1Cx/`CM ).

Of particular interest is the number of vertices belonging to Kn
2nC4.`/, as this complex

is homeomorphic to Kn
2nC4 , and may be used to construct links in which each compo-

nent has many n–simplices. Setting M D 2nC 3 in Equation (6), and truncating the
sum at k D n, we therefore find that Kn

2nC4.`/ has a total of

(7) V .n; `/D

nX
kD0

�
2nC 4

kC 1

��
`� 1

k

�
vertices.

For a more tractable bound, observe that the triangulated simplex �n.`/ has `n n–
simplices, each with nC1 vertices, and so has at most .nC1/`n vertices. The complex
Kn

2nC4.`/ contains
�
2nC4
nC1

�
such triangulated simplices, and therefore

V .n; `/� .nC 1/

�
2nC 4

nC 1

�
`n

(this also follows from the inequalities�
2nC 4

kC 1

�
�

�
2nC 4

nC 1

�
and

�
`� 1

k

�
� `n

for k � n). Stirling’s formula m!�
p

2�m.m=e/m leads to the asymptotic formula�
2m
m

�
� 4m=

p
�m, and hence

.nC 1/

�
2nC 4

nC 1

�
D
.nC 1/.nC 2/

nC 3

�
2.nC 2/

nC 2

�
�

r
n

�
4nC2

D C
p

n4n:

Consequently, asymptotically V .n; `/ grows no faster than C
p

n.4`/n .

6 Linking number mod q

The goal of this section is to prove Theorem 1.4, which we recall states that given
q 2 N , embeddings of sufficiently large complete n–complexes in R2nC1 contain
2–component links with linking number a nonzero multiple of q . Before proving this
theorem we need one more technical lemma:
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Lemma 6.1 Let R be a positive integer. For ` sufficiently large �n.`/ contains a
triangulated disc D with r �R n–simplices �1; : : : ; �r , which may be labelled such
that

Dij D

j[
kDi

�k

is a disc for any 1 � i � j � r . The conclusion holds for ` � R, so the side length
required grows at most linearly with R.

Proof Write †n.`/ for the n–simplex †n
`

subdivided by the family of planes given
by Equation (5). Then †n.`/ and �n.`/ are simplicially isomorphic, so it suffices
to construct a suitable disc D in †n.`/. We will construct D as the union of the
n–simplices of †n.`/ that meet a suitably chosen line L in Rn . The case nD 2, `D 4

is illustrated in Figure 4.

x1

x2

L

Figure 4: Illustrating the construction of the disc D of Lemma 6.1 in the case
nD 2 , `D 4 . A line L with irrational slope ˛ > 1 meets each line defining
the triangulation exactly once, and except at 0 never passes through the
intersection of two such lines. We take D to be the union of the 2–simplices
intersecting L (shaded grey). The disc D contains at least ` n–simplices
(here at least 4), since it must include at least one from each horizontal slice.

Since R is infinite-dimensional as a vector space over Q, we may choose

0< ˛1 < � � �< ˛n D 1
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such that f˛1; : : : ; ˛ng is linearly independent over Q. Write ˛D .˛1; : : : ; ˛n/, and
let L be the line LD ft˛ j t 2Rg. Each plane in the family (5) may be written in the
form cT xD u, where c 2Zn and u 2Z, and the linear independence of f˛1; : : : ; ˛ng

over Q may be used to show that

(1) L meets each plane in the family (5) transversely; and

(2) each point of L other than 0 lies on at most one plane in this family.

Together these facts imply that, with the exception of simplices containing 0, L can
meet only n– and .n� 1/–simplices of †n.`/, and that if it intersects an n–simplex
at all it must intersect it in its interior.

Observe that the line segment ft˛ j 0� t � `g is contained in †n
`

, and cuts each plane
xn D k for k D 1; : : : ; `. Consequently L must pass through at least one n–simplex
of †n.`/ lying in the slice fx j k � 1 � xn � kg for each 1 � k � `, and so passes
through at least ` n–simplices of †n.`/. Suppose that L passes through exactly r

n–simplices of †n.`/, and label them consecutively �1; : : : ; �r in the order in which
they are encountered when tracing L in the direction ˛. We claim that

Dij D

j[
kDi

�k

is a disc for any 1� i � j � `, from which the result follows.

