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Equidecomposability,
volume formulae and orthospectra

HIDETOSHI MASAI

GREG MCSHANE

Bridgeman–Kahn and Calegari derived formulae for the volumes of compact hyper-
bolic n–manifolds with totally geodesic boundary in terms of the orthospectrum.
Their methods are apparently different from each other, and involve computing the
volume of different subspaces of unit tangent bundle of hyperbolic n–space. In this
paper, we show that the two volume formulae coincide. We also derive a closed form
of the formula in dimension 3.

57M50; 32Q45

1 Introduction

Bridgeman–Kahn and Calegari derived formulae for the volumes of compact hyperbolic
n–manifolds with totally geodesic boundary in terms of the orthospectrum of the
manifold. Both methods for producing the formulae are based on decomposing the
unit tangent bundle into countably many pieces, each of which is naturally associated
to a unique orthogeodesic. In fact, each of these pieces is congruent to a model piece,
respectively B.l/ for the Bridgeman–Kahn decomposition and C.l/ for Calegari’s,
determined up to isometry by the length l of the corresponding orthogeodesic ˛� .
So the volume of the unit tangent bundle can be expressed as a sum of the volumes
of these pieces and each volume only depends on the length of an orthogeodesic.
The formulae obtained are valid for all compact hyperbolic n–manifolds with totally
geodesic boundary, however, the decompositions used by Bridgeman–Kahn and Calegari
are quite different. It is natural to ask how the terms in the two formula are related.
We show that the two formulae coincide, that is, for each orthogeodesic the associated
Bridgeman–Kahn model piece and the Calegari model piece have the same volume
regardless of the dimension. Throughout voln will denote the volume of an n–dimen-
sional orientable manifold.

Theorem 1 For all n� 2,

vol2n�1.B.l//D vol2n�1.C.l//:
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We note that for nD 2, Calegari [4] obtained this result by direct computation. Our
method is geometric, we will show that the pair of sets B.l/ and C.l/ satisfy a property
which we call countable equidecomposability (Section 6). This generalises the familiar
notion of scissors congruence by allowing decompositions having countably many
pieces rather than just finitely many.

Both Bridgeman and Calegari found a closed expressions for the volume of the 2–di-
mensional pieces and they give integral formulae for vol2n�1.B.l// and vol2n�1.C.l//
respectively in all dimensions n� 2. When n is odd and in particular in dimension 3,
Calegari’s decomposition is more convenient for purposes of calculation. We exploit
this to give a closed form for the volume of the pieces in terms of an ortholength l .

Theorem 2

vol5.C.l//D
2�.l C 1/

e2l � 1
:

In two dimensions the volume of each piece turns out to be the Rogers’ dilogarithm
of a simple function of the ortholength; see Bridgeman [2] and [4]. This case is
of particular interest since the deformation theory of convex surfaces leads yields
functional relations for the dilogarithm. However, as one sees from the formula above,
in three dimensions the volume of each piece can be written in terms of the ortholength
and its exponential. The deformation theory of hyperbolic 3–manifolds which have
totally geodesic boundary is trivial and no functional relations are to be expected.

More on closed forms for the volume of pieces Calegari has also used his method
to compute an expression for the terms in the 3–dimensional Basmajian identity [1]. In
particular, for a compact hyperbolic 3–manifold M with totally geodesic boundary @M ,
one has

��.@M /D
X
˛�

4

e`.2˛
�/� 1

;

where the sum is over all orthogeodesics ˛� . Compare this with Bridgeman–Kahn:

2vol3.M /D
X
˛�

`.˛�/C 1

e2`.˛�/� 1
:

Thus both the volume of the 3–manifold and the area of the boundary are determined by
the orthospectrum. Moreover, these quantities are written as series over the orthospectra
and the terms are expressed using just standard functions.
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Whilst in all dimensions n� 2 the term in Basmajian’s identity is readily computable
in terms of standard functions (see [4]), there is a curious dichotomy for the Bridgeman–
Kahn and Calegari identities which we will explain briefly. Both Bridgeman–Kahn and
Calegari give integral formulae for the terms in the series that yields the volume of
the hyperbolic n–manifold. Bridgeman and Kahn note further that, when n is even, it
is possible to find a closed expression for this term involving usual functions and the
dilogarithm [3, Corollary 8]. On the other hand, Calegari gives an integral expression
which readily yields a closed expression for the terms, again involving usual functions
and the dilogarithm, but only when n is odd (Proposition 6 below). By Theorem 1
Bridgeman–Kahn’s and Calegari’s terms are identical so this situation is somewhat
puzzling and we can offer no explanation.

