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Simplicial presheaves of coalgebras

GEORGE RAPTIS

The category of simplicial R—coalgebras over a presheaf of commutative unital rings
on a small Grothendieck site is endowed with a left proper, simplicial, cofibrantly
generated model category structure where the weak equivalences are the local weak
equivalences of the underlying simplicial presheaves. This model category is naturally
linked to the R—local homotopy theory of simplicial presheaves and the homotopy
theory of simplicial R—modules by Quillen adjunctions. We study the comparison
with the R—local homotopy theory of simplicial presheaves in the special case
where R is a presheaf of algebraically closed (or perfect) fields. If R is a presheaf
of algebraically closed fields, we show that the R—local homotopy category of
simplicial presheaves embeds fully faithfully in the homotopy category of simplicial
‘R —coalgebras.

18F20, 18G30, 55U35, 16T15

1 Introduction and statement of results

Let PSh(C) denote the category of set-valued presheaves on a small Grothendieck site
C. Let R be a presheaf of commutative unital rings on C. The category Modz of
presheaves of 'R—modules is an abelian locally presentable category with a closed sym-
metric monoidal pairing that is given by the pointwise tensor product of R—modules. Let
Coalgy, denote the category of cocommutative, coassociative, counital R—coalgebras.
The forgetful functor ®: Coalg, — Modx is a left adjoint where the right adjoint is
the cofree 'R—coalgebra functor.

Let sPSh(C) denote the category of simplicial presheaves on C. The class of local weak
equivalences between simplicial presheaves defines a homotopy theory that has been
studied extensively in the literature and forms the subject known as homotopical sheaf
theory. Naturally, the subject began with the study of the corresponding homotopy
theory of simplicial sheaves (see Brown [6], Brown and Gersten [7] and Joyal [19]).
The shift to the more flexible category of simplicial presheaves is due to Jardine who
realized that in the proofs of results about simplicial sheaves “... it is not so much the
ambient topos that is creating the homotopy theory as it is the topology of the underlying
site” [16]. On the other hand, the dependence on the choice of a Grothendieck site for
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the ambient topos is immaterial: a local weak equivalence of simplicial presheaves
is the same as a local weak equivalence of the associated simplicial sheaves, and so,
in particular, the two homotopy theories are equivalent (see Jardine [16; 17]). The
class of local weak equivalences is a refinement of the sectionwise weak equivalences
that takes into account the topology on C. For example, in the case where the topos
of sheaves Sh(C) has enough points, a map of simplicial presheaves is a local weak
equivalence if it induces a weak equivalence of simplicial sets at all stalks. Note that
this is the same as a sectionwise weak equivalence when C has the trivial topology.

Let sCoalgy, denote the category of simplicial 'R—coalgebras. The purpose of this
paper is to study the homotopy theory of simplicial 'R—coalgebras and compare it
with that of simplicial presheaves. The method to pursue this follows the axiomatic
approach of the theory of model categories. We assume that the reader is familiar with
the theory of model categories and what it is good for. For background material, we
recommend the recent monographs of Hirschhorn [14] and Hovey [15].

A morphism f: A— B of simplicial R—coalgebras is called a (local) weak equivalence
if it defines a local weak equivalence between the underlying simplicial presheaves in
sPSh(C). This class of weak equivalences will be denoted here by Wx . A morphism
f: A — B in sCoalgy is called a ®—monomorphism if the morphism between the
underlying simplicial R—modules is a monomorphism.

Theorem A There is a left proper, simplicial, cofibrantly generated model category
structure on sCoalgy, where the class of weak equivalences is Wr and the set of
®-monomorphisms between k —presentable objects is a generating set of cofibrations
(for any choice of a large enough regular cardinal « ).

The choice of k will be clarified in the proof of the theorem in Section 4. This result was
proved by Goerss [12] in the case where C is the terminal category (ie, sSPSh(C) = sSet)
and R is given by a single field. Although the structural properties of coalgebras over a
field are well-studied in the literature (eg see Sweedler [28]), the situation in the general
case of a commutative ring is more complicated and less well-understood. Among the
basic reasons that make the case of fields special are, of course, the exactness of the
tensor product and the available duality techniques. Both of them play a role in Goerss’
proof. There is yet another relevant distinctive feature of the case of fields that relates
to the (possibility of the) introduction of higher cardinals in the proof of Theorem A.
According to the fundamental theorem of coalgebras, due to Sweedler [28], if [F is a
field, every IF —coalgebra is the filtered colimit of its finite dimensional sub-coalgebras.
Moreover, finite dimensional coalgebras are finitely presentable objects in Coalgp .
This property may fail in the case of an arbitrary (presheaf of) commutative ring(s),
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however, an appropriate analogous statement can be formulated in this general case if
we allow a higher rank of presentability. This is because the category of /R —coalgebras
is known to be locally A—presentable for some regular cardinal A by results of Barr
[2] and Fox [10] (see also Porst [24]). This fact together with additional background
material about R—coalgebras will be discussed in Section 2.

The idea to apply methods from the theory of locally presentable categories in ho-
motopical algebra originates from unpublished work of JH Smith. In particular, the
theory of combinatorial model categories, introduced by J H Smith, has provided the
theory of model categories with powerful set-theoretical techniques. Our proof of
Theorem A is heavily based on these ideas and specifically on the recognition theorem
for combinatorial model categories (Theorem 4.1). We will assume that the reader
is familiar with the basic theory of locally presentable and accessible categories. A
detailed account can be found in the monograph by Addmek and Rosicky [1]. For
background material about combinatorial model categories, see Beke [3], Dugger [9]
and Rosicky [27].

Following the work of Goerss [12], the motivation for studying the homotopy theory
of simplicial /R—coalgebras comes from its connection with the R—local homotopy
theory of simplicial presheaves, ie, the Bousfield localization of the model category of
simplicial presheaves at the class of 'R—homology equivalences. Let us first discuss this
connection in the case where C is the terminal category and let R be a commutative
ring with unit. The simplicial R—chains R{X} of a simplicial set X naturally form
a simplicial R—coalgebra. The comultiplication is induced by the diagonal map
A: X — X x X and the counit by the map X — A°. Moreover, there is an adjunction

(1-1) R{—}: sSet 2 sCoalgp :p
where the right adjoint is the functor of R—points defined by
p(A), = Coalgp(R, Ay).

An important observation is that the canonical unit map X — pR{X} is an isomorphism,
for every simplicial set X', when R has no non-trivial idempotents. Moreover, the
adjunction (1-1) is a Quillen adjunction between the standard model category structure
on sSet and the model category of Theorem A. Therefore it induces a new Quillen
adjunction

(1-2) R{—}: LgsSet < sCoalgp :p

where L gsSet denotes the Bousfield localization of sSet at the R—homology equiva-
lences, ie, the class of maps f: X — Y such that H.(f, R) is an isomorphism (see
Bousfield [5]).
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Then this prompts the question whether the additional coalgebraic structure on the
simplicial R—chains could suffice in order to produce a faithful approximation to the
homotopy theory of spaces localized at the R—homology equivalences. By taking
(functorial) cofibrant and fibrant replacements, respectively, one obtains a derived
adjunction between the respective homotopy categories

(1-3) L R{—}: Ho(LgsSet) = Ho(sCoalgp) :Rp

and the derived unit transformation gives a canonical map X — Rp(R{X}) from
every simplicial set X to an R—local space, ie, a fibrant object in L gsSet. Goerss
[12, Theorem C] proved that this map is an R—homology equivalence when R is
an algebraically closed field. An equivalent statement is that the functor I R{—} is
fully faithful. A related result was shown by Mandell [22] who considered instead the
singular cochain functor with values in Eo differential graded F p—algebras in order
to obtain a model for the p—adic homotopy theory of spaces.

More generally, for any perfect field F with algebraic closure F and profinite Galois
group G, Goerss showed that the derived unit map of (1-2) can be identified with the
map from X into the homotopy fixed points of X after it is localized with respect to
the F—homology equivalences and regarded as a simplicial G—set endowed with the
trivial G —action (see [12, Theorem E]). We do not know of any appropriate extension
of this remarkable result to more general rings.

