Volume 13, issue 5 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Fiber detection for state surfaces

David Futer

Algebraic & Geometric Topology 13 (2013) 2799–2807
Abstract

Every Kauffman state σ of a link diagram D(K) naturally defines a state surface Sσ whose boundary is K. For a homogeneous state σ, we show that K is a fibered link with fiber surface Sσ if and only if an associated graph Gσ is a tree. As a corollary, it follows that for an adequate knot or link, the second and next-to-last coefficients of the Jones polynomial are the obstructions to certain state surfaces being fibers for K.

This provides a dramatically simpler proof of a theorem of the author with Kalfagianni and Purcell.

Keywords
adequate knot, homogeneous knot, spanning surface, fibration, Jones polynomial
Mathematical Subject Classification 2010
Primary: 57M25, 57M27, 57M50
References
Publication
Received: 3 May 2012
Revised: 27 March 2013
Accepted: 15 April 2013
Published: 18 July 2013
Authors
David Futer
Department of Mathematics
Temple University
Philadelphia, PA 19122
USA
http://math.temple.edu/~dfuter