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Minimal algebraic complexes over D4n

WAJID H MANNAN

SEAMUS O’SHEA

We show that cancellation of free modules holds in the stable class �3.Z/ over
dihedral groups of order 4n . In light of a recent result on realizing k –invariants
for these groups, this completes the proof that all dihedral groups satisfy the D(2)
property.

57M20; 16E05, 16E10, 55P15, 55Q20

1 Introduction

In 1965 Wall showed that for n > 2, if a finite cell complex is cohomologically n–
dimensional (in the sense of having no non-trivial cohomology in dimensions above
n with respect to any coefficient bundle), then it is in fact homotopy equivalent to an
actual n–dimensional cell complex [18]. Subsequently it was shown by Swan [16] and
Stallings [15] that the only cohomologically 1–dimensional finite cell complexes are
disjoint unions of wedges of circles. However decades later the case nD 2 remains a
major open problem, known as Wall’s D(2)–problem.

The problem may be phrased in terms of realizing algebraic complexes geometrically
(Johnson [6], Mannan [9; 13]), or in terms of group presentations (Mannan [12]). Cell
complexes that potentially offer a counterexample to Wall’s D(2)–problem have been
postulated (Bridson and Tweedale [1] and Johnson [7]), though proving that they are
counterexamples would appear to require some new obstruction. Where progress has
been made is extending Wall’s result to the case n D 2 for all finite cell complexes
with a specified fundamental group.

Definition 1.1 We say that a group G satisfies the D.2/ property if all cohomologically
2–dimensional finite cell complexes with fundamental group G are in fact homotopy
equivalent to a 2–dimensional finite cell complex.

At present, the D(2) property in known to hold only in comparatively few cases. These
include cyclic groups, products of the form C1�Cn (Edwards [2]) and, more relevantly
to the present paper, the dihedral groups D4nC2 (Johnson [5; 6]).
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The first finite non-Abelian non-periodic group shown to have the D(2) property was
the dihedral group of order 8 (Mannan [10]). The methodology adopted in [10] was an
instance of the approach developed and laid out in [6]. This approach for verifying the
D(2) property for a given group G involves two steps.

The first of these is to classify all possible modules over ZŒG� that may arise as the
second homotopy group of a connected cohomologically 2–dimensional finite cell
complex X . The Hurewicz homomorphism identifies �2.X / with H2. zX /. As X is
cohomologically 2–dimensional, consideration of the homotopy type of the algebraic
cellular chain complex of zX yields an exact sequence of ZŒG� modules:

0 �! �2.X / �! F2 �! F1 �! F0 �! Z �! 0;

where the Fi are finitely generated (henceforth denoted fg ) free (Mannan [11]) modules
(Johnson [6, Appendix B]). Thus by Schanuel’s Lemma all such �2.X / are stably
isomorphic.

This stable class of modules, denoted �3.Z/, is discussed extensively in [6], in
particular in Section 29. For our purposes it is sufficient to recall that �3.Z/ may be
viewed as a directed tree, with modules represented by vertices and partitioned into
levels, which are well-ordered. If G is finite then the level of a module is determined
simply by its Z–rank. An element of �3.Z/ is called minimal if it occurs at the
minimal level.

For modules over ZŒD8� one may use a strong cancellation result of Swan [17, The-
orem 6.1] to deduce that �2.X / Š J ˚ZŒD8�

r for some integer r , where J is the
“standard” minimal element of the stable class �3.Z/ (see (2-1)).

Having classified all possible modules K that may arise as �2.X / in this way, the
second step is to show that for each K , any cohomologically 2–dimensional finite cell
complex X with �2.X /ŠK is homotopy equivalent to a 2–dimensional cell complex.
This involves realizing the so called “k –invariants” [6, Chapter 6].

In [10] the second step is completed for dihedral groups of order 2n , and

K Š J ˚ZŒD2n �r

for any r . Recently these methods have been extended to the more general case of all
dihedral groups of order 4n:

Theorem 1.2 (O’Shea [14, Theorem 1.3 and Corollary 2.6]) Suppose that X is a
cohomologically 2–dimensional finite cell complex with fundamental group D4n and
�2.X / Š J ˚ ZŒD4n�

r , for some integer r . Then X is homotopy equivalent to a
2–dimensional finite cell complex.
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This key result is what our proof is predicated on. In order to prove that the remaining
dihedral groups satisfy the D(2) property, it remains to show that over ZŒD4n� any
module in �3.Z/ must be of the form J ˚ZŒD4n�

r . This is our main result.