Similar considerations apply to the general case of an arbitrary small site C with a
presheaf of commutative unital rings R. The (sectionwise) free 'R—module functor
factors through sCoalgs, and there is a Quillen adjunction

(1-4) R{—}: sPSh(C);,; 2 sCoalgy : p

where sPSh(C);,; denotes the model category of simplicial presheaves studied by
Jardine [16; 17]. Some basic facts about the various model category structures on
simplicial presheaves will be reviewed in Section 3. The functor of /R—points p is
defined similarly as above, by

p(A)(U)n = Coalgg ) (R(U), A(U)n).

The Quillen adjunction (1-4) will be studied in Section 5. We show that this adjunction
can be used to endow sCoalgr with a different model category structure where the
weak equivalences are pulled back from sPSh(C);,; via the functor p of R-points. In
addition, it follows easily, and somewhat surprisingly, that the adjunction (1-4) defines
a Quillen equivalence between this new model category, denoted by sCoalg%, and
sPSh(C);y;. This produces an alternative point of view for the comparison between the
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homotopy theory of simplicial presheaves and simplicial R—coalgebras as it can be
also modelled by the identity functor

1: sCoalgly, — sCoalgg

as a left Quillen functor.

Similarly to the case of a single commutative ring, the comparison via the Quillen
adjunction (1-4) can only relate to the R-local part of sPSh(C);,;. A morphism
f: X — Y between simplicial presheaves is called an R—homology equivalence
if R{f} is a weak equivalence. The left Bousfield localization LrsPSh(C);,; of
sPSh(C);y; at the class of 'R-homology equivalences exists and so the adjunction (1-4)
induces a new Quillen adjunction

R{—}: LrsPSh(C);,; < sCoalgy, :p.

Based on the structure theory of coalgebras over an algebraically closed field and the
methods of [12], we prove the following theorem in Section 6.

Theorem B Let & be a presheaf of algebraically closed fields. Then the left adjoint
functor
LF{—}: Ho(LgsPSh(C);,;) - Ho(sCoalgy)

is fully faithful.

Theorem B is a generalization of Goerss’ theorem [12, Theorem C] to the context of
simplicial presheaves. We will also consider the case of a constant presheaf at a perfect
field, following the case of single perfect field in [12, Theorem E] as mentioned above.
The precise analogue of Theorem B in this case requires some preparatory work and
we will not attempt to summarize it here. It will be discussed in detail in Section 6.

Organization of the paper In Section 2, we review some categorical properties of
the presheaf categories of coalgebras Coalgy focusing in particular on the property of
local presentability that is crucial to the proof of Theorem A. In Section 3, we recall
briefly (some of) the various known model categories of simplicial presheaves and
simplicial R—modules. In Section 4, we prove Theorem A. In Section 5, we compare
the model category of simplicial 'R—coalgebras with the model categories of simplicial
presheaves and simplicial R—modules. The comparison with simplicial presheaves
is based on the adjunction (1-4) as discussed above. The comparison with simplicial
‘R—modules is based on the forgetful functor ®: sCoalgr — sModx . In Section 6,
we prove Theorem B and discuss some generalizations to other types of presheaves
of fields.
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2 Preliminaries on presheaf categories of coalgebras

Let C be a small category and PSh(C) := Fun(C?, Set) denote the category of set-
valued presheaves on C. For every object U of C, there is a presheaf Y (U): C? —
Set, V + C(V,U), called the representable presheaf by U. The set of presheaves
{Y(U):U € ObC} defines a strong generator of finitely presentable objects in PSh(C).
This is essentially a consequence of the Yoneda Lemma, which asserts that for every
presheaf F on C, there is a natural bijection between the set of morphisms Y (U) — F
and the set F(U).

Let R be a presheaf of commutative unital rings on C. An R-module M is a presheaf
of abelian groups on C such that M (U) is an R(U)-module for every U € ObC and
the restriction map

M) MU)— M((V)

is a homomorphism of R(U)-modules for every morphism j: V — U in C. A
morphism f: M — N of R-modules is a natural transformation of the underlying
presheaves such that f|y: M(U) — N(U) is an R(U)-module homomorphism. This
defines a category Modr of 'R—modules which is abelian and locally (X —) presentable.
We recall that a category is locally (A-) presentable if it is cocomplete and has a strong
generator of (A—) presentable objects (see [1, Theorem 1.20]). The forgetful functor
t: Modgr — PSh(C) admits a left adjoint

R{—}: PSh(C) — Modr
that associates to every presheaf X: C%” — Set the R—module whose value at U € ObC
is the free R(U)-module with generators X (U). A convenient strong generator for
Mody, is given by the set of finitely presentable objects {R{Y (U)}: U € Ob(C}.

The category Mody has a closed symmetric monoidal pairing

®: Modr x Modr — Modp,
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which is defined by the sectionwise tensor product of modules.! More precisely, this
takes a pair (M, N) of R—modules to the R—module M ® N whose value at U € ObC
is the R(U)-module M (U) @) N(U). Forevery j: V — U in C, the restriction
map is given by the composition of R(U)-module homomorphisms

MU) @rw) NU) = MV) @rwy NV) = MV) Qr) N(V).
The unit of this monoidal pairing is given by ‘R as an 'R—module.

As for every symmetric monoidal category, there is an associated category of cocommu-
tative, coassociative, counital comonoids with respect to the monoidal pairing. Applied
to (Modg, ®,R), this defines the category Coalg of cocommutative, coassociative,
counital R—coalgebras. More explicitly, an R—coalgebra (A4, i, €) is an R—module
A together with morphisms of 'R—-modules for comultiplication u: A - A ® A and
counit €: A — R such that the following diagrams commute:

®1
A® A A4 A0 4)®4
/ /
A A
Ru

1
AR A ARA—= AR (AR® A)

RE
1R

AA<2— 4t a4

le@l jl Ll@e
RA<~—A4—>A®R

The isomorphisms in these diagrams are the canonical ones, given as part of the symmet-
ric monoidal structure. A morphism of R—coalgebras from (A4, i, €) to (A’, 1, €') is
a morphism f: A — A’ between the underlying R—modules that makes the following
diagrams commute:

®
A®AL>(-A’®A/ Aéf.A/
“] T" l/
€
A;A/ R

IThe term ‘sectionwise’ has the same meaning as the more commonly used terms ‘pointwise’ or
‘objectwise’. However, since C will normally be regarded as a Grothendieck site, even if it is a trivial one,
we will use the term ‘sectionwise’ for special emphasis. The term ‘pointwise’, when referring to the points
of the associated topos of sheaves on C, will then have a different meaning in general.
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The restriction maps of an R—coalgebra are not quite maps of coalgebras over a
ring, since the coalgebraic structure is defined sectionwise with respect to different
rings in general. However, note that given a ring homomorphism f: R — S and
an R-coalgebra (4, u,€), the S—module A ® g S is naturally an S —coalgebra with
comultiplication defined by

®1 ~
AR S L5 (AQRA) QRS =5 (AQRS) Qs (ARR S).

Given an R-coalgebra A and an S—coalgebra B, an R—module homomorphism
g: A — B is called a map of coalgebras if the induced .S—module homomorphism
g: A®Rr S — B is a map of S—coalgebras. The restriction maps of an R—coalgebra
are maps of coalgebras in this sense.

Various important properties of categories of coalgebras have been studied by Barr [2]
(for a single commutative ring), Fox [10] (for an arbitrary locally presentable monoidal
category) and, more recently, by Porst [24; 25]. We recall some of them.

Proposition 2.1 The forgetful functor ®: Coalgr — Modr has a right adjoint. More-
over, Coalgy, is comonadic over Modr .

Proof This is proved in [2, Theorem 4.1] for the case of a single commutative ring.
The same proof applies here; see [10, Corollary 8; 24, Theorem 12, Remark 15]. O

The main property that we need in this paper is stated in the following theorem that is
essentially due to Barr [2] and Fox [10].

Let A be a regular cardinal that is bigger than Ry and the cardinalities of the rings
R(U) forall U € ObC.

Theorem 2.2 (Barr [2] and Fox [10]) Coalgy is a locally A —presentable category.

Proof This is essentially contained in the last remarks of [10] combined with the
arguments of [2, Theorem 3.1, Corollary 3.2] to get the required rank of presentability.

