Volume 13, issue 4 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Ethics Statement
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Diagram spaces, diagram spectra and spectra of units

John A Lind

Algebraic & Geometric Topology 13 (2013) 1857–1935
Bibliography
1 M Ando, A J Blumberg, D J Gepner, M J Hopkins, C Rezk, Units of ring spectra and Thom spectra (2009) arXiv:0810.4535v3
2 M Ando, M J Hopkins, C Rezk, Multiplicative Orientations of $KO$–theory and of the spectrum of topological modular forms, preprint (2010)
3 A J Blumberg, Progress towards the calculation of the $K$–theory of Thom spectra, PhD thesis, University of Chicago (2005) MR2717243
4 A J Blumberg, R L Cohen, C Schlichtkrull, Topological Hochschild homology of Thom spectra and the free loop space, Geom. Topol. 14 (2010) 1165 MR2651551
5 M Bökstedt, Topological Hochschild homology, Bielefeld (1985)
6 M Brun, Topological Hochschild homology of $\mathbf{Z}/p^n$, J. Pure Appl. Algebra 148 (2000) 29 MR1750729
7 A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Math. Surv. Monogr. 47, Amer. Math. Soc. (1997) MR1417719
8 A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163 MR2254311
9 J Hollender, R M Vogt, Modules of topological spaces, applications to homotopy limits and $E_\infty$ structures, Arch. Math. $($Basel$)$ 59 (1992) 115 MR1170635
10 M Hovey, Model categories, Math. Surv. Monogr. 63, Amer. Math. Soc. (1999) MR1650134
11 M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149 MR1695653
12 L G Lewis Jr., J P May, M Steinberger, J E McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics 1213, Springer (1986) MR866482
13 M A Mandell, J P May, Equivariant orthogonal spectra and $S$-modules, Mem. Amer. Math. Soc. 755, Amer. Math. Soc. (2002) MR1922205
14 M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441 MR1806878
15 M A Mandell, B Shipley, A telescope comparison lemma for THH, Topology Appl. 117 (2002) 161 MR1875908
16 J P May, $E_{\infty }$ spaces, group completions, and permutative categories, from: "New developments in topology" (editor G Segal), London Math. Soc. Lecture Note Ser. 11, Cambridge Univ. Press (1974) 61 MR0339152
17 J P May, $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics 577, Springer (1977) 268 MR0494077
18 J P May, The spectra associated to $\mathcal{I}$-monoids, Math. Proc. Cambridge Philos. Soc. 84 (1978) 313 MR0488033
19 J P May, The spectra associated to permutative categories, Topology 17 (1978) 225 MR508886
20 J P May, What are $E_\infty$ ring spaces good for?, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16 (2009) 331 MR2544393
21 J P May, What precisely are $E_\infty$ ring spaces and $E_\infty$ ring spectra?, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16 (2009) 215 MR2544391
22 J P May, J Sigurdsson, Parametrized homotopy theory, Math. Surv. Monogr. 132, Amer. Math. Soc. (2006) MR2271789
23 J P May, R Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978) 205 MR508885
24 J P Meyer, Bar and cobar constructions, II, J. Pure Appl. Algebra 43 (1986) 179 MR866618
25 C Rezk, The units of a ring spectrum and a logarithmic cohomology operation, J. Amer. Math. Soc. 19 (2006) 969 MR2219307
26 J Rognes, Topological logarithmic structures, from: "New topological contexts for Galois theory and algebraic geometry" (editors A Baker, B Richter), Geom. Topol. Monogr. 16 (2009) 401 MR2544395
27 S Sagave, C Schlichtkrull, Diagram spaces and symmetric spectra, Adv. Math. 231 (2012) 2116 MR2964635
28 C Schlichtkrull, Units of ring spectra and their traces in algebraic $K$–theory, Geom. Topol. 8 (2004) 645 MR2057776
29 C Schlichtkrull, Thom spectra that are symmetric spectra, Doc. Math. 14 (2009) 699 MR2578805
30 C Schlichtkrull, Higher topological Hochschild homology of Thom spectra, J. Topol. 4 (2011) 161 MR2783381
31 M Schulman, Homotopy limits and colimits and enriched homotopy theory arXiv:0610194v2
32 S Schwede, $S$-modules and symmetric spectra, Math. Ann. 319 (2001) 517 MR1819881
33 S Schwede, On the homotopy groups of symmetric spectra, Geom. Topol. 12 (2008) 1313 MR2421129
34 S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. 80 (2000) 491 MR1734325
35 B Shipley, Symmetric spectra and topological Hochschild homology, $K$–Theory 19 (2000) 155 MR1740756
36 M Shulman, Comparing composites of left and right derived functors, New York J. Math. 17 (2011) 75 MR2781909