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Slice knots which bound punctured Klein bottles

ARUNIMA RAY

We investigate the properties of knots in S3 which bound punctured Klein bottles,
such that a pushoff of the knot has zero linking number with the knot, ie has zero
framing. This is motivated by the many results in the literature regarding slice knots
of genus one, for example, the existence of homologically essential zero self-linking
simple closed curves on genus one Seifert surfaces for algebraically slice knots. Given
a knot K bounding a punctured Klein bottle F with zero framing, we show that J ,
the core of the orientation preserving band in any disk–band form of F , has zero
self-linking. We prove that such a K is slice in a Z

�
1
2

�
–homology B4 if and only

if J is as well, a stronger result than what is currently known for genus one slice
knots. As an application, we prove that given knots K and J and any odd integer p ,
the .2;p/–cables of K and J are Z

�
1
2

�
–concordant if and only if K and J are

Z
�

1
2

�
–concordant. In particular, if the .2; 1/–cable of a knot K is slice, K is slice

in a Z
�

1
2

�
–homology ball.
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1 Introduction

A knot is the image of a smooth embedding S1 ,! S3 D @B4 . A knot is called
slice if it bounds a smoothly embedded disk in B4 . The set of knots, modulo slice
knots, under the connected sum operation forms an abelian group called the knot
concordance group, denoted by C . In [26; 27], Levine described a surjection from C
to Z1 ˚ .Z=2Z/1 ˚ .Z=4Z/1 . Knots in the kernel of this map are said to be
algebraically slice. The quotient of C by algebraically slice knots is called the algebraic
knot concordance group, denoted AC .

It is a well-known fact that given any knot K , we can find an embedded oriented
surface in S3 whose single boundary component is K . Such a surface is called a
Seifert surface. Seifert surfaces give rise to a multitude of knot invariants, such as the
genus of K , the minimum genus of a Seifert surface for K . There are many results in
the literature about the properties of genus one knots, ie knots which bound punctured
tori. These represent the simplest nontrivial class of Seifert surfaces. In [13] Gilmer
showed that if a knot K is algebraically slice and bounds a punctured torus F then,
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2714 Arunima Ray

up to isotopy and orientation, there are exactly two homologically essential simple
closed curves J1 and J2 on F with zero self-linking with respect to the Seifert form
on F . This is an important result, since if one of these curves Ji is a slice knot, K

must be slice as well since we can construct a slice disk or K by surgering F along J1

or J2 . Consequently, curves such as J1 and J2 , namely, homologically essential
simple closed curves on a genus one surface with self-linking zero, are called surgery
curves for F . In 1982 [21, Strong conjecture, page 226], Kauffman conjectured the
converse as follows.

Conjecture (Kauffman’s conjecture [24, Problem N1.52]) K is a slice knot with a
genus one Seifert surface F if and only if F has a surgery curve which is slice.

Much work has been done towards proving this result, such as by Cooper [12],
Gilmer [14], Cochran, Orr and Teichner [10], and Cochran, Harvey and Leidy [8].
Casson–Gordon theory can be used to show that at least one of the curves Ji must satisfy
some strong requirements on its algebraic concordance class, but it was recently shown
by Gilmer and Livingston that these fail to imply a vanishing signature function [15].
Soon after this present paper was completed, Cochran and Davis [4] showed that
Kauffman’s conjecture is false. In particular, they constructed (smoothly) slice knots
that admit Seifert surfaces such that neither surgery curve has zero Arf invariant.
Moreover, there exist examples where the Seifert surfaces considered are the unique
minimal genus Seifert surface up to isotopy. We note that the Arf invariant is a
remarkably weak invariant and therefore, Cochran and Davis have shown that very
little can be said about the concordance properties of surgery curves on genus one
Seifert surfaces for slice knots.

The motivation for this paper is to understand what is true in the analogous context
of knots which bound punctured Klein bottles. (Notice that this is slight abuse of
terminology: we are referring to Klein bottles with a disk removed, whose single
boundary component consists of the knot. These are of course different from punctured
Klein bottles, but we retain the terminology for the sake of brevity.) Recall that for a
connected, compact nonorientable surface the term genus is used to refer to the number
of summands in its unique decomposition as a connected sum of real projective planes
(with disks removed if necessary). In [3], Clark defined the crosscap number of a knot,
denoted c.K/, to be the minimum genus of nonorientable surfaces bounded by K .
This invariant is occasionally referred to as the crosscap genus or the nonorientable
genus of K . c.K/ is a useful invariant since there are knots of arbitrarily large genus
with c.K/D 1. A lot of work has been done on computing the crosscap numbers of
certain families of knots; see eg Clark [3], Murakami and Yasuhara [32], Teragaito [39;
40], Hirasawa and Teragaito [19], and Ichihara and Mizushima [20].
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Knots with c.K/D 1 are completely classified by the following result of Clark.