Let us first prove that Coalgy, has a strong generator of A—presentable objects in the
case where C is a discrete category, ie, when there are no non-identity morphisms.
Consider the set A of R—coalgebras A whose underlying R—module ®(A4) satisfies
the following properties:

(1) P(A) is the trivial zero module everywhere except for exactly one object U €
OobC,

(ii) the cardinality of ®(A4)(U) is at most max{card(R(U)), Ro}.
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By [2, Theorem 3.1], given any R—coalgebra A4, every element x € A(U), U € ObC,
is contained in an R—subcoalgebra that satisfies (i) and (ii). Similarly to [2, Corollary
3.2], it follows that A is a strong generator of Coalgy. Let A € A and U € ObC as
in (i) above. By (ii), ®(A4)(U) is generated by strictly less than A elements, so it is
A—presentable as an R(U)-module. By (i), ®(A4) is also A—presentable (in Mody ).
Following the last remarks of [10], it is immediate that A is also A—presentable (in
Coalgy, ). Indeed it suffices to note that the set of maps from A to an R—coalgebra B
can be expressed as the equalizer of a pair of arrows

Modg (®(A), ®(B)) = Modg (B(A), ®(B) @ D(B)) x Modx (®(4), R)

and that equalizers commute with A—directed colimits (for any A) in the category of
sets.

For the general case of an arbitrary small category C, let Cy denote the discrete category
with set of objects ObC and u: Cy — C be the inclusion functor. The presheaf R
clearly restricts to a presheaf of commutative unital rings R := u*R on Cgy. There is
an adjunction

uy: Coalgr, 2 Coalgp :u*

where the right adjoint is the obvious forgetful pullback functor. The left adjoint is
defined by
(V)= @ AU) @rw) R(V)
VU

where the tensor products are endowed with the natural R(V')—coalgebraic structure
as remarked earlier. Moreover, u* is faithful and preserves (A—) directed colimits. It
follows that the set ui(A) = {u;(A4) : A € A} (A as above) is a strong generator of
A—presentable objects.

Since Coalgy is also cocomplete (colimits are lifted from Modz by @), the desired
result follows. a

Remark 2.3 The local presentability of Coalgy, was also proved by Porst [24] in
the case of a single commutative ring using somewhat different methods based more
heavily on general results about accessible categories from [1]. These methods apply
identically to the case of a presheaf of commutative rings, but it is generally difficult to
obtain an explicit rank of presentability by them alone and most probably it will be very
big. One way to obtain it would be to go through the choices of cardinals in the proofs
of [1, Lemma 2.76, Theorem 2.72, Theorem 2.43, Theorems 2.32-2.34 and Theorem
2.19] in that order more or less. On the other hand, the rank shown in Theorem 2.2
is not the least possible since the category of coalgebras over a field is known to be
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locally finitely presentable. It would be interesting to know what the best possible rank
is exactly and how it is related to the divisibility properties of the elements of R or the
failure of the tensor product to be a left exact functor.

The tensor product of R—coalgebras (A4, i, €) and (B, i, €’) is naturally an R—
coalgebra. The underlying R—module is 4 ® B and the coalgebraic structure is given
by the following R—module morphisms

A0 B M@ANMB@B)(A@BNMA@BL
A® B 5 R ®Rx=R.
There are canonical morphisms
DPA: A®BﬁA®R;A

e A9 B85 R@ B~ B

Moreover, the cone (A ® B, p4, pp) actually defines a product cone for A and B in
Coalgy, . Using this description of the products in Coalgy, , the following theorem is
an immediate consequence of the special adjoint functor theorem and the fact that ®
creates colimits.

Theorem 2.4 Coalgy, is a cartesian closed category.

Proof This is proved in [2, Theorem 5.3] for the case of a single commutative ring.
The same proof applies here. a

The R-module R{X} has a natural R—coalgebra structure that is induced by the
diagonal map A: X — X x X and the unique map to the terminal object X — .
Hence the functor R{—}: PSh(C) — Modx, factors through ®: Coalgs, — Modr. We
denote the functor into Coalgy, again by

R{—}: PSh(C) — Coalgy,.
This functor has a right adjoint
p: Coalgr — PSh(C),
which is defined sectionwise as follows: given an 'R—coalgebra A4, then
p(A)(U) = Coalgr ) (R(U). A(U))

defines a presheaf p(A): C%? — Set. The functor p preserves x—directed colimits, and
so R{—} preserves k—presentable objects, for every regular cardinal «.
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The functor p is called the functor of /R—points because it picks out from every section
the elements of the R—coalgebra that comultiply “diagonally”. If R(U) has no non-
trivial idempotents for all U € ObC, the set of elements of R{X}(U) that have this
property can be identified with X (U). In this case, the unit transformation of the
adjunction 1 — pR{—} is a natural isomorphism.

Note also that since adjoints are essentially unique, the forgetful functor :: Modg —
PSh(C) factors as the composite of the cofree R—coalgebra functor, denoted by
T: Modr — Coalgy, , followed by the functor of R—points p: Coalgr — PSh(C).

3 A quick review of the model structures on simplicial
presheaves

Let C be a small Grothendieck site and sPSh(C) denote the category of simplicial
presheaves (of sets) on C. The objects are usually understood as diagrams F: C? —
sSet and the morphisms are natural transformations of such diagrams.

Various model category structures on the categories of simplicial presheaves and sim-
plicial R—modules (or presheaves of chain complexes) are known in the literature. We
review some facts about the four model category structures that are characterized by the
following two specifications: (i) whether the weak equivalences are defined sectionwise
or they are the local weak equivalences, which are defined ‘stalkwise’/‘pointwise’ in
the topos-theoretic sense, and (ii) whether the cofibrations are defined sectionwise or
they are the projective cofibrations.

First we recall the definition of the local weak equivalences in sPSh(C) from [17]. The
definition uses Boolean localization in order to include the case where the associated
topos of sheaves does not have enough points. A different definition using sheaves
of homotopy groups can be found also in [17]. Let L2: PSh(C) — Sh(C) denote the
sheafification functor. According to a fundamental theorem in topos theory, due to
Barr, there is a complete Boolean algebra B and a surjective geometric morphism
g: Sh(B) — Sh(C) (see Mac Lane and Moerdijk [21, IX.9] for details). Thus we
obtain a geometric morphism between the categories of simplicial objects, whose left
adjoint is
©*L?: sPSh(C) — sSh(B).
A map f: X — Y in sPSh(C) is a local weak equivalence if (and only if) the map
(9* L2 Ex®())(b): (9* L Ex®(X))(b) — (9" L> Ex®(Y))(b)

is a weak equivalence of simplicial sets for all » € ObB3. Here Ex*° denotes Kan’s
fibrant replacement functor applied sectionwise. It can be shown that this definition
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does not depend on the choice of Boolean localization [17]. In particular, a collection of
enough points of Sh(C) (if it exists) defines a Boolean localization, and so a local weak
equivalence is a natural transformation that induces a weak equivalence of simplicial
sets at every point in this collection. A sectionwise weak equivalence is always a
local weak equivalence [17, Lemma 9]. If C has the trivial topology, a local weak
equivalence is exactly the same as a sectionwise weak equivalence.

Note that we can dispense with the fibrant replacement functor Ex>® when the pre-
sheaves are already sectionwise fibrant. Thus a morphism f: M — N between sim-
plicial R—modules is local weak equivalence (of the underlying simplicial presheaves)
if (and only if) p* L?( f)(b) is a weak equivalence for all » € ObJ3, since a simplicial
presheaf of abelian groups is already sectionwise fibrant.

