Volume 13, issue 4 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Diagram spaces, diagram spectra and spectra of units

John A Lind

Algebraic & Geometric Topology 13 (2013) 1857–1935
Bibliography
1 M Ando, A J Blumberg, D J Gepner, M J Hopkins, C Rezk, Units of ring spectra and Thom spectra (2009) arXiv:0810.4535v3
2 M Ando, M J Hopkins, C Rezk, Multiplicative Orientations of $KO$–theory and of the spectrum of topological modular forms, preprint (2010)
3 A J Blumberg, Progress towards the calculation of the $K$–theory of Thom spectra, PhD thesis, University of Chicago (2005) MR2717243
4 A J Blumberg, R L Cohen, C Schlichtkrull, Topological Hochschild homology of Thom spectra and the free loop space, Geom. Topol. 14 (2010) 1165 MR2651551
5 M Bökstedt, Topological Hochschild homology, Bielefeld (1985)
6 M Brun, Topological Hochschild homology of $\mathbf{Z}/p^n$, J. Pure Appl. Algebra 148 (2000) 29 MR1750729
7 A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Math. Surv. Monogr. 47, Amer. Math. Soc. (1997) MR1417719
8 A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163 MR2254311
9 J Hollender, R M Vogt, Modules of topological spaces, applications to homotopy limits and $E_\infty$ structures, Arch. Math. $($Basel$)$ 59 (1992) 115 MR1170635
10 M Hovey, Model categories, Math. Surv. Monogr. 63, Amer. Math. Soc. (1999) MR1650134
11 M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 MR1695653
12 L G Lewis Jr., J P May, M Steinberger, J E McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics 1213, Springer (1986) MR866482
13 M A Mandell, J P May, Equivariant orthogonal spectra and $S$-modules, Mem. Amer. Math. Soc. 755, Amer. Math. Soc. (2002) MR1922205
14 M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 MR1806878
15 M A Mandell, B Shipley, A telescope comparison lemma for THH, Topology Appl. 117 (2002) 161 MR1875908
16 J P May, $E_{\infty }$ spaces, group completions, and permutative categories, from: "New developments in topology" (editor G Segal), London Math. Soc. Lecture Note Ser. 11, Cambridge Univ. Press (1974) 61 MR0339152
17 J P May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics 577, Springer (1977) 268 MR0494077
18 J P May, The spectra associated to $\mathcal{I}$-monoids, Math. Proc. Cambridge Philos. Soc. 84 (1978) 313 MR0488033
19 J P May, The spectra associated to permutative categories, Topology 17 (1978) 225 MR508886
20 J P May, What are $E_\infty$ ring spaces good for?, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16 (2009) 331 MR2544393
21 J P May, What precisely are $E_\infty$ ring spaces and $E_\infty$ ring spectra?, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16 (2009) 215 MR2544391
22 J P May, J Sigurdsson, Parametrized homotopy theory, Math. Surv. Monogr. 132, Amer. Math. Soc. (2006) MR2271789
23 J P May, R Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978) 205 MR508885
24 J P Meyer, Bar and cobar constructions, II, J. Pure Appl. Algebra 43 (1986) 179 MR866618
25 C Rezk, The units of a ring spectrum and a logarithmic cohomology operation, J. Amer. Math. Soc. 19 (2006) 969 MR2219307
26 J Rognes, Topological logarithmic structures, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16 (2009) 401 MR2544395
27 S Sagave, C Schlichtkrull, Diagram spaces and symmetric spectra, Adv. Math. 231 (2012) 2116 MR2964635
28 C Schlichtkrull, Units of ring spectra and their traces in algebraic $K$–theory, Geom. Topol. 8 (2004) 645 MR2057776
29 C Schlichtkrull, Thom spectra that are symmetric spectra, Doc. Math. 14 (2009) 699 MR2578805
30 C Schlichtkrull, Higher topological Hochschild homology of Thom spectra, J. Topol. 4 (2011) 161 MR2783381
31 M Schulman, Homotopy limits and colimits and enriched homotopy theory arXiv:0610194v2
32 S Schwede, $S$-modules and symmetric spectra, Math. Ann. 319 (2001) 517 MR1819881
33 S Schwede, On the homotopy groups of symmetric spectra, Geom. Topol. 12 (2008) 1313 MR2421129
34 S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. 80 (2000) 491 MR1734325
35 B Shipley, Symmetric spectra and topological Hochschild homology, $K$–Theory 19 (2000) 155 MR1740756
36 M Shulman, Comparing composites of left and right derived functors, New York J. Math. 17 (2011) 75 MR2781909