Proposition [3, Proposition 2.2] c.K/D 1 if and only if K is a .2; n/–cable knot.

As a result, punctured Klein bottles represent the simplest classes of nonorientable
surfaces bounded by knots which are not easily understood. Knots bounding punctured
Klein bottles were used by Hedden, Livingston and Ruberman in [18] to construct
examples of topologically slice knots with nontrivial Alexander polynomials.

Suppose a knot K bounds a nonorientable surface F . If we define the longitude �
of K to be a pushoff in the direction of F , we see that � bounds a nonorientable
surface in the knot complement and therefore, has even linking number with the knot.
In this paper we will often assume, to parallel the orientable case, that lk.K; �/D 0.

Definition 3.1 Let K � S3 be a knot and F � S3 be a nonorientable surface with
K D @F . Let N.K/ be a regular neighborhood of K . We refer to �D F \ @N.K/ as
the longitude of K . We define the framing of F to be lk.K; �/, denoted F.F /.

The main result of our paper is the following.

Main Theorem If a slice knot K bounds a punctured Klein bottle F with F.F /D 0,
we can find a 2–sided homologically essential closed curve J embedded in F with
self-linking zero which is slice in a Z

�
1
2

�
–homology ball and hence, rationally slice (ie

slice in a Q–homology B4 ).

We will see that surgering F along a slice curve J as mentioned in the above theorem
also yields a slice disk for K . Therefore, the notion of surgery curve can be extended
to nonorientable surfaces of genus 2.

Rational concordance has been studied extensively and in great generality, such as by
Cha [1]. Being rationally slice is a strong condition since many classical concordance
invariants secretly obstruct knots being Q–concordant. For example, it is known that
both the Levine–Tristram signature function and the � -invariant of Ozsváth and Szabó
and Rasmussen [34; 36] are zero for rationally slice knots. Therefore, in marked
contrast to the genus one case, our result shows that there are very strong restrictions
on the concordance class of surgery curves on punctured Klein bottles.

We will start this paper by proving some general properties of nonorientable surfaces
bounded by knots with zero framing, followed by our main theorem and other results
relating to concordance. The tools developed will enable us to prove a surprising
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corollary about cable knots. We will use the notation K.m;n/ to denote the .m; n/–
cable of a knot K . Details about the cabling operation can be found in any introductory
knot theory textbook, such as Rolfsen [38, Chapter 4D]. It can be easily shown that
given concordant knots K and J , K.m;n/ and J.m;n/ are concordant for any choice
of m and n. Using our results in Sections 2 and 3 we will prove the following partial
converse.

Corollary Given knots K and J and any odd integer p , if K.2;p/ is concordant
to J.2;p/ then K is concordant to J in a Z

�
1
2

�
–homology S3 � Œ0; 1�. In partic-

ular, if K.2;p/ is concordant to the .2;p/–torus knot, then K is slice in a Z
�

1
2

�
–

homology B4 .

This result is related to the recent work studying whether satellite operations are injective
on the smooth knot concordance group (for instance, see Hedden and Kirk [17] or
Cochran, Harvey and Leidy [8]), ie if two satellite knots on the same pattern knot are
concordant, are the companion knots concordant? The (conjectured) smooth injectivity
of the Whitehead doubling operator, for instance, has been studied for many years;
see [25, Problem 1.38]. Corollary 5.6 has been generalized by Cochran, Davis and the
author to a much larger family of satellite operators in [5].

Acknowledgements We would like to thank Tim Cochran and Chris Davis for helpful
conversations.

2 Notation and definitions

We will work in the smooth category. Two knots Ki ,!S3D @B4 , i D 0; 1, are said to
be concordant if there exists a smooth proper embedding of an annulus into S3� Œ0; 1�

that restricts to Ki on each S3 � fig. A knot is called slice if it is concordant to the
unknot, or equivalently, if it is the boundary of a smooth embedding of a 2–disk in B4 .