The projective model category structure on sPSh(C) is the standard projective model
category structure on a category of diagrams in a cofibrantly generated model category
(see Hirschhorn [14] for details). The weak equivalences (resp. fibrations) are the
sectionwise weak equivalences (resp. Kan fibrations) of simplicial sets. In particular,
the class of weak equivalences, and so the associated homotopy theory, is independent of
the choice of the Grothendieck topology on C. The cofibrations of this model category
are characterized by a right lifting property and they will be referred to as the projective
cofibrations. Furthermore, the projective model category is proper, simplicial and
cofibrantly generated. The simplicial structure is defined by the following functorially
defined objects,
(K®X)(U):=KxXU),

XE(U) := Mapys (K, X (U)).
Map(X,Y)e :=sPSh(C)(A*® X,Y),

for every simplicial set K and simplicial presheaves X and Y. Sets of generating
cofibrations and trivial cofibrations are defined as follows. Let Cy denote the discrete
category with set of objects ObC and u: Cy — C be the inclusion functor. There is an
adjunction

uy: sPSh(Cp) = sPSh(C) :u*

where u* is the obvious pullback functor. Note that since u* preserves k—directed
colimits (in fact, all colimits), the left adjoint u; preserves k —presentable objects (for any
k). The category sPSh(Cyp) can be endowed with the product model category structure
where all classes of weak equivalences, cofibrations and fibrations are defined objectwise.
The projective model category structure on sPSh(C) is the lifting of this product model
category (which is, incidentally, also an example of a projective model category) along
the adjunction uy 4 u*. A detailed account of the method of transferring a cofibrantly
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generated model category structure along an adjunction can be found in [14, Theorem
11.3.2]. We can choose as generating sets for cofibrations and trivial cofibrations of
sPSh(Cp) the “products” of some generating sets of the model category sSet. Let
I ={0A" — A":n>0} and J :={A} < A":0<k <n,n> 1} denote the standard
generating sets of sSet. For every U € ObC and simplicial set K, let X (U, K) be the
presheaf on Cy that takes the value K at U and & elsewhere. For every f: K — L in
sSet, there is a natural morphism of presheaves X (U, f): X (U, K) — X (U, L). The
sets Zc, :={X (U, ) : U € ObCy, f €1} and J¢, :={X (U, f): U € ObCy, f € J}
are generating sets for cofibrations and trivial cofibrations respectively. Consequently,
the sets of morphisms

Ic :=u(Icy), Je:=u(Te,)

are generating sets of cofibrations and trivial cofibrations, respectively, for the projec-
tive model category sPSh(C). Moreover, they consist of finitely presentable objects
in sPSh(C)™".

The local projective model category structure has the same cofibrations, ie, the projective
cofibrations, and the weak equivalences are the local weak equivalences. This model
category structure was shown by Blander [4]. The notation sPSh(C),,,,; will be used to
denote it. It is clearly a left Bousfield localization of the projective model category, so
the trivial fibrations are the same in both cases. The local projective model category
is again proper, simplicial and cofibrantly generated. Note that the projective model
category can be obtained as a special case of the local projective one by endowing the
category C with the trivial topology.

The category sModg inherits a model category structure from sPSh(C),,,,; along the
adjunction (cf Jardine [18, Lemma 2.2])

R{—}: sPSh(C) o5 & sModg :t.

This can be shown easily using again the standard method of transferring a model
category structure along an adjoint pair (see also Remark 5.8). Amap f: M - N
in sModg is a weak equivalence (resp. fibration) if ¢(f) is so in sPSh(C),,;. This
local projective model category will be denoted by sMod%OJ. Note that the trivial
fibrations in sModS{OJ are exactly the morphisms that define a trivial fibration of the
associated presheaves of simplicial sets in sSPSh(C) ;. so they are the morphisms that
are sectionwise a weak equivalence and a Kan fibration. But a map of simplicial abelian
groups is a trivial fibration if and only if it is a weak equivalence and an epimorphism.
We summarize these observations in the following proposition that will be needed for
the proof of Theorem A.
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Proposition 3.1 A morphism f: M — N in sMod%? is a trivial fibration iff it is a
sectionwise weak equivalence and an epimorphism.

The model category sMod%Oj is proper, simplicial and cofibrantly generated. The
simplicial structure on sModp, is induced by the simplicial structure of sPSh(C). More
explicitly, given a simplicial set K and simplicial R—modules M and N, the simplicial
structure is defined by the following objects:

KM :=R{K}®M
MHE(U) :=Mapgse, (K, M(U))
Map(M, N)e := sModr (A*® M, N)

where K denotes the constant presheaf at the simplicial set K. The sets of morphisms

Y =R{Te}, TR :=R{Te},

are generating sets of cofibrations and trivial cofibrations, respectively. They also
consist of finitely presentable objects in sMod; .

There is also an injective model category structure on sPSh(C) due to Heller [13]. The
cofibrations and weak equivalences are the sectionwise monomorphisms and sectionwise
weak equivalences, respectively. This is again independent of the Grothendieck topology
on C. In fact, this model category structure is an instance of the more general injective
model category structure on a category of diagrams in a combinatorial model category
(Lurie [20, Proposition A.2.8.2]). It is known to be cofibrantly generated, simplicial
and proper.

The associated local homotopy theory is defined by the local injective model category
structure on sPSh(C) due to Jardine [16; 17]. The cofibrations are the monomorphisms
and the weak equivalences are the local weak equivalences. As a consequence, it is a
left Bousfield localization of the injective model category at the local weak equivalences.
It is also cofibrantly generated, simplicial and proper. This model category will be
denoted here by sPSh(C);,;. Again the injective model category is an instance of the
local injective one if the category C is endowed with the trivial topology.

The category of simplicial R—modules inherits also a “local injective” model category
structure from sPSh(C);,; using similar methods as before in the projective case. This
is again cofibrantly generated, simplicial and proper [18]. It will be denoted here by
sModglObEll following Jardine’s term global fibrations for the fibrations of sPSh(C);y;.
Wthh is inspired by the use of the term in Brown and Gersten [7] This model
category is different to the local injective model category sMod that we discuss
in Section 5. They have the same class of weak equivalences, but the cofibrations
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of sModi;%j are exactly the monomorphisms. Moreover, sModi;éj is also cofibrantly
generated, simplicial and proper (see Theorem 5.7). Let us finally note the directions
of the various left Quillen functors:

SPSh(C) 0y ——= SPSh(C);yy

LR{—} lR{—}

proj globa inj
sMody ™ — sModR — sMody

4 Proof of Theorem A

We will apply the following theorem about combinatorial model categories. We recall
that a model category is called combinatorial if it is cofibrantly generated and the
underlying category is locally presentable. The theorem provides a useful method for
recognizing combinatorial model category structures and it will be used repeatedly in
this paper. We include some details of the proof, but the reader should consult [3; 20,
A.2.6] for a complete account.

As usual, given a class of morphisms I, we write I—inj to denote the class of morphisms
that have the right lifting property with respect to I and Cof(I) to denote the ‘cofibrant
closure’ of I, ie, the smallest class that contains I and is closed under pushouts,
transfinite compositions and retracts.

Theorem 4.1 Let C be a locally presentable category, W a class of morphisms of C
and 1 a set of morphisms. Then the classes of morphisms

W, Cof(I) and (Cof(I) N W) —inj

define classes of weak equivalences, cofibrations and fibrations for a cofibrantly gener-
ated model category structure on C if and only if the following conditions are satisfied:
(i) W has the 2-out-of-3 property,
(i) I—inC W,
(iii) Cof(I) N W is closed under transfinite compositions and pushouts,

(iv) the (full subcategory spanned by the) class W is accessible and accessibly
embedded in C™.

Proof Every accessible, accessibly embedded subcategory of a locally presentable
category is cone-reflective by [1, Theorem 2.53]. Hence it satisfies the solution set
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condition at every morphism. Moreover, it is closed under retracts [3, Proposition 1.19].
Then the sufficiency of the conditions follows from J H Smith’s recognition theorem [3,
Theorem 1.7]. The key part of the proof of [3, Theorem 1.7] is to use the fact that W
is cone-reflective at I and obtain a ‘solution-set’ J € Cof(I) N W'; see [3, Lemma 1.9].
The rest of the proof is an easy application of the more standard recognition theorem
for cofibrantly generated model categories; see eg [15, Theorem 2.1.19]. (This is a
small simplification of the proof given in [3] that we learned from G Maltsiniotis.) The
necessity of (i), (ii) and (iii) is obvious. Proofs of the necessity of (iv) can be found in
[20, Corollary A.2.6.6], [27, Theorem 4.1] and Raptis [26]. O

The power of this theorem, when compared to the standard recognition theorem for
cofibrantly generated model categories (eg see [15, Theorem 2.1.19]), is that it does
not assume as given a set of generating trivial cofibrations (and it does not produce
a very explicit one either), but rather its existence is essentially a consequence of
the accessibility properties of the class of weak equivalences. Condition (iv) should
normally be the most difficult to verify in the applications of the theorem. The following
proposition will be useful.