Theorem A Over ZŒD4n� any module in �3.Z/ is of the form J ˚ZŒD4n�
r .

We note that this has been proved for modules in �3.Z/ which are geometrically
realizable as the second homotopy group of an actual 2–complex (Latiolais [8], and
Hambleton and Kreck [3]). However, from the point of view of the D(2)–problem,
showing the existence of such a 2–complex is a key difficulty, so it is not clear if these
methods could be extended to address the D(2)–problem for D4n .

Having proved Theorem A, we may conclude from [5; 6] and Theorem 1.2:

Theorem B All finite dihedral groups satisfy the D.2/ property.

Outline of Proof of Theorem A In Section 2 we note that the only modules in
�3.Z/ that may not be of the required form must occur at the minimal level. We then
observe that any such minimal element of �3.Z/ is the kernel of some surjective map
j W ZŒD4n�

3!W2 , where W2 � ZŒD4n�
2 is the image of the “standard” @2 .

In Section 3 we consider separately the components j 0; j 00 of the map j into the
first and second summands of ZŒD4n�

2 . By Schanuel’s Lemma we know that ker.j 00/
is stably equivalent to ker.@00

2
/, which we denote M . However M contains a free

summand, so by the Swan–Jacobinski Theorem we know that ker.j 00/ ŠM . The
kernel of j is just the kernel of the restriction j 0jker.j 00/ . The image of this restriction of
j 0 is isomorphic to the module ZŒC2�, so we may conclude that any minimal element
of �3.Z/ is in fact the kernel of a surjective homomorphism M ! ZŒC2�.

In Section 4 we construct isomorphisms between kernels of such maps, using elementary
matrices and other means. In particular we define modules Kx;1 for integers x and
show that any kernel of a surjective homomorphism M ! ZŒC2� is isomorphic to
Kl;1 , for l some positive factor of 2n.

In Section 5 we construct maps @2
.l/
W ZŒD4n�

3! ZŒD4n�
2 for l a positive factor of

2n. In each case ker.@2
.l//DKl;1 . Also @2

.1/
D @2 , which has kernel J . It remains

to show that the kernels of the remaining @2
.l/ are not stably isomorphic to J .

We do this by noting that the kernel of @2
.l/ is stably isomorphic to J only if the

cokernel of @2
.l/ is stably isomorphic to I , the augmentation ideal. As cancellation of

free modules holds in the stable class of the augmentation ideal, this is the same as
saying that the cokernel of @2

.l/ is isomorphic to the augmentation ideal.

For l > 1 we show that this is not the case, leaving J as the sole minimal element of
�3.Z/.
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2 Minimal elements of �3.Z/

Fix the presentation D4n D ha; b j a2n D b2 D 1; aba D bi. We work throughout
over the integral group ring ZŒD4n� and all modules are right modules. Let † denoteP2n�1

iD0 ai 2 ZŒD4n�. Consider the following exact sequence, taken from [10]:

(2-1) 0 �! J �! ZŒD4n�
3 @2
�! ZŒD4n�

2 @1
�! ZŒD4n�

�
�! Z �! 0:

Here � is determined by �.1/ D 1 2 Z. Take basis elements e1; e2 2 ZŒD4n�
2 and

E1;E2;E3 2 ZŒD4n�
3 . Then @1; @2 are given by:

@1e1 D 1� a; @2E1 D e1†;

@1e2 D 1� b; @2E2 D e2.1C b/;

@2E3 D e1.1C ba/C e2.a� 1/;

and J is the kernel of @2 .