There is a corresponding notion of knots being slice and concordant in spaces which
look like B4 and S3 � Œ0; 1� with respect to homology with specified coefficients.
Suppose R � Q is a nonzero subring. A space X is called an R–homology Y if
H�.X IR/ŠH�.Y IR/. Knots K0 and K1 in S3 are said to be R–concordant if there
exists a compact, oriented, smooth 4–manifold W such that W is an R–homology
S3� Œ0; 1�, @W DS3�f0g t �S3�f1g, and there exists a smooth properly embedded
annulus in W which restricts on its boundary to the given knots. We say that K is
R–slice if it is R–concordant to the unknot, or equivalently if it bounds a smoothly
embedded 2–disk in an R–homology 4–ball whose boundary is S3 . The set of knots
modulo R–slice knots forms an abelian group.
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Two 3–manifolds M1 and M2 are said to be homology cobordant if there exists
a 4–manifold W which is a smooth cobordism between M1 and M2 , such that
H�.W;M1/ D 0 D H�.W;M2/. For R as above, M1 and M2 are called R–
homology cobordant if there exists a W as above with the weaker requirement that
H�.W;M1IR/D 0DH�.W;M2IR/. For any knot K we will use the notation MK

to denote the zero-framed surgery on K .

A curve 
 on a surface F � S3 is called 2–sided if it has a regular neighborhood
in F homeomorphic to an annulus, ie it has a trivial normal bundle. It is well known
that 
 is orientation preserving if and only if it is 2–sided. A 2–sided 
 has a
regular neighborhood which is an annulus. Let 
C and 
� denote the two boundary
components of this annulus. The self-linking of 
 is defined to be lk.
; 
C/ D
lk.
�; 
 /D lk.
�; 
C/.

We will also frequently require the ‘disk–band’ form of an embedded surface with
boundary. We recall that given any embedding in S3 of a surface F with a single
boundary component, there is an ambient isotopy of S3 taking F to the standard form
of a disk with bands attached, wherein the bands may be twisted, linked or knotted, by
collapsing towards the 1–skeleton. This process is described in [21, pages 81]. We
will additionally require that the disk–band form of a punctured Klein bottle contain an
orientation preserving band, ie exactly one of the two bands in the disk band form has
an odd number of half twists.

3 Properties of knots bounding punctured Klein bottles with
zero framing

We recall the following definition from Section 1.

Definition 3.1 Let K � S3 be a knot and F � S3 be a nonorientable surface with
K D @F . Let N.K/ be a regular neighborhood of K . We refer to �D F \@N.K/ as
the longitude of K . We define the framing of F to be lk.K; �/, denoted F.F /.

Given an embedding of a surface F , we can first perform an ambient isotopy on S3 to
get F in disk–band form. Given such an embedding, one can obtain F.F / by drawing
a parallel to the boundary and computing the linking number. Such a calculation can
be performed solely on the basis of the types and numbers of crossings of the bands
and the twists in each band.

We notice that � bounds a nonorientable surface in the complement of K , and there-
fore, F.F / is always an even number. In this paper we will often further restrict F.F /
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to be zero to mirror the orientable case. We start by investigating some implications of
the zero framing condition on any nonorientable surfaces which bound knots. First of
all, it would be nice to know that this is possible.

Proposition 3.2 Any knot K bounds some nonorientable surface (compact with a
single boundary component smoothly embedded in S3 ) with zero framing.

Proof We know that any knot K bounds some such nonorientable surface, F , obtained
using the checkerboard coloring of a diagram for K [3]. F.F / is an even number,
which is additive under boundary connect sum of surfaces by the remarks above. We
can take the boundary connect sum of F with as many copies of the Möbius bands
in Figure 1 to change the framing to 0. This does not change the knot type of the
boundary since the Möbius bands in Figure 1 bound unknots.

Alternately, one can start with a Seifert Surface F for K , and then boundary con-
nect sum F with both the Möbius bands in Figure 1. The resulting framing will
be 0C 2� 2D 0.1

FramingDC2 FramingD�2

Figure 1: Möbius bands bounded by the unknot. Given a nonorientable
surface F bounded by some knot K , we boundary connect sum F with the
Möbius bands above to change framing without changing the knot type of the
boundary.

Lemma 3.3 Suppose a knot K bounds a nonorientable surface F (with a single
boundary component) with framing F.F /. F.F /� 2 mod 4 if and only if the genus
of F is odd; F.F /� 0 mod 4 if and only if the genus of F is even. In particular, if
F.F /D 0, F has even genus.