Proposition 4.2 Let F: C — D be an accessible functor and D’ an accessible and
accessibly embedded subcategory of D. Then F~'(D’) is an accessible and accessibly
embedded subcategory of C.

Proof See [1, Remark 2.50]. m|

Fix a regular cardinal « such that sCoalgy, is locally x—presentable. For example, this
can be the choice of cardinal from Theorem 2.2. We also require that ¥ > card(MorC).

Let Z denote the set of ®—monomorphisms between k —presentable objects in sCoalgy, .
We recall that amap f: A — B in sCoalgy, is called a ®—monomorphism if the map
between the underlying simplicial R—modules is a monomorphism. The class of (local)
weak equivalences in sCoalgy, is denoted by Wr.

We proceed to the proof of Theorem A with the verification of the conditions (i)—(iv).
Condition (i) is obviously satisfied by the class Wy . It is clear that every morphism
in Cof(Z) is a ®—monomorphism. Then condition (iii) that the class Cof(Z) N Wi is
closed under pushouts and transfinite compositions holds since all colimits in sCoalgg,
are lifted from sModig. The following proposition shows that condition (iv) is also
satisfied.

Proposition 4.3 The class of weak equivalences Vg is accessible and accessibly
embedded in sCoalgy .
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Proof By Theorem 4.1, the class of local weak equivalences in sPSh(C) is accessible
and accessibly embedded in sPSh(C) ™. The forgetful functor sCoalgz, — sPSh(C) is
accessible being the composition of the forgetful left adjoint ®: sCoalgp — sModr
(which preserves all colimits) followed by the forgetful right adjoint ¢: sModr —
sPSh(C) (which preserves directed colimits). It follows that the class Wy is accessible
and accessibly embedded in sCoalgy by Proposition 4.2. a

So it remains to verify condition (ii) of Theorem 4.1. First we prove the following key
lemma.

Lemma 4.4 Every map f: A — B in sCoalgy admits a factorization f = pi in
sCoalgy such that the following are satisfied:

(a) i is a ®—monomorphism,
(b) the domain of p is k —presentable if both A and B are k —presentable,

. . . . . proj
(c) ®(p) is a trivial fibration in sMod, ~.

Proof Let R denote the constant simplicial R—coalgebra at R viewed as an R—
coalgebra. This is the same as R{A°}. (Recall that A" denotes the constant simplicial
presheaf whose value is the standard n—simplex everywhere.) The fold map RGR — R
in sCoalgy, admits a factorization as required, induced by the factorization in sPSh(C),

L
AOUAO%AIiAO

and applying the functor R{—}: sPSh(C) — sCoalgy . (This functor will be discussed
in detail in Section 5.1.) In the general case of a map f: A — B, define the mapping
cylinder M (f) in the standard way by a pushout diagram in sCoalgy, :

1QR{
AgA®E—{l°}>A®R{é1}

o,
p (/)

The mapping cylinder construction yields a factorization of f: 4 — B as follows:

VRSV Y

The map ®(i) is clearly a monomorphism of simplicial presheaves, so (a) is satisfied.
If A is k—presentable then so is 4 ® R{A!}, and therefore (b) is also satisfied. Note
that p is a split epimorphism since pj = 1 g. The map

O(1 @ Riig}): P(4) > P(ARR{A) =~ &(4)  R{A!}
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is a sectionwise weak equivalence and a monomorphism. Since the pushout square
above also defines a pushout of simplicial R—modules, it follows that ®(j) is a
sectionwise weak equivalence. Hence ®(p) is a sectionwise epimorphism and weak
equivalence, so by Proposition 3.1, it is a trivial fibration in sModg’{OJ as required
by (c). a

Proposition 4.5 7 —inj C Wx.

Proof Let g: X — Y be a map in Z —inj. It suffices to show that there is a lift to
every diagram in sMody, :
r— O(X)

t Ld>(q)
—— P(Y)

where 7 is chosen from the generating set for cofibrations of the model category
sModS{oJ as discussed in Section 3. By the choice of the cardinal «, the map ¢ is a
k—directed colimit of xk—presentable objects in sCoalgy . Since the morphism ¢ is
finitely presentable in sModz and @ preserves colimits, there is a factorization:

o

o(4) 2 o(x)

, ld>(f) l@(q)
®(B)
®(B) (Y)

where A and B are k—presentable and the right-hand side square is the image of a
commutative square in sCoalgy under ®. If we factorize the map f* as in Lemma 4.4,
we obtain a commutative diagram:

o(4) 2L o (x)

S

)
d(C) ®(q)
E
t g l<1>(p)
1
0]
o(8) 2PL o(y)

By the assumption that ®(p) is a trivial fibration in sMod%Oj, it follows that there
exists a lift /2 as indicated in the diagram. By the construction of the factorization in
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Lemma 4.4, C is k—presentable, so the map i is in Z. Therefore there is a morphism
hy: C — X such that the following diagram in sCoalgr commutes:

A—2=x

120!

C —Y

Then the composition & = ®(h,)h, provides a lift to the original diagram and hence
the result follows. O

By Theorem 4.1, it follows that the classes of weak equivalences WWx and cofibrations
Cof(Z) define a cofibrantly generated model category structure on sCoalgy . It is left
proper because sModR is left proper (see Theorem 5.7) and the forgetful functor

®: sCoalgr — sMod;gJ

preserves pushouts.

The simplicial structure on sCoalgy, is defined as follows. For every simplicial set K
and simplicial R—coalgebra A, the tensor structure is induced by sModx, ie,

(4-1) K®A:=R{K}®A.

More explicitly, the n—simplices of (K ® A)(U), U € ObC, is the tensor product
R(U)—coalgebra
R(U){Kn} ®R(U) A(U)n

where the coalgebraic structure on the free R(U)-module R(U){K,} is induced
by the canonical maps A: K, — K, x K, and K,, — *. This defines a functor
sSet x sCoalgs, — sCoalgy , which preserves colimits in both variables. Hence it
extends to an adjunction of two variables in the sense of [15, Definition 4.1.12] by
the special adjoint functor theorem. Then it remains to show the compatibility of the
simplicial enrichment with the model structure. Given a monomorphism i: K < L
between finitely presentable simplicial sets and a ®—monomorphism f: 4 — B in Z,
then the morphism of the pushout product

i0f: K®BUgkguL®A—>L®B

is a ®—monomorphism between k —presentable objects, so it is again an element of 7
and hence a cofibration in sCoalgy, . It follows by standard arguments that the pushout
product of any two cofibrations is again a cofibration in sCoalgy (see [15, Lemma
4.2.4]). Since ® preserves pushouts, the morphism ®(i O /') is isomorphic to

iO®(f): K® P(B) Uggaw L ® P(4) - L ® D(B).

Algebraic & Geometric Topology, Volume 13 (2013)



1986 George Raptis

This is a monomorphism and it is trivial if either i or ®(f) is a trivial cofibration
because sModR is a simplicial model category by Theorem 5.7. Hence the simplicial
structure of (4-1) makes the model category sCoalgs, into a simplicial model category.

This concludes the proof of Theorem A.

Remark 4.6 It is not clear whether there is a model category structure such that the
cofibrations are all the ®—monomorphisms. The standard argument to show that this
class is cofibrantly generated (eg see [3, Proposition 1.12]) does not apply here — so the
model category of Theorem A may be different for different choices of sufficiently large
regular cardinals «. The reason is that sCoalgy is not closed under the intersection of
subobjects in sModg since ®: Modr xModr — Modp, is not left exact in general. For
the same reason, the tensor product of simplicial R—coalgebras, which by Theorem 2.4
gives the product functor in sCoalgy, , does not define a monoidal model category in
general.

S Comparison with simplicial presheaves and simplicial
‘R—modules

Throughout this section, we assume a fixed choice of a sufficiently large cardinal «,
as in the proof of Theorem A, and we consider sCoalgp, with the model structure of
Theorem A with respect to this choice of cardinal.