Acknowledgements The authors thank Martin Bridgeman, Danny Calegari and Sa-
dayoshi Kojima for many helpful conversations and remarks. This work was carried
out while the second author was visiting Tokyo Tech in the summer of 2012 and, as
such, he is indebted to Professor S Kojima for his kindness and hospitality. The work
of the first author was supported by JSPS Research Fellowship for Young Scientists.

2 Preliminaries

2.1 Orthogeodesics and the orthospectrum

We consider compact hyperbolic manifolds M of finite volume with nonempty totally
geodesic boundary @M . Such a manifold is obtained as the quotient of a convex subset
of Hn by a group of orientation preserving isometries � . The limit set ƒ of � is
a nonempty � –invariant closed subset of @Hn which, by a theorem of Ahlfors, is
measure 0. Henceforth, we identify M with the quotient of the convex hull of ƒ by � .

The complement of ƒ consists of countably many .n � 1/–dimensional balls and
the convex hull of each ball is a half space bounded by a totally geodesic .n� 1/–
dimensional hyperplane which we call a side of the convex hull. To each side Da

there is a subgroup �Da
< � consisting of all the elements such that g.Da/ D Da .

The quotient of the side by �Da
is a compact, totally geodesic, .n� 1/–dimensional

manifold embedded in the boundary of @M .

Let Da;Db be a pair of sides then the orthogeodesic connecting Da and Db is the
shortest geodesic arc y̨� with an endpoint in Da and the other in Db . The length
of the orthogeodesic `.y̨�/ is the minimum distance between Da and Db . If y̨� is
the orthogeodesic joining a pair of sides of the convex hull then its image ˛� in the
quotient M is an orthogeodesic of length `.y̨�/ joining a pair of totally geodesic
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boundary components. We call the set of ortholengths `.˛�/ (with multiplicities in M )
the orthospectrum of M . Less formally the orthospectrum of the manifold M is the
set of lengths of common perpendiculars between (not necessarily distinct) boundary
components.

2.2 The unit tangent bundle

Our arguments are based on elementary hyperbolic geometry. We shall use the following
(standard) notation throughout.

We denote pW T Hn!Hn the canonical map that associates to a tangent vector its base-
point. Let A be an isometry (diffeomorphism) of Hn then it induces a diffeomorphism
of the tangent bundle which we continue to denote by A.

If v 2 T Hn is a (nonzero) tangent vector then


vW R!Hn

is the unique geodesic parameterised by arc length such that P
v.0/ is a positive multiple
of v . The geodesic 
v determines a pair of distinct points 
v.˙1/ in the ideal boundary
of Hn . Observe that the map

v 7! 
v.�1/;

T Hn
! @Hn;

is continuous and, in particular, the preimage of any measurable subset of @Hn is a
measurable subset of the tangent bundle.

Whenever we speak of a geodesic y̨ in Hn[ @Hn we mean the union of a geodesic y̨
and its ideal endpoints ˛˙ .

As discussed in [3], the unit tangent bundle T1Hn has a standard volume form �,
which is just the product of the standard volume forms on Hn and Sn�1 . To obtain an
explicit formula for d�, it is convenient to try to parametrize unit tangent vectors by
triples

.x;y; t/ 2Rn�1
�Rn�1

�R:

We consider the upper half space model of Hn so that the ideal boundary is identified
with Rn�1[f1g. A point v 2 T1Hn determines a unique directed geodesic 
v and
so an ordered pair of points .
v.�1/; 
v.1// in the ideal boundary Rn�1[f1g and,
provided neither of these points is 1, we may set .x;y/D .
v.�1/; 
v.1//. The
last coordinate t 2R is the signed hyperbolic length between the highest point of 
v
and p.v/. Our parametrization is defined on a open dense subset of T1Hn and it is
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easy to check that the complement has measure zero so we may ignore its contribution
when we compute volumes in T1Hn . With this parametrization, we have

d�D
2dV .x/dV .y/dt

jx�yj2n�2
;

where dV .x/D dx1dx2 � � � dxn�1 for x D .x1;x2; : : : ;xn/ 2Rn�1 .