Proof For any knot K , if F is a surface (possibly nonorientable) with @F DK , there
exists a nonsingular symmetric bilinear form (see Gordon and Litherland [16] and
Lickorish [28, Chapter 9])

GF W H1.F /�H1.F /! Z

1We are grateful to the anonymous referee who suggested this alternate proof.
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such that

�.K/D sign.GF /�
1

2
F.K/;

where sign.GF / is the signature of any matrix representing the bilinear form GF .
Since GF is a nonsingular bilinear form on H1.F /, sign.GF / is even exactly when
dim.H1.F // is even, ie F has even genus. Since �.K/ is always even, 1

2
F.F / is

even exactly when F has even genus.

Twisted 2–cable of a 2g–strand string link

Figure 2: Disk band picture of a general nonorientable surface with even
genus g

Proposition 3.4 If a knot K bounds a nonorientable surface F (with a single boundary
component) with zero framing, there is a 2–sided homologically essential closed curve
embedded in F with zero self-linking. In particular, the curve constructed is the
Poincaré dual to w1.F /, the first Stiefel–Whitney class of the tangent bundle of F .

Figure 3: Curve of self-linking zero on a nonorientable surface bounding a
knot with zero framing
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Proof By Lemma 3.3, since F.F / D 0, the genus of F is even. We perform an
ambient isotopy of S3 to obtain F in disk–band form and then slide bands so that we
get F as a boundary connect sum of punctured Klein bottles where each punctured Klein
bottle is of the form shown in Figure 2, ie each has one orientation preserving band. Of
course, the bands may interact with each other in ways other than crossings, as shown
in Figure 3, and bands of different summands may also interact. As in the remarks
at the beginning of this section, F.F / can be computed by considering the different
types of crossings between bands and the twists within each band, in some projection
for K . Crossings between bands are of three types: crossings where both participating
bands are orientation preserving, crossings where one band is orientation preserving
and the other is orientation reversing, and crossings where both participating bands are
orientation reversing. It is easy to calculate that the only nonzero contributions to F.F /
are from crossings of the first type, ie where both participating bands are orientation
preserving, each of which contributes ˙4 depending on the relative orientations of the
crossing bands. Full twists of the orientation preserving band can be deformed into
crossings of this type and also contribute ˙4 depending on the ‘handedness’ of the
twist. Since the two edges of the orientation reversing bands have opposite orientations,
twists in these bands do not contribute to F.F /.

Consider 
 , the curve which is the sum of the cores of the orientation preserving bands,
as in shown in the example in Figure 3. lk.
; 
C/ can be calculated by considering
only the crossings and twists of the orientation preserving bands, which are exactly the
crossings that contribute to F.F /. In fact, F.F /D 4lk.
; 
C/. Therefore, F.F /D 0

if and only if lk.
; 
C/D 0. By construction we see that this curve intersects each ori-
entation reversing curve on F transversely an odd number of times and each orientation
preserving curve an even number of times, which implies that it is the Poincaré dual
of w1.F / and therefore, homologically essential.

Proposition 3.5 A 2–sided nonseparating homologically essential simple closed curve
on F , a punctured Klein bottle, is unique up to orientation and isotopy.

Proof There are exactly four isotopy classes of unoriented homologically essential
simple closed curves on a Klein bottle; see Meeks [31] and Price [35, Lemma 2.1].
Moreover, any two 2–sided nonseparating simple closed curves are isotopic (as unori-
ented curves) on the Klein bottle. Henceforth, the proof is much like Gilmer’s proof
of the corresponding fact about punctured tori in [14]. If we consider the isotopy on
the Klein bottle, whenever the curve passes over the boundary component, we are
effectively band-summing with the longitude of the Klein bottle. It is easily checked
using a picture that band-summing a curve 
 with the longitude yields 
 with the
opposite orientation.
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We note that the curve 
 constructed in Proposition 3.4 satisfies the conditions in the
statement of the proposition above.

One reason for seeking curves of self-linking zero on a low genus Seifert surface is
that one might perform surgery along it to reduce genus. The following result shows
that the same is true for nonorientable surfaces.

Proposition 3.6 Given a connected nonorientable surface F of genus g and a single
boundary component, surgering along a nonseparating 2–sided curve 
 of zero self-
linking, ie removing the annulus cobounded by two parallel copies of 
 and gluing in
two disks, results in a disk if g D 2. If the resulting surface is orientable, the genus
is .g� 2/=2; if the resulting surface is nonorientable, the genus is g� 2.

Proof We know that �.F / D 1� g . Note that removing an annulus from F does
not change the Euler characteristic, since �.annulus/D �.S1/D 0. Let F 0 the final
surface with genus g0 . We have

�.F 0/D .1�g/C�.2 disks/��.2 circles/

D .1�g/C 2� 0

D 3�g:

Since 
 is nonseparating, F 0 is connected. If F 0 is nonorientable with genus g0 , we
have that 1� g0 D 3� g) g0 D g� 2. If F 0 is orientable with genus g0 , we have
that 1� 2g0 D 3�g) g0 D .g� 2/=2.