With respect to the basis fE1;E2;E3g and fe1; e2g, we have:

(2-2) @2 D

�
† 0 1C ba

0 1C b a� 1

�
We know that J has minimal Z–rank in �3.Z/ [10, Proposition 3.2]. From the
Swan–Jacobinski Theorem [6, Theorem 15.1], we know that the only non-minimal
modules in �3.Z/ are ones of the form J ˚ZŒD4n�

r . It remains to show that up to
isomorphism, J is the only minimal element of �3.Z/.

Let W2 denote the image of @2 so we have a short exact sequence:

(2-3) 0 �! J �! ZŒD4n�
3
�!W2 �! 0:

Let K be a minimal element of �3.Z/. That is let K be a module stably equivalent to
J and of the same Z–rank. Thus K˚F Š J ˚F 0 for fg free modules F and F 0 of
the same rank. With respect to this isomorphism, modifying (2-3) by direct summing
with the identity map 1F 0 W F 0! F 0 yields the short exact sequence:

(2-4) 0 �!K˚F �! ZŒD4n�
3
˚F 0 �!W2 �! 0:

Lemma 2.1 The inclusion in (2-4), �W F ! ZŒD4n�
3˚F 0 , splits.

Proof The cokernel of � is torsion free and finitely generated. To deduce that � splits,
it is sufficient to note that F is injective relative to the tame class of fg torsion free
ZŒD4n� modules (see [6, page 69] for a discussion of relatively injective modules and
tame classes). This follows from F being projective and property T 3 in [6, page 70].
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Thus ZŒD4n�
3˚F 0Š S˚F , for some stably free module S . As ZŒD4n� satisfies the

Eichler property, any stably free module over it must in fact be free [6, Proposition 15.7].
As F;F 0 have the same Z–rank, we know that S Š ZŒD4n�

3 . Hence we may write
(2-4) as:

0 �!K˚F
i0

�! ZŒD4n�
3
˚F �!W2 �! 0;

where i 0 restricts to the identity on F . Restricting to submodules of this sequence, we
get the exact sequence of modules:

0 �!K
i
�! ZŒD4n�

3 j
�!W2 �! 0:

We may conclude:

Lemma 2.2 Any minimal element of �3.Z/ occurs as the kernel of some surjective
map j W ZŒD4n�

3!W2 .

Thus in order to prove our main result (Theorem A), it suffices to show that any kernel
of a surjective map j W ZŒD4n�

3!W2 , is isomorphic to J .

3 Restricting to submodules

In this section we take an arbitrary surjection ZŒD4n�
3

j
�!W2 , and find submodules of

ZŒD4n�
3 and W2 such that j restricts to a surjection between these submodules, with

the same kernel as j . In the next section we classify all possible kernels of surjective
maps between these submodules. Thus we will have a comprehensive list of all modules
that may be a minimal element of �3.Z/. In the final section we will show that only
one of these modules is in �3.Z/.

Recall from (2-2) the map @2W ZŒD4n�
3! ZŒD4n�

2 :

@2 D

�
† 0 1C ba

0 1C b a� 1

�
Let @0

2
; @00

2
denote the components of @2 , onto summands of ZŒD4n�

2 generated by
e1; e2 respectively. Let M � ZŒD4n�

3 denote the kernel of @00
2

.

Lemma 3.1 The module M is generated by:

w1 DE1; w2 DE2.1� b/; w3 DE3†; w4 DE2.a� 1/�E3.1� ba/:
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Proof Consider the sequence (2-1) and apply the automorphism of ZŒD4n� given by
a 7! a, b 7! �b to the elements of the matrices representing the maps @1; @2 . The new
sequence is still exact, so we see that w2; w3; w4 generate all relations between 1C b

and a� 1.

Note that applying @0
2

to the elements w1; w2; w3; w4 results in elements of †ZŒD4n�.
In particular @0

2
.w1/D†. We may conclude:

Lemma 3.2 The elements of W2 that have second component 0 are generated by:�
†

0

�
Proof An element of ZŒD4n�

2 with second component 0 lies in W2 if and only if it
is in the image of M under @2 .

At this point we note that D4n has a normal subgroup generated by a and taking the
quotient by this normal subgroup gives a surjective group homomorphism D4n! C2 .
We abuse notation by using elements of D4n to refer to their images in C2 . With
respect to this homomorphism, we may regard any ZŒC2� module L as a ZŒD4n�

module by implicitly identifying L with the tensor product L˝ZŒC2�ZŒD4n�. Thus
we have that as ZŒD4n� modules, †ZŒD4n�Š ZŒC2�.