Since the open ray ft˛ j t > 0g only meets n– and .n � 1/–simplices of †n.`/,
consecutive n–simplices �k and �kC1 must intersect in an .n � 1/–simplex. In
addition, for d � 2 the simplices �k and �kCd are separated by at least two planes
from the family (5), and so meet in at most an .n� 2/–simplex. Since Dii D �i is
a disc, and Di;kC1 is the result of gluing Dik and �kC1 along the .n� 1/–simplex
�k \�kC1 , it follows by induction that Dij is a disc, as claimed.

We now prove Theorem 1.4. The argument again proceeds by converting a suitably
large generalised keyring to a 2–component link, but now we require additionally that
the keys of the keyring are copies of Kn

nC2.q/. Our underlying approach is similar to
that of Fleming [5, Theorem 3.1], but differs from his in the size of the keys and the
method used to combine them to form the second component of the link.

Proof of Theorem 1.4 We show that the result holds for

N D 4q2V .n; q/C nC

�
4q2� 2

n

�
C 1;
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where V .n; q/ is given by (7) and equals the number of vertices belonging to Kn
2nC4.q/.

Since V .n; q/� .nC 1/
�
2nC4
nC1

�
qn , we conclude that N is no greater than

C.nC 1/

�
2nC 4

nC 1

�
qnC2

for some constant C .

Given an embedding of Kn
N

in R2nC1 , we let C1; : : : ;C4q2 be disjoint copies of
Kn

2nC4.q/ contained in Kn
N

, and use the remaining nCd.4q2 � 2/=neC 1 vertices
and Corollary 2.7 to construct an n–sphere L with at least 4q2 n–simplices. The
complex Ci is homeomorphic to Kn

2nC4 , and so by Taniyama [19] contains a two
component link Ji [Xi such that `k.Ji ;Xi/¤ 0, and each component is a copy of
Kn

nC2.q/. Applying Lemma 3.2 to the link L[J1[ � � � [J4q2 [X1[ � � � [X4q2 we
obtain a generalised keyring R[L1[� � �[Lq , where `k.R;Li/¤ 0 for each i , and
each Li is a copy of Kn

nC2.q/. We will use R as one component of our link, and
we will seek to construct the second as a connected sum of some of the Li . In what
follows we therefore consider homology classes in Hn.R2nC1�RIZ/.

Orient the Li such that `k.R;Li/ D ŒLi � is positive for each i , and for 1 � k � q

consider the values of the sums
Pk

iD1ŒLi � mod q . Since there are q sums and q

possible values modulo q , by the pigeonhole principle there must either be a sum that
is zero mod q , or else two sums that are equal modulo q . In either case we obtain
integers a; b satisfying 1� a� b � q such that

bX
iDa

ŒLi �� 0 mod q:

From now on we restrict our attention to the spheres La; : : : ;Lb .

Our construction now departs from that of Fleming. Each component Li is a copy
of Kn

nC2.q/, and as such has nC 2 faces which are triangulated n–simplices of side
length q . We claim that it is possible to choose distinct faces ıi , ı0i of Li , each a
copy of �n.q/, and orientation reversing simplicial isomorphisms  i W ıi! ı0

iC1
. For

n 6� 0 mod 4 this may be done by choosing distinct faces ıi , ı0i of Li arbitrarily,
since in this case �n.q/ has both orientation preserving and reversing symmetries, by
Remark 5.3. However, for n� 0 mod 4 we must choose them inductively, beginning
with ıa and using the fact that �n.q/ has at least one face of each orientation to choose
ı0

iC1
based on the choice of ıi . The face ıiC1 of LiC1 may then be chosen arbitrarily

from those left.
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By Lemma 6.1 each face ıi Š �n.q/ contains a triangulated disc Di with r � q

n–simplices �i1; : : : ; �ir , such that

.Di/cd D

d[
kDc

�ik

is a disc for each 1�c�d�r . Let �i be the restriction of  i to Di , let D0
iC1
D�i.Di/,

and for 1� j � r let Pij be the oriented sphere satisfying

Pij\Li D�ij; Pij\LiC1 D �i.�ij/

that results from applying Corollary 2.2 to the pairs .Li ;Di/ and .LiC1;D
0
iC1

/.