5.1

The homotopy theory of simplicial presheaves and simplicial R—coalgebras are linked
by the functor of simplicial R—chains R{—}: sPSh(C) — sCoalg, . This takes a simpli-
cial presheaf X: C%” — sSet to the simplicial R—coalgebra R{X } whose underlying
R-module is the free R—module on X (denoted also by R{X}) and the coalgebraic
structure is induced by the canonical maps

X5 xxx, XA
More explicitly, R{X}: A — Coalgy, is defined objectwise, by
RiX}n(U) = ROUNX(U)n}
with the coalgebraic structure induced similarly objectwise. This functor has a right

adjoint
p: sCoalgr — sPSh(C);py;,
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which is defined objectwise as follows: given 4: A%’ — Coalgy,, then

p(A)n(U) = Coalgg ) (R(U), An(U))

defines a simplicial presheaf p(A): A° — PSh(C). This adjunction is induced by the
analogous adjunction R{—}: PSh(C) 2 Coalgy, : p from Section 2.

Proposition 5.1  The adjunction R{—}: sPSh(C);,; < sCoalgy, :p is a Quillen adjunc-
tion.

Proof We check that R{—} preserves cofibrations and trivial cofibrations. A generat-
ing set Zjy; for the class of monomorphisms in sPSh(C) is given by all monomorphisms
between k—presentable objects. This is a consequence of the general statement of [3,
Proposition 1.12] combined with some basic properties of the rank of presentability of
presheaves. The image of a Kk —presentable object under R{—} is again x —presentable.
Thus the monomorphisms in Zj,; map to (generating) cofibrations in sCoalgg. It
follows that R{—} preserves cofibrations. It also preserves trivial cofibrations because
it preserves all weak equivalences (cf [18, Lemma 2.1]). O

There is a refinement of the Quillen adjunction above that offers a more precise
comparison. This is obtained by localizing the category of simplicial presheaves at the
class of R-homology equivalences, ie, the morphisms f: X — Y such that R{f}
is a weak equivalence. Note that every local weak equivalence is an 'R—homology
equivalence (eg see [18, Lemma 2.1]). The class of 'R—homology equivalences is the
class of weak equivalences for a new model category structure on sPSh(C), which can
be obtained as a left Bousfield localization of sPSh(C);,;. For background material
about the Bousfield localization of model categories, see Hirschhorn [14].

Theorem 5.2 The left Bousfield localization LrsPSh(C);,; of the model category
sPSh(C);y; at the class of R-homology equivalences exists, and

R{—}: LrsPSh(C);y; < sCoalgy, :p

is a Quillen adjunction.

Proof The class of R—homology equivalences is the inverse image of WWx , which is
accessible and accessibly embedded in sCoalgy; by Proposition 4.3, by the accessible
functor R{—}~: sPSh(C)™ — sCoalgy . Therefore it is accessible and accessibly
embedded in SPSh(C)™ by Proposition 4.2. The existence of the Bousfield localization
follows from Theorem 4.1: conditions (i), (ii) and (iv) are satisfied and (iii) is an easy
consequence of the corresponding condition for sCoalgy, and Proposition 5.1. Then it
is clear that R{—}: LgrsPSh(C);,; — sCoalgy, is a left Quillen functor. a
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As a consequence, there is a derived adjunction

LR{—}: Ho(LzrsPSh(C);,;) < Ho(sCoalgy) :Rp

inj
between the R—local homotopy category of simplicial presheaves and the homotopy
category of simplicial R—coalgebras.

5.2

Assume that R(U) has no non-trivial idempotents for all U € ObC. In this case, the
unit transformation 1 — pR{—} is a natural isomorphism. The adjunction (R{—}, p)
can be used to produce a new model category structure on sCoalgy, . We will need the
following elementary lemma.

Lemma 5.3 Leti: X — Y be a monomorphism in sPSh(C). If
R{IX} — 4

(5-1) | Lj
R{Y} —C

is a pushout square in sCoalgy, , then the adjoint square

X — p(A)

e

Y — p(C)
is a pushout in sSPSh(C).

Proof Since pushouts are computed objectwise, it suffices to check this in the case
of a pushout diagram (5-1) in Coalgp where R is a single commutative ring and
R{—}: Set — Coalgp. In this case, the R—coalgebra C is isomorphic to the direct
sum of the R—coalgebra A with @, cy_y R Where each R, is isomorphic to R
regarded as an R—coalgebra. Then it is easy to check that the set of R—points of C is
the disjoint union of the R—points of A with the set ¥ — X'. O

A morphism f: A — B in sCoalgy, is called a p—weak equivalence (resp. p—fibration)
if the map p(f) is a local weak equivalence (resp. global fibration, ie, a fibration in the
model category sPSh(C);,;). Let W% and Fib;’2 denote the classes of p—weak equiva-
lences and p—fibrations, respectively, and let Cofé’2 denote the class of p—cofibrations,
that is, morphisms that have the left lifting property with respect to all maps that are
both p—weak equivalences and p—fibrations.
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Theorem 5.4 There is a proper, simplicial, cofibrantly generated model category
sCoalgé’2 whose underlying category is sCoalgp and the weak equivalences, fibra-
tions and cofibrations are defined by the classes W5, Fib;)z and Cof%, respectively.
Moreover, the adjunction

R{—}: sPSh(C);,; & sCoalgé’2 P

is a Quillen equivalence.

Proof Using the standard method of transferring a model category structure along an
adjunction [14, Theorem 11.3.2], it suffices to check that for every pushout diagram
in sCoalgp

R{X} —— 4
LR{:’} Lj
RY}——C

where i: X < Y is a trivial cofibration, the morphism j is a p—weak equivalence.
But this follows directly from Lemma 5.3. For generating sets of cofibrations and
trivial cofibrations, we can choose R{Ziyj} and R{Ji;}, respectively, where T, and
Jinj denote generating sets of sPSh(C)mj.

We show that sCoalgé)2 is a simplicial model category. Let I = {0A" — A" |n > 0}
and J = {A} < A" |0 <k < n} be the standard generating sets of cofibrations and
trivial cofibrations of sSet. The simplicial structure is the same as that of Theorem A,
ie, it is defined by

®: sSet x sCoalg% — sCoalg%, KRA=R{K}® A.

By [15, Corollary 4.2.5], it suffices to show that the pushout products in IOR{Zi,;}
are p—cofibrations and those in JOR{Ziy} and I OR{Jiy;} are p—weak equivalences.
The pushout product of i: K — L with f: A — B is the canonical morphism:

i0f: K BUkea L ®A—>L®B

The pushout product of i: K < L in sSet with R{j}: R{X}—R{Y}is R{i O},
where i [0 j denotes the pushout product of i and j with respect to the simplicial
structure of sPSh(C). Thus the required result follows from the fact that sSPSh(C); . i
a simplicial model category.

il’lj 1S

The model category sCoalgf2 right proper because sPSh(C);,; is right proper and p
preserves pullbacks. Left properness follows easily from Lemma 5.3 and the fact that
sPSh(C);y; is left proper.
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Lastly we show that R{—} is a left Quillen equivalence. It suffices to check that the
derived unit transformation is a natural isomorphism. This holds because R{—} - p is
a coreflection and p preserves the weak equivalences by definition. More explicitly,
the derived unit transformation of the Quillen adjunction is defined as follows: given
an object X of sPSh(C);;, let

g RIXY = x/

be a functorial fibrant replacement in sCoalgé)2 obtained by an application of the
small-object argument to the set of trivial cofibrations R{Jiyj}. Then the derived unit
transformation at X can be represented by the map

X = orix 2 px ).

By Lemma 5.3, this is in Jjzj—cell, so in particular it is a local weak equivalence. O

Proposition 5.5 The identity functor 1: sCoalg% — sCoalgy, is a left Quillen functor
between the model categories of Theorem 5.4 and Theorem A.

Proof Let Z;,; be the generating set of monomorphisms in sPSh(C) that consists of
the monomorphisms between «k —presentable objects and 7y a generating set of trivial
cofibrations. Then R{Zi,;} and R{J;nj} are generating sets of cofibrations and trivial
cofibrations for sCoalg%. Every morphism in R{Z;} is a ®—monomorphism between
k—presentable objects and therefore the identity functor preserves cofibrations. Every
morphism in R{Jjy;} is a local weak equivalence. Hence it follows that 1: sCoalg% —
sCoalgy, is a left Quillen functor. i

Remark 5.6 By Lemma 5.3, it is easy to see that the cofibrant objects in sCoalgf2 are
exactly the objects of the form R{X} for some simplicial presheaf X . Thus a cofibrant
replacement functor in sCoalg% is given by the counit transformation of the adjunction
(R{-}, p), ie, the natural morphism R{p(A)} — A is a cofibrant replacement of the
simplicial R—coalgebra 4.