Now consider an arbitrary surjective homomorphism j W ZŒD4n�
3!W2 . Again let

j 0; j 00 denote the first and second components of j . Let IT denote the submodule of
ZŒD4n� generated by a� 1; bC 1.

Lemma 3.3 The kernel of j 00 is isomorphic to M .

Proof We have exact sequences:

0 �!M �! ZŒD4n�
3
@00

2
�! IT

�! 0;

0 �! ker.j 00/ �! ZŒD4n�
3 j 00

�! IT
�! 0:

Thus by Schanuel’s Lemma ker.j 00/ is stably equivalent to M . Clearly they have the
same Z–rank. Note that M contains a free summand generated by w1 , so we may
apply the Swan–Jacobinski Theorem [6, Theorem 15.1] to deduce ker.j 00/ŠM .

Lemma 3.4 Any minimal element of �3.Z/ is isomorphic to the kernel of a surjective
homomorphism M ! ZŒC2�.
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Proof From Lemma 2.2 we know that any minimal element of �3.Z/ is isomorphic
to the kernel of some surjective homomorphism j W ZŒD4n�

3!W2 . This is the kernel
of j 0jker j 00 . By Lemma 3.3 we may identify ker.j 00/ with M and by Lemma 3.2 the
image of j 0jker j 00 is †ZŒD4n�Š ZŒC2�.

The action of a on ZŒC2� is trivial so the kernel of any surjective map sW M ! ZŒC2�

must contain M.a�1/. Thus s is just the quotient map M !M=M.a�1/ composed
with a ZŒC2�–linear map M=M.a� 1/! ZŒC2�. We seek to better understand the
ZŒC2� module M=M.a� 1/.

Let ZT denote the ZŒD4n� module whose underlying abelian group is isomorphic to
the integers, and on which a acts trivially and b acts as multiplication by �1. Let QT

denote ZT ˝Q.

Lemma 3.5 M=M.a� 1/ has (torsion free) Z–rank 5.

Proof We have an exact sequence:

0 �!M �! ZŒD4n�
3
@00

2
�! ZŒD4n� �! ZT

�! 0:

Tensor this sequence with Q and apply “Whitehead’s trick” to get

M ˝Q˚QŒD4n�ŠQŒD4n�
3
˚QT :

Canceling we get M ˝QŠQŒD4n�
2˚QT and

.M=M.a� 1//˝QŠQŒC2�
2
˚QT :

This has Q–rank 5.

If m1;m2 2M differ by an element of M.a� 1/ we write m1 �m2 .

Lemma 3.6 We have an isomorphism of ZŒD4n� modules:

M=M.a� 1/Š ZŒC2�˚ZT
˚ZT

˚Z:

The summands of ZŒC2�;Z
T ;ZT ;Z are generated respectively by the images of:

w1; w2; w4; w3Cw4n:

Proof By Lemma 3.1 we know that the above four elements generate M and hence
M=M.a� 1/ over ZŒD4n�. Clearly the image of w1 generates a copy of ZŒC2�. We
must verify the action of b on the images of w2; w4; w3Cw4n by showing:

(3-1) w2.1C b/; w4.1C b/; .w3Cw4n/.1� b/ 2M.a� 1/:
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As the action of a on M=M.a� 1/ is trivial, we then have that M=M.a� 1/ is some
quotient of ZŒC2�˚ZT ˚ZT ˚Z, with each summand generated by the required
image. However Lemma 3.5 tells us that there can be no further ZŒD4n�–linear relations
between the four images, and we are done.

We have:

w2.1C b/D 0 2M.a� 1/;

w4.1C b/� w4.1C ba/D w2.a� 1/ 2M.a� 1/;

.w3Cw4n/.1� b/D�w4†Cw4.1� b/n

��w4†Cw4.1� b/nCw4.1C b/n

D w4.2n�†/ 2M.a� 1/:

Recall that any surjection sW M ! ZŒC2� is the composition of the quotient map
M ! M=M.a � 1/ with some ZŒC2�–linear map M=M.a � 1/ ! ZŒC2�, which
completely determines s .