3 Subsets of the tangent bundle

Let yı and y̨ be a pair of disjoint geodesics in the H[@H . The convex hull of yı and y̨
is an ideal quadrilateral Q (see figure). The problem is to show that a certain pair of
subsets of the unit tangent bundle of H , have the same volume.

� Bridgeman’s set B.l/ is the set of unit vectors v tangent to geodesic segments
joining y̨ to yı . More formally, it is the set of v 2 p�1.Q/ satisfying

(i) the ray 
v.RC/ meets yı ,
(ii) the ray 
v.R�/ meets y̨ .

We shall call this set the set of bridging vectors.

� Calegari’s set C.l/ is the set of unit vectors v such that

(i) the ray 
v.RC/ meets yı ,
(ii) the point p.v/ is in the chimney (see below) of the quadrilateral Q.

The chimney is the dark subset of the ideal quadrilateral in Figure 1 it is the convex
hull of y̨ [ f˛C; ˛�g and the nearest point retraction of y̨ to yı . Following Calegari,
we say that y̨ is the top of the chimney and the nearest point retraction of y̨ to yı is its
base which we will denote by B . The chimney is a convex quadrilateral with the top
and the base forming a pair of sides and we refer to the remaining pair of sides as the
walls.

The top of the chimney bounds an interval T1 D Œ˛
C; ˛���R and it is easy to see

that the nearest point retraction

�yıW T1!
yı

is a homeomorphism.

Our Theorem 1 says that the sets B.l/; C.l/ have the same volume. We will begin by
discussing in detail the case nD 2 in the next section (compare Calegari in [5].)
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yı

y̨

ı� ˛C ˛� ıC

Figure 1: The quadrilateral Q and its chimney

4 Comparing the sets B.l/;C.l/

Calegari [4] defines a positive function hW � ! RC on the chimney whose value
is the density in the unit tangent sphere at a point x of vectors v 2 C.l/. Thus, by
Fubini’s theorem, the volume of C.l/ is the integral of h over the chimney �. In two
dimensions the value of h.x/ is the visual measure of yı at x , and this is just the angle
between the pair of geodesics passing through x and the ideal points ı˙ (Figure 2).

yı

p.v/
h

y̨

ı� ˛C ˛� ıC

Figure 2: Calegari’s angle

To see that the sets B.l/; C.l/ have the same volume we show how one can associate to
a vector in Calegari’s set C.l/ a unique vector tangent to one of Bridgeman’s geodesic
arcs: more formally that there is a measure preserving bijection � between a subset of
full measure of Bridgeman’s set and a subset of full measure of Calegari’s set.
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In the next figure we see one of Bridgeman’s arcs 
 that passes through p.v/ and exits
the chimney by a side. By the uniqueness of geodesics in H , that the tangent vector
to 
 at x 2 
 \ chimney is in C.l/; so on this portion we can take � to be the identity.
The problem is thus to define such a map for vectors v tangent to 
 at points p.v/ in
the complement of the chimney.

yı




h

p.v/

y̨

Figure 3: How do I account for all v tangent to the geodesic 
 ?

5 Constructing a pair of measurable bijections

We begin by covering by the quadrilateral with copies of the chimney. Let A denote
the side pairing that takes one of the walls of the chimney to the other. We may suppose
that the attracting fixed point of A is ıC and the repelling fixed point ı� . Note that
the isometry A is not an element of the covering group � .

Now we have a cover of the quadrilateral by translates of the chimney

Q�
[
k

Ak.chimney/I

see Figure 4. If x D p.v/ is a point of 
 then (up to a set of measure 0) there is a
unique power of A such that An.x/ is in the chimney. Since A preserves yı , we have
An.
 /\yı¤∅, so the image of v by An is tangent to a geodesic, namely An.
 /, that
exits via yı . This of course means that An.v/ is in Calegari’s set C.l/.