Note that if surgery is performed on the curve 
 dual to w1.F / constructed in
Proposition 3.4 the resulting surface is necessarily orientable; since every orientation
reversing curve on the original surface intersected 
 once, surgering along 
 effectively
removes all orientation reversing curves from F .

The above proposition implies that if a knot K has a surgery curve 
 which is a slice
knot, K is slice as well. It is easily seen that if 
 is additionally ribbon, K is ribbon
as well.

The following are basic results for knots with crosscap number 2 which do not appear
in the literature and will be used in the proof of Corollary 5.6.

Proposition 3.7 Given any knots K and J , the composite knot K.2;p/ # J.2;�p/

bounds a punctured Klein bottle F with zero framing. There is a disk–band form for F

where the knot type of the orientation preserving band is K # J .
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Proof K.2;p/ and J.2;�p/ bound Möbius bands with framing 2p and �2p respec-
tively, by the definition of the cabling operation. Taking the boundary connect sum of the
two Möbius bands gives us a punctured Klein bottle with zero framing. However, while
the obtained surface is in disk–band form it does not have an orientation preserving
band (yet). We can obtain one by sliding one of the erstwhile Möbius bands over the
other. This results in an orientation preserving band whose core has the knot type
K # J .

The above proposition also implies that the .2; 1/–cable of any knot K bounds a
punctured Klein bottle F with zero framing, where the knot type of the orientation
preserving band of F is K (by letting J be the unknot).

4 Concordance invariants

We recall the notation for infection on a knot, as described by Cochran, Orr and Teichner
in [11]. We start with a pattern knot R, and an unknotted curve � in S3�R (the axis
of infection). Since � is unknotted it bounds a disk. Tie all the strands of R passing
through this disk into some knot J , the infecting knot. We make sure that any parallel
strands being tied into J have zero linking with one another. We obtain a knot as
the result of infection and denote it by R.�;J /. It is easily seen that the above is an
untwisted satellite operation.

Proposition 4.1 If a knot K bounds a punctured Klein bottle F with zero framing,
then K is smoothly concordant to a knot R0 D R.�;J /, where R is a ribbon knot
bounding a punctured Klein bottle with zero framing, J is the knot type of the core
of the orientation preserving band of F given in disk–band form, and � is a curve as
shown in Figure 4.

�

Twisted 2–cable of a
2–strand string link

Figure 4: Knot bounding a punctured Klein bottle with zero framing: The
core of the orientation preserving band is shown.
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T

K

�J

R

�J # J

R.�;J /

�J

J

R.�;J /

Figure 5: Proof of Proposition 4.1

Proof We will follow the proof of Proposition 1.7 in Cochran, Friedl and Teichner [7].
We isotope F into a disk–band form with an orientation preserving band, as in the proof
of Proposition 3.4. We also know from Proposition 3.4 that the core of the orientation
preserving band has zero self-linking. As a result, surgering along the core would give
us a slice disk for the knot, as shown in Proposition 3.6. Let J denote the tangle whose
closure is the knot type of the core of the orientation preserving band of F . Notice that
the orientation preserving band can then be considered to be the (untwisted) 2–cable
of J . Consider a curve � linking once with the orientation preserving band of F . It
bounds a disk E � S3 . If we thicken E we get the local picture shown in Figure 5,
where the orientation preserving band appears as the 2–cable of the trivial tangle T .
Replace the 2–cable of T by the 2–cable of �J , and call the resulting knot R. Notice
that this results in a new punctured Klein bottle, also with zero framing. The knot R

now bounds a punctured Klein bottle where the knot type of the orientation preserving
band is �J # J , which is ribbon. By Proposition 3.6, by surgering along the core of
the orientation preserving band, we see that the knot R is also ribbon.

Now consider the knot R0 obtained from K by replacing T by the 2–cable of �J #J .
Note that R0DR.�;J /, ie the infection of R by J along the curve �, by the equivalence
of the last two panels of Figure 5. Since the trivial tangle is smoothly concordant
to �J # J , their 2–cables are also smoothly concordant. By modifying the trivial
concordance from K to itself by the tangle concordance between the 2–cables of the
trivial tangle and �J # J , we see that R0 DR.�;J / is smoothly concordant to K .