For 1 � k � r we now consider the sums
Pk

jD1ŒPij� modulo q . Since there are
q possible values mod q and at least q sums we may again choose integers ci ; di

satisfying 1� ci � di � r such that

diX
jDci

ŒPij�� 0 mod q:

Let QiD
Pdi

jDci
Pij . Then Qi represents an n–sphere with all its vertices on Li[LiC1

and satisfying

Qi \Li D .Di/ci di
; Qi \LiC1 D �i..Di/ci di

/; `k.R;Qi/� 0 mod q:

If `k.R;Qi/ ¤ 0 for some i then we are done by setting S D Qi , so we may
assume that in fact `k.R;Qi/ D 0 for all i . In that case we let S be the complex
obtained from La; : : : ;Lb and Qa; : : : ;Qb�1 by omitting the interiors of the discs
Qa\La; : : : ;Qb�1\Lb�1 and Qa\LaC1; : : : ;Qb�1\Lb . Then S is a connected
sum of n–spheres, hence an n–sphere, and as a chain we have

S D

bX
iDa

Li C

b�1X
iDa

Qi :

It follows that

ŒS �D

bX
iDa

ŒLi �C

b�1X
iDa

ŒQi �D

bX
iDa

ŒLi � > 0;

and since also
Pb

iDaŒLi �� 0 mod q we are done.
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Remark 6.2 For nD 1 the auxiliary sphere S of Lemma 2.5 is not needed to construct
the keyring, reducing the number of vertices required in this case to

4q2V .1; q/D 4q2.6C 15.q� 1//D 12q2.5q� 3/;

as given after the statement of the theorem.

7 An alternate proof of Theorem 1.3

To further illustrate the applications of the triangulations of Section 5 we give a second
proof of Theorem 1.3, without the polynomial bound on the number of vertices required.
Namely, we show that given ` 2N , for N sufficiently large every embedding of Kn

N

in R2nC1 contains a 2–component link with linking number at least ` in absolute
value.

The proof we give is modelled on Flapan’s original proof [2] of the corresponding result
for nD 1. Her argument is based on combining 2–component links with “sufficiently
many vertices”, and for n� 2 we will replace this condition on the number of vertices
with a requirement that the components contain triangulated n–simplices of sufficient
side length. The side length available will typically shrink when two components are
combined (unlike the number of vertices, which typically goes up), and consequently
this change leads to a significant change in the growth of the number of vertices
required.

7.1 Splicing links

In this section we establish higher-dimensional analogues of Flapan [2, Lemmas 2
and 1]. These are Lemmas 7.2 and 7.3 below, respectively. In preparation for this we
need an additional technical lemma on triangulated n–simplices.

Lemma 7.1 Deleting an arbitrary M–simplex from a triangulated M–simplex of side
length ` leaves a triangulated M–simplex of side length at least bM `=.M C 1/c.

Proof Let ı be the deleted simplex, and let x be a point in the interior of ı . In
barycentric coordinates on �M

`
we have

x D `

MC1X
iD1

tiei ;

and since
P

tiD 1 we must have ti � 1=.MC1/ for some i . Let � be the intersection
of �M .`/ with the halfspace xi �d`=.MC1/e. Then � is a triangulated M–simplex
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contained in �M
`

, and � does not contain ı because � does not contain x . Moreover,
� has side length

`�

�
`

M C 1

�
D

�
`�

`

M C 1

�
D

�
M `

M C 1

�
;

so we are done.

Lemma 7.2 Let X1[Y1[X2[Y2 be a 4–component link contained in some embed-
ding of Kn

N
in R2nC1 . Suppose that for some orientation of X1 [Y1 [X2 [Y2 we

have `k.X1;Y1/� 1 and `k.X2;Y2/D p � 1, and suppose also that each component
contains a triangulated n–simplex of side length ` with `n � p . Then Kn

N
contains

disjoint n–spheres L, Z and W such that

(1) `k.L;Z/D p1 � 1 and `k.L;W /D p2 � p for some orientation of the link
L[Z [W ;

(2) L contains a triangulated n–simplex of side length at least bn`=.nC 1/c;

(3) Z is equal to either X1 or Y1 ;

(4) W is equal to either X2 or Y2 .

Proof As in Flapan [2], if `k.X2;Y1/ is nonzero we may set LDX2 , Z D Y1 , and
W D Y2 ; and if `k.Y2;X1/ is nonzero we may set LD Y2 , Z DX1 , and W DX2 .
So in what follows we may assume that `k.X1;Y2/D `k.X2;Y1/D 0.