We define a map
f W v 7!An.v/; p.v/ 2A�n.chimney/;

B.l/! tangent vectors to chimney:
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yı




y̨

Figure 4: Covering using the chimney, the point x D p.v/ is marked on the left

Note that, for each k 2 Z, the set p�1.Ak.chimney// is a measurable subset of the
tangent bundle so the map is

� well-defined on a subset of full measure in B.l/,
� measure-preserving where it is defined since A is an isometry.

To show that it is a bijection (on a set of full measure) we construct an (almost
everywhere defined) inverse. Let v be a vector in C.l/, by definition 
v.RC/ meets yı ,
and consider the ideal point 
v.�1/. Since geodesics meet at most once this is a point
of the interval �ı�; ıCŒ. This interval is tessellated by the intervals Ak.Œ˛C; ˛��/ so
one can define a map

�W v 7!An.v/; if 
v.�1/ 2A�n. �˛C; ˛�Œ /;

C.l/! tangent vectors to the ideal quadrilateral Q:

Since v is tangent to a geodesic that joins yı to A�n.y̨/, its image �.v/ is tangent to a
vector that joins yı to y̨ .

5.1 Inverses

It is easy to check that these maps are inverses by examining the last figure.

� The map f breaks our geodesic arc 
 into 3 pieces by translation by A and
intersection with the chimney.

� � takes each of these pieces, extends it to find an ideal endpoint in the interval
�ı�; ıCŒ�R, then glues them back using this data to make the original arc.
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yı




A.
 /

y̨
A.y̨/

A2.y̨/

A2.
/

Figure 5: Translates of the geodesic 
 and the point p.v/

6 Equidecomposability and volume

A more succinct way of thinking of this is that B.l/ and C.l/ contain sets of full
measure that are countable equidecomposable (we define this below). Recall that a
pair of subsets X;Y of a metric space are equidecomposable if there exists a pair of
decompositions

X D

NG
kD0

Xk ; Y D

NG
kD0

Yk ;

and isometries �k such that Yk D �k.Xk/.

We extend this definition slightly and say that subset X;Y of a metric space are
countable equidecomposable if there exists a pair of decompositions

X D

1G
kD0

Xk ; Y D

1G
kD0

Yk ;

and isometries �k such that
Yk D �k.Xk/:

If the metric space is equipped with a countably additive measure �, such that the
isometries are measure preserving maps, then we conclude that X and Y have the
same �–volume provided the pieces Xk ;Yk are measurable.

6.1 Equidecomposability in dimension 2

Using this notion we reformulate the ideas of the previous section.

Theorem 3 Let ��Q be a chimney and P� its interior. Then there are subsets of full
measure X � B.l/ and Y � C.l/ that are countable equidecomposable.
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Proof Define

Xk WD fv 2 B.l/;p.v/ 2A�k. P�/g;

Yk WD fv 2 C.l/; 
v.R�/\Ak.y̨/¤∅g:

It is easy to see that the sets

X D
G

Xk ; Y D
G

Yk ;

are full measure in B.l/ and C.l/ respectively.

Finally we show that �k DAk . Suppose v 2B.l/ then 
v.R�/\ y̨ ¤∅ so that Ak.v/

satisfies

(1) 
Ak.v/.R�/\Ak.y̨/¤∅:

Further, if v 2Xk then

(2) p.Ak.v//DAk.p.v// 2 P�:

From (1) and (2) one has Ak.Xk/ � Yk . The other inclusion follows by a similar
argument.

6.2 Equidecomposability from covers

In fact, to construct appropriate decompositions Xi ;Yi , one only really needs a count-
able cover of the interval �ı�; ıCŒ by A–translates of T1 D Œ˛

C; ˛��. Note that such
a cover determines a countable cover of the geodesic yı via nearest point retraction to yı .

Theorem 4 Let Ak ;A0 D I be hyperbolic isometries

(i) preserving the components of @H n fıC; ı�g,

(ii) such that fAk.B/g
1
kD0

cover yı .