Recognizing that our knots are secretly infections provides a fair amount of information
about certain knot invariants.

Proposition 4.2 If a knot K bounds a punctured Klein bottle F with zero framing,
and J is the knot type of the core of the orientation preserving band of any disk–band
form for F , we have the following results:

Algebraic & Geometric Topology, Volume 13 (2013)
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(a) Arf.K/D 0.

(b) �K .!/D �J .!
2/, for all but finitely many ! .

(c) K has (ordinary) signature 0.

(d) j�.K/� 2�.J /j � 4.

Here ��.!/ denotes the Levine–Tristram signature function, and � is the Floer homol-
ogy invariant of Ozsváth and Szabó [34] and Rasmussen [36].

Proof We know that Arf.K/D 0 if and only if �K .�1/�˙1 mod 8 for any knot K

(see Murasugi [33]), where �K .t/ is the Alexander polynomial. On the other hand,
since lk.R; �/D 2,

�R.�;J /.t/D�R.t/�J .t
2/;

that is, �R.�;J /.�1/D �R.�1/�J .1/. We know that �J .1/D˙1. Since the Arf
invariant is a concordance invariant, R is ribbon, and R.�;J / is smoothly concordant
to K , we have that Arf.R.�;J // D Arf.K/ and �R.�1/ D ˙1 mod 8. Part (a)
follows.

For part (b) we have from Litherland [29; 30] that

�R.�;J /.!/D �R.!/C �J .!
2/;

since � has winding number 2, for all ! except the roots of the Alexander polynomials
of R.�;J /, J and R. Since R is ribbon, �R.!/ is the zero function, except at the
roots of �R.t/. Part (b) follows. Part (c) follows as well by setting ! D�1.

We have from Roberts [37, Theorem 1.2] that

�nC.R/� l � �.R.�;J //� �.R/� l�.J /� nC.R/C l;

where l D lk.R; �/ and nC.R/ is the least number of positive intersections between R

and a disk bounded by �. In our case, we have nC.R/ D l D 2 and since R is
smoothly slice, �.R/ D 0. Also, since � is an invariant of smooth concordance,
�.R.�;J //D �.K/. Therefore, �4� �.K/� 2�.J /� 4, proving part (d).

Proposition 4.3 If K is slice and bounds a punctured Klein bottle F with zero
framing, then J , the knot type of the core of the orientation preserving band in any
disk–band form for F , is 2–torsion in the algebraic knot concordance group.
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Proof Let AC denote the algebraic knot concordance group, considered as the
Witt group of nonsingular linking forms over certain torsion ZŒt; t�1�–modules (see
Kearton [23]). Given a knot K , the corresponding element of AC may be denoted
by .A.K/;Bl.K//, where A.K/ is the Alexander module of K and Bl.K/ is the
Blanchfield linking form. That is, if we denote algebraic concordance class by Œ � �,
ŒK�D .A.K/;Bl.K//.

Consider the map f W AC!AC , induced by t 7! t2 (described in greater detail in [1]).
We will show that f .ŒJ �/D ŒR.�;J /�D ŒK�, where R, �, J are as in Proposition 4.1.
We know from [30] that

A.R.�;J //DA0.R/˚
�
A0.J /˝ZŒt;t�1�W

�
;

where W DZŒt; t�1� as a ZŒt; t�1�–module, where t acts by t 7! t2 , since the winding
number of � is 2. The map t 7! t2 induces a similar transformation on the Blanchfield
linking forms, that is, if B�.t/ is a matrix representing the Blanchfield linking form

BR.�;J /.t/D BR.t/˚BJ .t
2/:

We denote this new Blanchfield form as Bl.R.�;J //D Bl.R/˚
�
Bl.J /˝ZŒt;t�1�W

�
where W is as above.

Since R is a ribbon knot, .A.R/;Bl.R// is the zero Witt class in AC . Therefore,

.A.R.�;J //;Bl.R.�;J ///Š
�
A.J /˝ZŒt;t�1�W ; Bl.J /˝ZŒt;t�1�W

�
as claimed.

If the knot R.�;J / is itself slice, we see that
�
A.J /˝ZŒt;t�1�W ; Bl.J /˝ZŒt;t�1�W

�
is 0 in AC , ie f .ŒJ �/D 0. But we know from Cochran and Orr [9, Proposition 2.1]
(see also Cha, Livingston and Ruberman [2, Theorem 6]) that knots in the kernel of the
map f induced by t 7! t2 must be 2–torsion in AC .

