Volume 13, issue 3 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Lipschitz minimality of Hopf fibrations and Hopf vector fields

Dennis DeTurck, Herman Gluck and Peter Storm

Algebraic & Geometric Topology 13 (2013) 1369–1412
Bibliography
1 V Borrelli, F Brito, O Gil-Medrano, The infimum of the energy of unit vector fields on odd-dimensional spheres, Ann. Global Anal. Geom. 23 (2003) 129 MR1961372
2 V Borrelli, O Gil-Medrano, A critical radius for unit Hopf vector fields on spheres, Math. Ann. 334 (2006) 731 MR2209254
3 R Bott, L W Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics 82, Springer (1982) MR658304
4 F G B Brito, Total bending of flows with mean curvature correction, Differential Geom. Appl. 12 (2000) 157 MR1758847
5 F G B Brito, P Walczak, On the energy of unit vector fields with isolated singularities, Ann. Polon. Math. 73 (2000) 269 MR1785691
6 J Eells, L Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978) 1 MR495450
7 R H Escobales Jr., Riemannian submersions with totally geodesic fibers, J. Differential Geom. 10 (1975) 253 MR0370423
8 F B Fuller, Harmonic mappings, Proc. Nat. Acad. Sci. U. S. A. 40 (1954) 987 MR0064453
9 O Gil-Medrano, Relationship between volume and energy of vector fields, Differential Geom. Appl. 15 (2001) 137 MR1857559
10 O Gil-Medrano, Volume and energy of vector fields on spheres. A survey, from: "Differential geometry, Valencia, 2001" (editors O Gil-Medrano, V Miquel), World Sci. Publ., River Edge, NJ (2002) 167 MR1922046
11 O Gil-Medrano, Unit vector fields that are critical points of the volume and of the energy: characterization and examples, from: "Complex, contact and symmetric manifolds" (editors O Kowalski, E Musso), Progr. Math. 234, Birkhäuser (2005) 165 MR2105148
12 O Gil-Medrano, E Llinares-Fuster, Minimal unit vector fields, Tohoku Math. J. 54 (2002) 71 MR1878928
13 H Gluck, F W Warner, Great circle fibrations of the three-sphere, Duke Math. J. 50 (1983) 107 MR700132
14 H Gluck, F Warner, W Ziller, The geometry of the Hopf fibrations, Enseign. Math. 32 (1986) 173 MR874686
15 H Gluck, F Warner, W Ziller, Fibrations of spheres by parallel great spheres and Berger's rigidity theorem, Ann. Global Anal. Geom. 5 (1987) 53 MR933907
16 H Gluck, W Ziller, On the volume of a unit vector field on the three-sphere, Comment. Math. Helv. 61 (1986) 177 MR856085
17 D Gromoll, K Grove, One-dimensional metric foliations in constant curvature spaces, from: "Differential geometry and complex analysis" (editors I Chavel, H M Farkas), Springer (1985) 165 MR780042
18 D Gromoll, K Grove, The low-dimensional metric foliations of Euclidean spheres, J. Differential Geom. 28 (1988) 143 MR950559
19 D S Han, J W Yim, Unit vector fields on spheres, which are harmonic maps, Math. Z. 227 (1998) 83 MR1605381
20 H Hopf, Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche, Math. Ann. 104 (1931) 637 MR1512691
21 H Hopf, Uber die Abbildungen von Sph”aren auf Sph”aren niedrigerer Dimension, Fund. Math. 25 (1935) 427
22 T Ishihara, Harmonic sections of tangent bundles, J. Math. Tokushima Univ. 13 (1979) 23 MR563393
23 D L Johnson, Volumes of flows, Proc. Amer. Math. Soc. 104 (1988) 923 MR964875
24 J J Konderak, On harmonic vector fields, Publ. Mat. 36 (1992) 217 MR1179614
25 O Nouhaud, Applications harmoniques d'une variété riemannienne dans son fibré tangent. Généralisation, C. R. Acad. Sci. Paris Sér. A-B 284 (1977) MR0431035
26 S L Pedersen, Volumes of vector fields on spheres, Trans. Amer. Math. Soc. 336 (1993) 69 MR1079056
27 A Ranjan, Riemannian submersions of spheres with totally geodesic fibres, Osaka J. Math. 22 (1985) 243 MR800969
28 S Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958) 338 MR0112152
29 S W Wei, Classification of stable currents in the product of spheres, Tamkang J. Math. 42 (2011) 427 MR2862346
30 J H C Whitehead, An expression of Hopf's invariant as an integral, Proc. Nat. Acad. Sci. U. S. A. 33 (1947) 117 MR0020255
31 B Wilking, Index parity of closed geodesics and rigidity of Hopf fibrations, Invent. Math. 144 (2001) 281 MR1826371
32 J A Wolf, Elliptic spaces in Grassmann manifolds, Illinois J. Math. 7 (1963) 447 MR0156295
33 J A Wolf, Geodesic spheres in Grassmann manifolds, Illinois J. Math. 7 (1963) 425 MR0156294
34 Y C Wong, Isoclinic $n$–planes in Euclidean $2n$–space, Clifford parallels in elliptic $(2n-1)$–space, and the Hurwitz matrix equations, Mem. Amer. Math. Soc. No. 41 (1961) MR0145437
35 C M Wood, On the energy of a unit vector field, Geom. Dedicata 64 (1997) 319 MR1440565
36 C M Wood, The energy of Hopf vector fields, Manuscripta Math. 101 (2000) 71 MR1737225
37 Y L Xin, Some results on stable harmonic maps, Duke Math. J. 47 (1980) 609 MR587168