Let Di be a �n.`/ contained in Xi , for each i , and let �W D1!D2 be a simplicial
isomorphism. After reversing orientation on both X1 and Y1 if necessary we may
assume that � reverses orientation, and so we may apply Corollary 2.2 to the pairs
.X1;D1/ and .X2;D2/. We label the resulting spheres P0; : : : ;P`n as in the statement
of the corollary, and following Flapan the equation

ŒX1�C ŒX2�C

`nX
jD0

ŒPj �D 0

holds in the nth homology group Hn.R2nC1�Y2IZ/.

By our assumption that `k.X1;Y2/D 0 we have ŒX1�D 0 in Hn.R2nC1�Y2IZ/, so

0< p D ŒX2�D�

`nX
jD0

ŒPj �:

The right hand side consists of `n C 1 > p terms, so for some index q we must
have ŒPq � � 0. We consider two cases, according to whether or not ŒPq � D 0 in
Hn.R2nC1�Y1IZ/.
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If ŒPq � is nonzero in Hn.R2nC1 � Y1IZ/ then we construct L from Pq and X2 by
deleting the interior of the disc X2\Pq . L is the connected sum of the n–spheres Pq

and X2 , and so is itself an n–sphere. As a chain we have LD PqCX2 , and therefore

ŒL�D ŒPq �C ŒX2�� p in Hn.R
2nC1

�Y2IZ/;

ŒL�D ŒPq �C ŒX2�D ŒPq �¤ 0 in Hn.R
2nC1

�Y1IZ/:

So we obtain the desired link by letting Z D Y1 and W D Y2 , and reorienting Z if
necessary so that `k.L;Z/ is positive.

If ŒPq � D 0 in Hn.R2nC1 � Y1IZ/ then we construct L from X1 , X2 and Pq by
deleting the interiors of the discs Xi\Pq . Clearly, L is again an n–sphere. As a chain
we have LDX1CPqCX2 , and therefore

ŒL�D ŒX1�C ŒPq �C ŒX2�D ŒPq �C ŒX2�� p in Hn.R
2nC1

�Y2IZ/;

ŒL�D ŒX1�C ŒPq �C ŒX2�D ŒX1�� 1 in Hn.R
2nC1

�Y1IZ/:

So we obtain the desired link by letting Z D Y1 and W D Y2 .

In every case above Z was equal to either X1 or Y1 , and W was equal to either X2

or Y2 . To complete the proof we must show that L contains a triangulated n–simplex
of side length at least bn`=.nC 1/c. If q D 0 then L contains D2 and we are done,
and otherwise L contains D2 n .X2\Pq/ and we are done by Lemma 7.1.

Lemma 7.3 Let L[Z [W be a 3–component link contained in some embedding
of Kn

N
in R2nC1 , and suppose that for some orientation of L [Z [W we have

`k.L;Z/Dp1> 0, `k.L;W /Dp2> 0. Suppose that Z and W contain triangulated
simplices �Z and �W of side length `, with `n � p1 C p2 , and that there is an
orientation reversing simplicial isomorphism �W �Z !�W . Then Kn

N
contains an

n–sphere J disjoint from L such that

(1) `k.L;J /� p1Cp2 for some orientation of L[J ;

(2) J contains a triangulated n–simplex of side length at least bn`=.nC 1/c.

Proof As in the proof of Lemma 7.2 we apply Corollary 2.2 to the pairs .Z; �Z / and
.W; �W /, obtaining spheres P0; : : : ;P`n . In the homology group Hn.R2nC1�LIZ/
we have the equation

ŒZ�C ŒW �C

`nX
jD0

ŒPj �D 0;
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so that

p1Cp2 D ŒZ�C ŒW �D�

`nX
jD0

ŒPj �:

As in the proof of Lemma 7.2 above, the right-hand side has `nC 1> p1Cp2 terms,
so there must be an index q such that ŒPq �� 0. Let J be the n–sphere obtained from
Z , Pq and W by deleting the interiors of the discs Pq \Z and Pq \W . Then J is
disjoint from L by Remark 2.3, and as a chain J DZCPqCW , so

ŒJ �D ŒZ�C ŒPq �C ŒW �� p1Cp2

in Hn.R2nC1 � LIZ/. Condition (2) above holds by the same argument as in
Lemma 7.2, and the result follows.

Combining Lemmas 7.2 and 7.3 we obtain the following:

Corollary 7.4 Let X1 [ Y1 [ X2 [ Y2 be a 4–component link contained in some
embedding of Kn

N
in R2nC1 . Suppose that

(1) for some orientation of X1 [ Y1 [ X2 [ Y2 we have `k.X1;Y1/ � 1 and
`k.X2;Y2/D p � 1;

(2) each component contains a triangulated n–simplex of side length ` with `n�2p ;

(3) either n 6� 0 mod 4, or X1 and Y1 each contain two such triangulated n–
simplices, one of each possible orientation.