5 Homology cobordism of zero-surgery manifolds

Given a knot K , one frequently studies the associated 3–manifold, MK , obtained by
performing zero-framed surgery on K in S3 . Suppose the knots K0;K1 � S3 are
concordant via an annulus A� S3 � Œ0; 1�. By Alexander duality, the exterior of A is
a Z–homology cobordism between the exteriors of K0 and K1 . If we then adjoin a
zero-framed S1 �D2 � Œ0; 1� to the homology cobordism between exteriors, we get a
homology cobordism between MK0

and MK1
. This observation has a converse when

one of the knots is the unknot.
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Proposition 5.1 (Cochran, Franklin, Hedden and Horn [6, Proposition 1.2]) Sup-
pose K is any knot in S3 and U is the trivial knot. Then MK is smoothly homology
cobordant to MU via a cobordism V whose �1 is normally generated by a meridian
of K if and only if K bounds a smoothly embedded disk in a smooth manifold that is
homeomorphic to B4 .

This result gives us a way of translating information about zero-surgery manifolds to
information about concordance relationships between knots. Here, we will use a related
result for R–homology cobordisms.

Proposition 5.2 [6, Proposition 1.5] Suppose K is any knot in S3 and R�Q is a
nonzero subring. Let U denote the trivial knot. Then MK is smoothly R–homology
cobordant to MU if and only if K is smoothly R–concordant to U, ie K is smoothly
R–slice.

In addition, recognizing that our knots are the result of infection allows us to use the
following helpful theorem from [6].

Theorem 5.3 [6, Theorem 2.1] Suppose R is a (smoothly) Z
�

1
n

�
–slice knot, and �

is an unknotted curve with nonzero winding number n. Then, for any knot J , MJ is
smoothly Z

�
1
n

�
–homology cobordant to MR.�;J / .

The proof of the following result is an extension of the proofs of the results above to
our context.

Theorem 5.4 Suppose the knot K is Z
�

1
2

�
–slice and bounds a punctured Klein

bottle F with zero framing. Let J be the knot type of the orientation preserving
band in any disk–band form for F . Then J is smoothly Z

�
1
2

�
–slice, ie J bounds an

embedded 2–disk in a 4–manifold B which is a Z
�

1
2

�
–homology B4 .

In addition, if K is smoothly slice, �1.B/ is normally generated by a single element
(the meridian of K ), the meridian of J is mapped to twice the generator of H1 of the
slice disk complement in B , and the homology groups of B are as follows:

� H1.BIZ/DH2.BIZ/D Z=2

� H3.BIZ/DH4.BIZ/D 0

Proof By Proposition 4.1, K is smoothly concordant to R.�;J /, where R is a ribbon
knot and J is as required. By the remarks at the beginning of this section, this gives us a
Z–homology cobordism between MK and MR.�;J / . Since R is smoothly slice and �
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MJ

MU

MR

MR.�;J /

MK

MU

Figure 6: Proof of Theorem 5.4: Here MU Š S1 �S2 ’s have been capped
off by S1 �B3 ’s.

has winding number 2, Theorem 5.3 gives us a smooth Z
�

1
2

�
–homology cobordism

between MR.�;J / and MJ . Since K is Z
�

1
2

�
–slice, we have a Z

�
1
2

�
–homology

cobordism between MK and MU , where U is the unknot, by Proposition 5.2. By
stacking the various cobordisms as in Figure 6, we obtain that MJ is smoothly Z

�
1
2

�
–

homology cobordant to MU , and by Proposition 5.2, J is smoothly Z
�

1
2

�
–slice. This

completes the proof of the first part of this theorem.

To complete the proof, we need to take a closer look at the cobordism promised
by Theorem 5.3. Following the construction in [6], we have a cobordism between
MR tMJ and MR.�;J / , obtained as follows. Start with MJ � Œ0; 1� and MR � Œ0; 1�.
Let N.�/ be a regular neighborhood of � in MR . We identify N.�/�f1g �MR�f1g

with the surgery solid torus in MJ � f1g such that a parallel pushoff of � is identified
with the meridian of K . The resulting 4–manifold has boundary MJ tMRt�MR.�;J / .
In addition, we have that R is smoothly slice, and therefore, MR is homology cobordant
to MU Š S1 �S2 , which can be capped off by S1 �B3 . This gives us the cobordism
between MR.�;J / and MJ claimed in Theorem 5.3 (the top half of Figure 6).