Then there are measurable sets Xk ;Yk such that

B.l/D
G
k

Xk ; C.l/D
G
k

Yk

and Ak.Xk/D Yk , for all k � 0.
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Proof The base B is the image under the nearest point retraction to yı of a disc
T1 � @H . Since the Ak.B/ cover yı , the translates fAk.T1/g

1
kD0

cover the com-
ponent of @H n fıC; ı�g containing the endpoints 
v.�1/; v 2 C.l/. We define a
map

� W C.l/! ZC;

�.v/D inffk j 
v.�1/ 2Ak.T1/g:

By construction � is such that ��1.f0; : : : ; kg/ is precisely the union
Sk

jD1 Ak.T1/

which is a measurable set. It follows that

Yk WD �
�1.fkg/D ��1.f0; : : : ; kg/ n ��1.f0; : : : ; k � 1g/

is measurable too. Analogously we define the set Xk to be ��1.fkg/ where

� W B.l/! ZC;

�.v/D inffk j p.v/ 2A�1
k .�/g:

Exactly same argument as before shows that Ak.Xk/D Yk .

7 Equidecomposability in higher dimensions

Let Db and Da be a pair of disjoint totally geodesic hyperplanes Hn and consider the
unit tangent bundle over their convex hull Q. The walless chimney is the convex hull
of Da and its image under nearest point retraction to Db which we still denote B . The
top of the chimney is Da and its base is B . The top of the chimney bounds a round
disc T1 � @Hn and the base B is an open round ball.

The sets B.l/ and C.l/ are defined as before:

� B.l/ is the set of unit tangent vectors v such that
(i) the ray 
v.RC/ meets Db ,

(ii) the ray 
v.R�/ meets Da .

� C.l/ is the set of unit tangent vectors v such that
(i) the ray 
v.RC/ meets Db ,

(ii) the point p.v/ is in the walless chimney.

If n> 2 then the plane Db does not admit a tiling by copies of B . However, it does
admit a covering by open discs congruent to B ; for example choose any countable
dense subset P �Db and take the cover by discs with centers in P and radius equal
to that of B . Any such cover yields a covering of T1 by taking preimages under the
nearest point retraction.
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Theorem 5 Let Ak ;A0 D I be hyperbolic isometries

(i) preserving the components of @H n @Db ,

(ii) such that fAk.B/g
1
kD0

cover Db .

Then there are measurable sets Xk ;Yk such that

B.l/D
G
k

Xk ; C.l/D
G
k

Yk ;

and Ak.Xk/D Yk , for all k � 0.

Proof Note now that Db is a totally geodesic hyperplane, that is a copy of Hn�1

embedded in Hn , so that its boundary @Db is a round sphere in @Hn . The sphere
separates @Hn into two round balls, one of which is disjoint from ƒ.

The base B is the image under the nearest point retraction to Db of a disc T1 � @Hn .
Since the Ak.B/ cover Db , then the translates fAk.T1/g

1
kD0

cover the compo-
nent of @Hn n @Db whose closure contains the limit set and hence the endpoints

v.�1/; v 2 C.l/.

The rest of the proof is as before.

8 Three-dimensional case

In this section we show that the volume of Calegari’s piece for dimension 3 can be
expressed in terms of the ortholength and its exponential. See also Fenchel [6] for
elementary hyperbolic geometry.

8.1 Integral formula for the volume of Calegari’s piece

Recall from [4] that hW C.l/!RC denotes Calegari’s angle function (see Figure 2) and
that vol2n�1.C.l// is the integral of h over a chimney �. Consider the level sets and
value of h on the level sets. Let Ct denote the subset of the chimney at distance t from
the base, it is easy to see that the value of h is constant on Ct . We begin by discussing
the geometry of these level sets and for this we need to study Lambert quadrilaterals.
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8.1.1 Lambert quadrilaterals Let Q.�/ be a Lambert quadrilateral, that is a hyper-
bolic quadrilateral with three right angles and an angle � < �=2, (Figure 6). Observe
that there is a pair of edges which have both endpoints at right angles. If l and ��.l/
denote the lengths of these edges then, from elementary hyperbolic geometry, we have

sinh.��.l//D cos.�/= sinh.l/:

Further, if � D 0, then we write �.l/ WD �0.l/, and we have the following equivalent
formulae:

1= cosh2.l/C 1= cosh2.�.l//D 1, cosh.�.l//D 1= tanh.l/

, sinh.�.l//D 1= sinh.l/:

