Volume 13, issue 3 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Context-free manifold calculus and the Fulton–MacPherson operad

Victor Turchin

Algebraic & Geometric Topology 13 (2013) 1243–1271
Bibliography
1 G Arone, Derivatives of embedding functors, I, The stable case, J. Topol. 2 (2009) 461 MR2546583
2 G Arone, V Turchin, On the rational homology of high dimensional analogues of spaces of long knots arXiv:1105.1576v2
3 S Axelrod, I M Singer, Chern–Simons perturbation theory, II, J. Differential Geom. 39 (1994) 173 MR1258919
4 J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics 347, Springer (1973) MR0420609
5 P Boavida de Brito, M S Weiss, Manifold calculus and homotopy sheaves arXiv:1202.1305
6 A S Cattaneo, P Cotta-Ramusino, R Longoni, Configuration spaces and Vassiliev classes in any dimension, Algebr. Geom. Topol. 2 (2002) 949 MR1936977
7 B Fresse, Modules over operads and functors, Lecture Notes in Mathematics 1967, Springer (2009) MR2494775
8 E M Friedlander, G Mislin, Cohomology of classifying spaces of complex Lie groups and related discrete groups, Comment. Math. Helv. 59 (1984) 347 MR761803
9 E Getzler, J D S Jones, Operads, homotopy algebra and iterated integrals for double loop spaces arXiv:hep-th/9403055
10 T G Goodwillie, Calculus, I, The first derivative of pseudoisotopy theory, $K$–Theory 4 (1990) 1 MR1076523
11 T G Goodwillie, Calculus, II, Analytic functors, $K$-Theory 5 (1991/92) 295 MR1162445
12 T G Goodwillie, Calculus, III, Taylor series, Geom. Topol. 7 (2003) 645 MR2026544
13 T G Goodwillie, J R Klein, M S Weiss, A Haefliger style description of the embedding calculus tower, Topology 42 (2003) 509 MR1953238
14 J L Loday, B Vallette, Algebraic operads, Grundl. Math. Wissen. 346, Springer (2012) MR2954392
15 J Milnor, On the homology of Lie groups made discrete, Comment. Math. Helv. 58 (1983) 72 MR699007
16 F Morel, On the Friedlander–Milnor conjecture for groups of small rank, from: "Current developments in mathematics, 2010" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), Int. Press, Somerville, MA (2011) 45 MR2906371
17 C H Sah, Homology of classical Lie groups made discrete, III, J. Pure Appl. Algebra 56 (1989) 269 MR982639
18 P Salvatore, Configuration spaces with summable labels, from: "Cohomological methods in homotopy theory" (editors J Aguadé, C Broto, C Casacuberta), Progr. Math. 196, Birkhäuser (2001) 375 MR1851264
19 D P Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Math. 10 (2004) 391 MR2099074
20 D P Sinha, Operads and knot spaces, J. Amer. Math. Soc. 19 (2006) 461 MR2188133
21 D P Sinha, The topology of spaces of knots: cosimplicial models, Amer. J. Math. 131 (2009) 945 MR2543919
22 A A Suslin, On the $K$-theory of local fields, from: "Proceedings of the Luminy conference on algebraic $K$–theory" (editors E M Friedlander, M Karoubi) (1984) 301 MR772065
23 V Turchin, Hodge-type decomposition in the homology of long knots, J. Topol. 3 (2010) 487 MR2684511
24 M S Weiss, Orthogonal calculus, Trans. Amer. Math. Soc. 347 (1995) 3743 MR1321590
25 M S Weiss, Embeddings from the point of view of immersion theory, I, Geom. Topol. 3 (1999) 67 MR1694812
26 M S Weiss, Erratum to the article Embeddings from the point of view of immersion theory: Part I, Geom. Topol. 15 (2011) 407 MR2776849