Then Kn
N

contains disjoint n–spheres L and J , each containing a triangulated n–
simplex of side length at least bn`=.nC 1/c, and such that `k.L;J /� pC 1.

Proof The hypotheses of Lemma 7.2 are satisfied, so we obtain a three component
link L[Z[W satisfying the conditions given in that Lemma. These conditions imply
the hypotheses of Lemma 7.3, except perhaps the condition that `n � p1Cp2 and the
condition that � may be chosen to reverse orientation.

If the hypothesis `n � p1Cp2 does not hold then we must have p1Cp2 > 2p , which
implies pi � pC 1 for some i . So if this occurs we are done by simply letting J be
either Z or W , as appropriate.

To see that the condition on � is satisfied we use our third hypothesis above. If
n 6� 0 mod 4 then �n.`/ has an orientation reversing symmetry, and otherwise Z

is equal to either X1 or Y1 , and so contains a �n.`/ of each orientation. We may
therefore choose �Z and �W to have opposite orientations, and apply Lemma 7.3 to
get the desired result.
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7.2 Theorem 1.3, revisited

Using the results of the previous section we reprove Theorem 1.3 in the following
weakened form.

Theorem 7.5 Given �� 2, let �D
˙

n
p

2.�� 1/
�

, and suppose that N is sufficiently
large that Kn

N
contains disjoint copies of Kn

2nC4.2
i�/ for i D 0; : : : ; �� 2, and an

additional disjoint copy of Kn
2nC4.2

��2�/. Then every embedding of Kn
N

in R2nC1

contains a two-component link L[J such that, for some orientation of the components,
`k.L;J /� �.

Proof Given an embedding of Kn
N

in R2nC1 , let C1; : : : ;C� be disjoint subcom-
plexes of Kn

N
such that C1 is a Kn

2nC4.2
��2�/, and Ci is a Kn

2nC4.2
��i�/ for

i D 2; : : : ; �. Each Ci is homeomorphic to Kn
2nC4 , and so by Taniyama [19] contains

a two component link Si [Ti which we may orient such that `k.Si ;Ti/� 1. We will
use these to inductively construct links Li [Ji such that

(1) `k.Li ;Ji/� i ;

(2) all vertices of Li [Ji lie in C1[ � � � [Ci (and so Li [Ji is disjoint from Cj

for j > i );

(3) for i < � the spheres Li and Ji each contain a triangulated n–complex of side
length at least 2��i�1�.

The link L�[J� is then the required link.

Each component Si , Ti is isomorphic to the boundary of a triangulated .nC 1/–
simplex of side length equal to that of Ci , and as such has nC 2 faces which are each
a triangulated n–simplex of this same side length. For the base case we may therefore
simply let L1[J1 D S1[T1 .

Given 1� i ���1, suppose that we have constructed Li[Ji but not yet LiC1[JiC1 .
Let `k.Si ;Ti/ D p � i . If p � � then we simply set Lj [ Jj D Si [ Ti for j � i

and the construction is complete, so suppose that p < �. Then every component of
the link SiC1 [ TiC1 [Li [ Ji contains a triangulated n–simplex of side length at
least ` D 2��i�1� � �, and ` satisfies `n � �n � 2.� � 1/ � 2p . Moreover, as
the boundary of a Kn

nC1.`/, each component of SiC1 [ TiC1 must contain at least
one �n.`/ face of each orientation. Working entirely within the Kn

M
spanned by

the vertices of C1 [ � � � [ CiC1 we may therefore apply Corollary 7.4 to obtain a
2–component link LiC1[JiC1 satisfying `k.LiC1;JiC1/� pC 1� i C 1.
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Each component of LiC1[JiC1 contains a triangulated n–simplex of side length at
least �

n`

nC 1

�
D

�
2��i�1n�

nC 1

�
:

Now n=.nC 1/� 1
2

, so for i < �� 1 the quantity 2��i�2� is an integer satisfying

2��i�1n�

nC 1
�

2��i�1�

2
D 2��i�2�;

and therefore �
n`

nC 1

�
D

�
2��i�1n�

nC 1

�
� 2��i�2�D 2��.iC1/�1�:

This establishes condition (3) above when i C 1< �, completing the inductive step.
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