5.3

By Proposition 2.1, the forgetful functor ®: sCoalg, — sModz, is a left adjoint. It is
a left Quillen functor as long as there is a model category structure on sModr where
the weak equivalences are the local weak equivalences of the underlying simplicial
presheaves and which has enough cofibrations. The following theorem is undoubtedly
well-known to the experts but we were not able to find an exact reference for it in the
literature.
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Theorem 5.7 There is a proper, simplicial, cofibrantly generated model category
structure on sModr where the cofibrations are the monomorphisms and the weak
equivalences are the local weak equivalences of the underlying simplicial presheaves.

Proof The proof will follow the method of Theorem 4.1. Let us denote again by Wg
the class of local weak equivalences in sModx . The class of local weak equivalences
in sPSh(C) is accessible and accessibly embedded in sPSh(C)i;J)- by Theorem 4.1.
The forgetful functor ¢: sModr — sPSh(C) is accessible, therefore condition (iv) of
Theorem 4.1 holds by Proposition 4.2. The class of monomorphisms in sMod ,
denoted Mono, is cofibrantly generated by a set of monomorphisms. This is more
generally true in every Grothendieck abelian category; see [3, Proposition 1.12, Remark
1.13]. Next we show that the class Mono N W}y, is closed under pushouts and transfinite
compositions. The closure under transfinite compositions is obvious (since those can
be computed in sPSh(C),..), so it suffices to show that for every pushout square

inj

%X

b

_

where j € MonoNWg, f € Wgx. We work here with the definition of the local weak
equivalences from Section 3 and the terminology used there. Let g: Sh(3) — Sh(C)
be a Boolean localization of Sh(C). There is a pushout diagram of simplicial abelian
groups

p*L2(A)(b) —= p*L*(X)(b)
jj(b) lf(b)
©*L*(B)(b) —= p*L*(Y)(b)

for all b € ObB. Since p* and L? are (left adjoints of) geometric morphisms, they
preserve monomorphisms, so j(b) is a monomorphism. It is also a weak equivalence
of simplicial sets by assumption. Then it follows that f(b) is also a weak equivalence
and so condition (iii) of Theorem 4.1 follows.

It remains to verify condition (ii) of Theorem 4.1. Let I%roj = R{Zc} be the generating
set of cofibrations for sMod%oJ as defined in Section 3. Clearly I%mj € Mono, so
Mono —inj € Zh” —inj. Butif / € Z” —inj then f is a local weak equivalence, so
(ii) follows. Hence by Theorem 4.1, there is a cofibrantly generated model category,
denoted by sMody , as required.
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This model category is right proper because sPSh(C);; is right proper and the forgetful

functor -
i: sMody — sPSh(C)jp;

is a right Quillen functor. The proof that it also left proper is similar with the arguments
above based on Boolean localization.

It remains to show that the model category is also simplicial. Let i: K <> L be an
inclusion of simplicial sets and p: M — N a fibration in sModl;g. Since p is also a
fibration in sMod%Obal, which is a simplicial model category by [18, Lemma 2.2], the
canonical map
ME S NE x MK
NK

is a Kan fibration and it is trivial if either 7 or p is trivial. This concludes the proof of
the theorem. |

Remark 5.8 Itis clear from the proof that for every set of monomorphisms I in sModg
such that I —inj € Wg, there is a left proper, simplicial, cofibrantly generated model
category structure on sModg with class of cofibrations Cof(I) and weak equivalences
Wr . It is also right proper if R{i}: R{X} — R{Y} is in Cof(I) for every projective
cofibration i: X — Y of simplicial presheaves.

The following proposition is now obvious.

Proposition 5.9 The forgetful functor ®: sCoalg, — sModiféj is a left Quillen functor.

6 Proof of Theorem B

6.1
We remind the reader of certain facts about the structure of coalgebras over a perfect
field. For more details, see [12; 28].

Let F be a perfect field. An F—coalgebra is called simple if it has no non-trivial
subcoalgebras. Every simple F —coalgebra is finite dimensional and the dual [F —algebra
is a finite field extension of [F. The étale part Et(A) of an [F —coalgebra A is the sum
of all the simple subcoalgebras of 4. This sum is known to be direct; see [28, p. 166].
According to the decomposition theorem (see [8, p. 42; 12]), the inclusion

Et(4) C 4

is a natural split monomorphism of coalgebras.
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If IF is algebraically closed, then [F is the unique simple [ —coalgebra up to isomorphism.
The étale part of an [F —coalgebra A in this case can be identified with the canonical
counit map F{p(A4)} — A, that is, there is a natural isomorphism

(6-1) F{p(4)} => Et(A).

Note of course that an arbitrary change of fields F € K may give rise to K—points of
A ®r K that are not induced by F—points of 4. But any K—point of 4 ®F K is also
an F—point of A QF T where F C F denotes the algebraic closure (see Parker [23,
Section 3]). Therefore the isomorphism (6-1) is natural with respect to field extensions
of algebraically closed fields, that is, if IF € K are algebraically closed fields and 4 is
an I —coalgebra, then there is a natural bijection p(4) => p(4 ®F K).

The isomorphism (6-1) can be extended to a description of the étale part of the IF—
coalgebra A in the general case where [ is a perfect field. This is essentially a
consequence of Galois theory. Let F be the algebraic closure of F and G the Galois
group. The Galois group G is regarded as a profinite group, so a G —action is always
understood to be continuous. Recall that an action of G on a set is continuous if
and only if every element has a finite orbit. Let A := A ® F denote the associated
T —coalgebra. The set of F—points of A generate the étale part of 4 by (6-1) above.
Moreover, it is naturally a G—set. More explicitly, the G —action is defined as follows:
given an F—point /:F — A and g € G, (g- f)(x) = (1 ® g) fg~'(x). In other
words, there is a commutative diagram

The associated F—coalgebra F{p(A)} is also naturally endowed with a G—action. The
G —action is defined by the formula

g(Xoxifi) =Y etee o).

This makes the canonical evaluation map

F{p(4)} -4

Y oxifir Y filx)
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invariant under the G —action. The étale part Et(A) of A is naturally isomorphic to the
G —invariants of F{p(A)}, ie, there is a natural isomorphism (see [12, Proposition 2.8])

(6-2) F{p(4)}° = Ex(4).

More generally, if X is a G—set, the G—invariants of the F —coalgebra F { X'} naturally
form an F —coalgebra. Let Set(G) denote the category of sets with a continuous G —
action. We note that this is a Grothendieck topos; eg, see [21, p. 596]. Then there is a
functor

F{-}%: Set(G) — Coalgp.

This functor has a right adjoint pg: Coalgy — Set(G), which is defined on objects by
the formula
pG(A) = Coalgg(F, 4 ®F F).

6.2

We can now prove Theorem B. Let & be a presheaf of algebraically closed fields on C.
The main argument of the proof lies in the following proposition.

Proposition 6.1 The functor p: sCoalgg — sPSh(C)
% —homology equivalences.

inj sends weak equivalences to

Proof Let f: A — B be a weak equivalence of simplicial %—coalgebras. The
naturality of the splitting of the étale part of coalgebras is respected along extensions
of algebraically closed fields, so it follows that the map

Fo(f)}: Flp(A)} — F{p(B)}
is a retract of f in the category of morphisms between simplicial %—coalgebras. Since
weak equivalences are closed under retracts, the required result follows. a
To finish the proof of Theorem B, it suffices to show that the natural derived unit map
X - Rp(F{X})

is a natural isomorphism in the ZF—local homotopy category. This follows directly from
the fact that both functors of the Quillen adjunction

(6-3) F{—}: LgsPSh(C);y; < sCoalgg :p

preserve the weak equivalences, so the derived unit transformation is essentially defined
directly by the unit transformation of the coreflection (6-3). More explicitly, let
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F{X} => F{X}/ be a functorial fibrant replacement in sCoalgg. The derived unit
map of the Quillen adjunction can be represented by the natural map

X = p(F{X}) — p(FX ).