��.`/

`

�

Figure 6: A Lambert quadrilateral

Now the nearest point retraction of Ct to the base of the chimney is surjective if t � l ,
and otherwise the image is an annulus with outer radius �.l/, and inner radius ��.l/,
where � is defined implicitly by sin.�/D cosh.l/= cosh.t/. This latter formula in turn
yields that cosh.��.l//D tanh.t/=tanh.l/ since

cosh2.��.l//D sinh2.�.l// cos2.�/C 1

D sinh2.�.l//.1� .cosh2.l/=cosh2.t///C 1

D
cosh2.t/� cosh2.l/C sinh2.l/ cosh2.t/

sinh2.l/ cosh2.t/

D
cosh2.t/.1C sinh2.l//� cosh2.l/

sinh2.l/ cosh2.t/

D
.cosh2.t/� 1/ cosh2.l/

sinh2.l/ cosh2.l/

D
tanh2.t/

tanh2.l/
:
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8.1.2 Volumes of balls in hyperbolic or spherical space Let V H
n .r/ (resp. V S

n .r/)
denote the volume of a ball of radius r in hyperbolic (resp. spherical) n–space. The
following integral formula for V H

n and V S
n are well known (see Ratcliffe [7]):

V H
n .r/D�n�1

Z r

0

sinhn�1.t/ dt; V S
n .r/D�n�1

Z r

0

sinn�1.t/ dt;

where �n�1D 2�n=2=�.n=2/ is the volume of a Euclidean sphere of dimension n�1

and radius 1.

8.1.3 Calegari’s integral formula We now state the integral formula which will
allow us to calculate vol5.C.l//. Observe that, for q 2 C.l/, h.q/ depends only on the
distance t between the base of chimney and q . Writing h as a function of t yields

h.q/D��1
n�1V S

n�1.arcsin.1= cosh.t///;

where arcsin.1= cosh.t// is the angle between vertical line and the boundary of its
t –neighborhood. Using this, Calegari [4] obtains a formula of the volume of the
piece C.l/ with ortholength l , namely

1

2
vol2n�1.C.l//D

Z l

0

coshn�1.t/V H
n�1.�.l//V

S
n�1.arcsin.1= cosh.t///��1

n�1 dt

C

Z 1
l

coshn�1.t/.V H
n�1.�.l//�V H

n�1.��.l///

�V S
n�1.arcsin.1= cosh.t///��1

n�1 dt:

8.2 The volume of Calegari’s piece of dimension 3

We are ready to give an explicit expression for the volume of a piece in dimension three.
It is more convenient to work with Calegari’s decomposition (compare [3, Section 4.2])
and we have to evaluate the following integral:

(3) 1
2

vol5.C.l//D
Z l

0

cosh2.t/V H
2 .�.l//V S

2 .arcsin.1= cosh.t///��1
2 dt

C

Z 1
l

cosh2.t/.V H
2 .�.l//�V H

2 .��.l///

�V S
2 .arcsin.1= cosh.t///��1

2 dt:

By easy computation, we have

V H
2 .r/D 2�.cosh.r/� 1/;

V S
2 .r/D 2�.1� cos.r//:
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Then by substitution, we have

V S
2

�
arcsin.1= cosh.t//

�
D 2�

�
1�

q
1� 1= cosh2.t/

�
D 2�.1� tanh.t//:

Now we compute the first term of (3),Z l

0

cosh2.t/V H
2 .�.l//V S

2 .arcsin.1= cosh.t///��1
2 dt

D �

Z l

0

cosh2.t/.cosh.�.l//� 1//.1� tanh.t// dt

D �.cosh.�.l//� 1/

Z l

0

cosh2.t/.1� tanh.t// dt

D
�

2
.cosh.�.l//� 1/

Z l

0

.e�2t
C 1/ dt

D
�

4
.cosh.�.l//� 1/.�e2l

C 2l C 1/:

We calculate the second term of (3) using the equations cosh.��.l//D tanh.t/=tanh.l/
and cosh.�.l//D 1= tanh.l/:Z 1

l

cosh2.t/.V H
2 .�.l//�V H

2 .��.l///V
S

2 .arcsin.1= cosh.t///��1
2 dt

D �

Z 1
l

cosh2.t/.cosh.�.l//�
tanh.t/
tanh.l/

/.1� tanh.t// dt

D � cosh.�.l//
Z 1

l

cosh2.t/C sinh2.t/� 2 cosh.t/ sinh.t/ dt

D � cosh.�.l//
Z 1

l

e�2t dt

D
�

2
cosh.�.l//e�2l :

Therefore, we have

vol5.C.l//
2

D
�

4
.cosh.�.l//� 1/.�e2l

C 2l C 1/C
�

2
cosh.�.l//e�2l

D
�

4

��
1

tanh.l/
C 1

�
e�2l
C

�
1

tanh.l/
� 1

�
.2l C 1/

�

if and only if vol5.C.l//
2

D
�.lC1/

e2l�1
, and this completes the proof of Theorem 2.