The knot R.�;J / is concordant to MK , which gives us a homology cobordism be-
tween MR.�;J / and MK . In addition, K is slice, and therefore, we have a homology
cobordism between MK and MU . By gluing these cobordisms together we obtain a
manifold with boundary MjtMU . Finally we cap off MU ŠS1�S2 by S1�B3 . This
gives us a 4–manifold bounded by MJ , as shown in Figure 6. We add a zero-framed
2–handle to MJ along the meridian of J to finally obtain the obtain the manifold B
with @B D S3 , in which J bounds a smoothly embedded disk, as desired.

Algebraic & Geometric Topology, Volume 13 (2013)



2728 Arunima Ray

The cobordism W between MR , MJ and MR.�;J / deformation retracts to the union
MR.�;J /[��B2 , so up to homotopy, we obtain the cobordism by adding a 2–cell and
a 3–cell. The 2–cell is added along �J , the longitude of J and �1.MR.�;J // is nor-
mally generated by the meridian of R.�;J /. Therefore, �1.W /D hh�R.�;J /ii=hh�J ii,
where hh � ii denotes normal closure in �1.W /.

The fundamental group of each of the other cobordisms is normally generated by the
meridian of the relevant knot and the 2–handle added at the final stage kills off �J ,
the meridian of the knot J . Putting this all together, we see that

�1.B/D
.hh�K ii=hh�J ii/

hh�J ii
;

where hh � ii now denotes normal closure in �1.B/. We note however, that �J is
contained in the normal closure of �J and therefore,

�1.B/D hh�K ii=hh�J ii:

In particular, �1.B/ is normally generated by �K . Note that, in homology, 2�K D�J

and hence, H1.BIZ/ Š Z=2. Since zHi.BIZ
�

1
2

�
/ D 0, zHi.BIZ/ is 2–torsion. We

can recover all the other homology groups using the universal coefficient theorem and
Poincaré–Lefschetz duality. All the homology groups below are with Z coefficients:

Z=2ŠH1.B/ŠH 3.B; @B/Š Hom.H3.B; @B/;Z/˚Ext.H2.B; @B/;Z/
) Ext.H2.B; @B/;Z/Š Z=2

) Torsion.H2.B; @B//Š Z=2:

Recall that @B D S3 . Therefore, using the homology exact sequence for a pair, we
have

0!H2.B/
Š
�!H2.B; @B/! 0!H1.B/

Š
�!H1.B; @B/! 0;

0 H 2.B/ Š �H 2.B; @B/ 0 H 1.B/ Š �H 1.B; @B/ 0:

As a result,

H3.B/ŠH 1.B; @B/ŠH 1.B/Š Hom.H1.B/;Z/Š 0:

Since H2.B/ is 2–torsion and H2.B/ŠH2.B; @B/ and Torsion.H2.B; @B//Š Z=2,
H2.B/Š Z=2.

We note that the slice disk �J bounded by J in the construction above is the co-core of
the 2–handle added at the last stage and therefore, �J is mapped to twice the generator
of H1.B��J /Š ZD h�K i.
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We should note that the condition of the meridian of J mapping to twice the generator
of the slice disk complement is related to the notion of being weakly rationally slice
(see Kawauchi [22]). In addition, we know that if J is Z

�
1
2

�
–slice, so is K , and

therefore, we have actually proved that K is Z
�

1
2

�
–slice if and only if J is Z

�
1
2

�
–slice.

Moreover, in conjunction with the remark following the proof of Proposition 3.7, we
have now proved the following.

Corollary 5.5 For a knot K if the .2; 1/–cable is slice, or even just Z
�

1
2

�
–slice,

then K is Z
�

1
2

�
–slice.

We are also now able to prove the following.

Corollary 5.6 Given knots K and J , if K.2;p/ is Z
�

1
2

�
–concordant to J.2;p/ , then K

is Z
�

1
2

�
–concordant to J . In particular, if K.2;p/ is concordant to the .2;p/–torus

knot, then K is Z
�

1
2

�
–slice.

Proof First we note that �
�
J.2;p/

�
D .�J /.2;�p/ . We know from Proposition 3.7

that K.2;p/ #�
�
J.2;p/

�
DK.2;p/ # .�J /.2;�p/ bounds a punctured Klein bottle with

zero framing, where we may consider K #�J to be the knot type of the orientation
preserving band. Since K.2;p/ is Z

�
1
2

�
–concordant to J.2;p/ , K.2;p/ # �

�
J.2;p/

�
is Z

�
1
2

�
–slice, and we are in the situation of Theorem 5.4. Therefore, K # �J is

Z
�

1
2

�
–slice, and so K is Z

�
1
2

�
–concordant to J .
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