By Proposition 6.1, this is an -homology equivalence, so an isomorphism in the
homotopy category of LgsPSh(C),,;. This completes the proof of Theorem B.

inj -

The following is an immediate corollary.

Corollary 6.2 Let X and Y be simplicial presheaves in sPSh(C);,; and ¥ be a
presheaf of algebraically closed fields. Then X =Y in Ho(LgsPSh(C);,) if and only
it #{X} = #{Y} in Ho(sCoalgg).

6.3

Let & be the constant presheaf at a perfect field F. Theorem B together with the
isomorphism (6-2) can be used to give a nice description of the derived unit transfor-
mation of (6-3) in this case. The main idea is again based on the natural splitting of
the étale part of an IF —coalgebra, but now this can be related to the G —invariants of the
T —points rather than with the F—points directly. This brings the action of the Galois
group into the picture. The arguments are completely analogous to [12, pp. 541-543],
so we only sketch the necessary details.

Let F denote the algebraic closure of F, and G the profinite Galois group. Let
sPSh(C, G) denote the category of simplicial presheaves of G —sets. Say that a mor-
phism between simplicial presheaves of G —sets is a local weak equivalence (resp.
cofibration) if the morphism of the underlying simplicial presheaves (of sets), by
forgetting the G —action, is a local weak equivalence (resp. monomorphism).

Theorem 6.3 The category sPSh(C, G) together with the classes of local weak equiv-
alences and cofibrations define a combinatorial model category.

Proof The category sPSh(C, G) can be equivalently viewed as the category of pre-
sheaves of simplicial G —sets. The category of simplicial G —sets, denoted by sSet(G),
has a combinatorial model category structure where the cofibrations are the monomor-
phisms and the weak equivalences are the weak equivalences of the underlying simplicial
sets (Goerss [11]). Then there is an injective model category structure on sPSh(C, G)
where the cofibrations and the weak equivalences are defined sectionwise. This is again
a combinatorial model category; see [20, Proposition A.2.8.2]. The required model
category will be obtained as a left Bousfield localization of this injective model category
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by an application of Theorem 4.1. We check that the conditions are satisfied: (i) and (ii)
are obvious. Let i: * — G denote the obvious inclusion and i *: sPSh(C, G) — sPSh(C)
be the forgetful functor. Condition (iii) holds because i * preserves monomorphisms and
pushouts. For (iv), note that the class of local weak equivalences in sPSh(C, G)™ is the
inverse image of the class of local weak equivalences in sPSh(C) under the accessible
functor i*: sPSh(C, G) — sPSh(C). Since the class of local weak equivalences in
sPSh(C) is accessible and accessibly embedded (by Theorem 4.1), so also is the class
of local weak equivalences in sPSh(C,G)™ by Proposition 4.2. Hence the conditions
of Theorem 4.1 are satisfied and the result follows. m|

This model category will be denoted by sPSh(C, G);,;. Let % denote the constant
presheaf at F. The next proposition shows that the comparison Quillen adjunction
between LgsPSh(C);,; and sCoalgg factors through the model category sPSh(C, G);p;.-

Proposition 6.4 There are Quillen adjunctions
p*: sPSh(C);y,; 2 sPSh(C. G)py : ()€,
F{—}9: sPSh(C, G);,; 2 sCoalgg :pg.
Proof The left adjoint p* is the pullback functor induced by the unique functor
G — *,ie, p*(X) is the simplicial presheaf X endowed with the trivial G —action.
It is clear that p* preserves cofibrations and trivial cofibrations, so it is a left Quillen

functor. The right adjoint is the limit functor, which, in this case, is just the functor of
G —fixed points.

For a simplicial presheaf of G—sets X, the simplicial F—coalgebra F{X}C is defined
sectionwise by the formula

FXC W) =F XU}
The right adjoint pg is defined by the formula
pG (A)(U)y = Coalgg (F, A(U)n ®F F).

F{—YC clearly preserves cofibrations. Moreover, there is a natural isomorphism (see
the proof of [12, Lemma 4.3]),

Qg F{X 10 = F(X}

«

(6-4)

from which it follows that F{—}C sends F-homology equivalences to weak equiva-
lences. In particular, it preserves trivial cofibrations and so it is a left Quillen functor. O
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Let LzsPSh(C, G)yy; denote the left Bousfield localization of sPSh(C, G);,; at the class
of F—homology equivalences of the underlying simplicial presheaves. The proof that
this Bousfield localization exists is similar to the proof of Theorem 5.2. There is an
induced Quillen adjunction:

(6-5) p*: LgsPSh(C);,; 2 LysPSh(C, Gy :(—)°.

Moreover, as shown in the proof of Proposition 6.4, there is an induced Quillen
adjunction (cf [12, Lemma 4.3]),

(6-6) F{—}9: LzsPSh(C. G);y 2 sCoalgy :pg.
and so also an associated derived adjunction (cf [12, Proposition 4.4]),
]L@{—}G: Ho(LzsPSh(C, G);,;) < Ho(sCoalgg) :Rpg-.

Note that the natural isomorphism (6-4) shows that the adjunction (6-6) is a coreflection,
ie, the unit transformation of the adjunction is a natural isomorphism. The following
theorem is the analogue of Theorem B for the presheaf &.

Theorem 6.5 The left adjoint

]LOE{—}G: Ho(LzsPSh(C, G);,;) — Ho(sCoalgy)

inj

is fully faithful.

Proof Similarly to the proof of Theorem B, it suffices to show that pg preserves the
weak equivalences, ie, it sends weak equivalences to F—homology equivalences. This
is a consequence of the natural splitting of the étale part of an IF—coalgebra similarly
to the proof of Proposition 6.1. The result follows from the identification of the étale
part using the isomorphism (6-2) and the isomorphism (6-4). m|

The last theorem can be used to give a nice description of the unit transformation of
the derived adjunction

(6-7) LF{—}: Ho(LgsPSh(C);y;) < Ho(sCoalgg) :Rp.

Let X be a simplicial presheaf and p*(X') be the simplicial presheaf X endowed with
the trivial G —action. Let
PHX) = pr(x)/

be a functorial fibrant replacement of p*(X) in LzsPSh(C, G);,;. We have the follow-

ing corollary.

inj
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Corollary 6.6 The canonical derived unit map X — (Rp)(F{X}) of (6-7) can be
identified, up to a natural isomorphism in the homotopy category, with the canonical
map X — (p*(X)/)¢.

Proof Note that the Quillen adjunction (%{—}, p) is the composition of the Quillen
adjunctions (6-5) and (6-6) obtained from Proposition 6.4. By Theorem 6.5, the
derived unit transformation of the Quillen adjunction (F{—1C, pG) (6-6) is a natural
isomorphism. Hence the result follows. |

6.4

We end with a remark about the general case of an arbitrary presheaf & of perfect fields.
The non-functoriality of algebraic closures becomes the main issue in treating this
case using similar arguments. On the other hand, note that the class of #—homology
equivalences depends only on the characteristics of the fields involved.

We only comment on the following special case. Suppose that the Grothendieck site
C has a terminal object denoted by 1. Examples include the sites of open subsets of
topological spaces. Let & be an arbitrary presheaf of perfect fields on C and let %,
denote the constant presheaf at %(1) = IF. Thus there is a morphism of presheaves
%, — F. Let F be the algebraic closure of F, G the profinite Galois group and %,
the constant presheaf at I .

The Quillen adjunction
(6-8) F1{—}: LgsPSh(C);y; 2 sCoalgg, :p

can written as the composition of the following three adjunctions: the Quillen equiva-
lence

1: LgsPSh(C);y; & La, sPSh(C);p; 11
and the Quillen adjunctions
p*: Lg, sPSh(C);yy 2 Lz sPSh(C. G)yy ()€,
@1{—}(;: Lz sPSh(C, G);,; & sCoalgg, :pg-
Therefore the derived unit transformation of (6-8) can be expressed in terms of the

derived unit transformation of the Quillen adjunction (%;{—}, p) as described in
Corollary 6.6.
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