Volume 13, issue 4 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
On real analytic orbifolds and Riemannian metrics

Marja Kankaanrinta

Algebraic & Geometric Topology 13 (2013) 2369–2381
Abstract

We begin by showing that every real analytic orbifold has a real analytic Riemannian metric. It follows that every reduced real analytic orbifold can be expressed as a quotient of a real analytic manifold by a real analytic almost free action of a compact Lie group. We then extend a well-known result of Nomizu and Ozeki concerning Riemannian metrics on manifolds to the orbifold setting: Let X be a smooth (real analytic) orbifold and let α be a smooth (real analytic) Riemannian metric on X. Then X has a complete smooth (real analytic) Riemannian metric conformal to α.

Keywords
orbifold, real analytic, complete Riemannian metric, frame bundle
Mathematical Subject Classification 2010
Primary: 57R18
References
Publication
Received: 3 December 2012
Accepted: 17 March 2013
Published: 2 July 2013
Authors
Marja Kankaanrinta
Department of Mathematics
University of Virginia
PO Box 400137
Charlottesville, VA 22903
USA