Algebraic & Geometric Topology, Volume 13 (2013)



3150 Masai and McShane

9 A closed formula in odd dimensions

For completeness we include a proof that the volume of each piece C.l/ is computable,
that is, can be expressed in terms of standard functions and the dilogarithm.

Proposition 6 vol2n�1.C.l// can be expressed in terms of elementary functions if the
dimension n is odd.

Proof Since V H
n�1

.�.l// and ��1
n�1

do not depend on t , it suffices to considerZ l

0

coshn�1 V S
n�1.arcsin.1= cosh.t/// dt;(4) Z 1

l

coshn�1.t/.�V H
n�1.��.l///V

S
n�1.arcsin.1= cosh.t/// dt:(5)

Integrating by parts yields V S
n�1

.r/D
Pn�1

iD0 qi sin.r/i cos.r/n�1�i for some qi 2Q.
Since cos.arcsin.1= cosh.t///D 1= tanh.t/, we see that the integrand of (4) is a rational
function of et , and hence the integral (4) is computable. For (5), we need the assumption
that n is odd. Let nD 2mC 1, then by partial integration,

V H
n�1.r/D V H

2m.r/D

Z r

0

sinh2m�1.t/ dt

D
�
cosh.t/.1� cosh2.t//m�1

�r
0
� .2m� 2/

�
V H

2m�2CV2mH
�
:

As we see in Section 8.1.1, cosh.��.l//D tanh.t/= tanh.l/. (Note that if n is even, the
integrand contains sinh.��.l// and we need square root for sinh.��.l//). Hence if n is
odd, the integrand of (5) is also a rational function of et . Hence, the integral (5) can
be evaluated in terms of usual functions and dilogarithms, just as Bridgeman–Kahn’s
integral when n is even, but now provided that n is odd.

In the light of this proposition, we illustrate the difficulty involved in directly comparing
the volumes vol2n�1.B.l// and vol2n�1.C.l// in dimensions n� 3. We consider just
the case of vol5.B.l// for which one has the following formula from [3, Section 4.2]:

vol5.B.l//D 2

Z 1

0

M3

�p
.a2� r2/=.1� r2/

�
p

1� r2
dr;

where

M3.x/D
2

x2� 1
.1� log.2//�

1

2x

�
x� 1

xC 1

�
log.x� 1/C

1

2x

�
xC 1

x� 1

�
log.xC 1/:
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By easy computation,

vol5.B.l//D
�.1� log.2//

a2� 1
C 2

Z 1

0

N3

�p
.a2� r2/=.1� r2/

�
p

1� r2
dr;

where

N3.x/D�
1

2x

�
x� 1

xC 1

�
log.x� 1/C

1

2x

�
xC 1

x� 1

�
log.xC 1/:

By changing variables, we have

vol5.B.l//D
�.1� log.2//

e2l � 1

C

p
e2l � 1

Z 1
0

�
log.el cosh xC 1/

.el cosh x� 1/2
�

log.el cosh x� 1/

.el cosh xC 1/2

�
dx:

Remark We substitute aD el , because a cosh x might be confused with arccosh x .

Now we have the following as a corollary of Theorems 1 and 2.

Corollary 7Z 1
0

�
log.el cosh xC 1/

.el cosh x� 1/2
�

log.el cosh x� 1/

.el cosh xC 1/2

�
dx D

�
p

e2l � 1
.l C log.2//:

We note that a simple change of variable uD cosh x yields an integral which one might
be tempted to evaluate using contour integration in C . However, since the derivative
of cosh x is sinh x there is a factor .u2 � 1/�1=2 which seems difficult to deal with
using standard techniques.
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