Let integers s1; s2; s3 denote the multiples of 1� b 2 ZŒC2� that s maps w1.1� b/,
w2; w4 to, respectively.

Let integers s4; s5 denote the multiples of 1C b 2 ZŒC2� that s maps w1.1C b/,
w3Cw4n to, respectively.

We have that s is completely described by these five integers (as w12D w1.1� b/C

w1.1C b/). We write s D Œ.s1; s2; s3/; .s4; s5/�.

Lemma 3.7 The surjective maps sW M ! ZŒC2� are precisely the maps

s D Œ.s1; s2; s3/; .s4; s5/�;

for coprime integers s1; s2; s3 and coprime integers s4; s5 with s1; s4 odd.

Proof Note that w2; w4; w3Cw4n must all map to elements of even augmentation
in ZŒC2�. Thus for s to be surjective, s.w1/ must have odd augmentation. Thus s1; s4

must be odd. Further for s to be surjective, we must also have s1; s2; s3 coprime, and
s4; s5 coprime.

Conversely given any such integers we have a surjective map sD Œ.s1; s2; s3/; .s4; s5/�,
where

s.w1/D .s1C s4/=2C b.s4� s1/=2;

noting that s1; s4 are both odd, so the division is permissible.

Thus all potential minimal elements of �3.Z/ are parametrized by quintuples of
integers satisfying these coprimality and oddness conditions.
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4 Isomorphisms between kernels

Now we know that any minimal element of �3.Z/ is isomorphic to the kernel of a
map s D Œ.s1; s2; s3/; .s4; s5/� satisfying the conditions of Lemma 3.7. In this section
we construct isomorphisms between the kernels of maps corresponding to different
quintuples of integers. Ultimately we will show that without loss of generality we may
assume that s D Œ.1; 0; 0/; .1; l/�, where l is a positive factor of 2n.

For i D 1; 2; 3; 4 define automorphisms �i W ZŒD4n�
3 ��! ZŒD4n�

3 by:

�1W E2 7!E2Cw1;

�2W E3 7!E3Cw1;

�3W E1 7!E1Cw2;

�4W E1 7!E1Cw4;

and in each case �i maps the other two generators (out of E1;E2;E3 ) to themselves.
As each �i differs from the identity by a map that factors through the inclusion
M ! ZŒD4n�

3 , the following diagram commutes:

0 // M //

�i jM

��

ZŒD4n�
3

@00
2 //

�i

��

IT

1

��

// 0

0 // M // ZŒD4n�
3

@00
2 // IT // 0

and the restriction of �i to M is an isomorphism �i jM W M
��!M .

For i D 1; 2; 3; 4 define linear maps �0i W Z
3! Z3 and �00i W Z

2! Z2 by:

�01.s1; s2; s3/D .s1; s2C s1; s3/; �001.s4; s5/D .s4; s5/;

�02.s1; s2; s3/D .s1; s2; s3� s1/; �002.s4; s5/D .s4; s5C ns4/;

�03.s1; s2; s3/D .s1C 2s2; s2; s3/; �003.s4; s5/D .s4; s5/;

�04.s1; s2; s3/D .s1C 2s3; s2; s3/; �004.s4; s5/D .s4; s5/:

Lemma 4.1 For i D 1; 2; 3; 4 and integers s1; s2; s3; s4; s5 satisfying the conditions
of Lemma 3.7 let:

s D Œ.s1; s2; s3/; .s4; s5/�; s0 D Œ�0i.s1; s2; s3/; �
00
i .s4; s5/�:
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Then the following diagram commutes:

M
s0
//

�i jM

��

ZŒC2�

1
��

M
s // ZŒC2�

so the isomorphism �i jM restricts to an isomorphism between the kernels of s and s0 .

Proof Direct calculation (recalling (3-1)) shows that the maps s�i jM and s0 yield the
same result when evaluated on w1.1� b/; w2; w4; w1.1C b/; w3Cw4n 2M .

Thus the isomorphism class of the kernel of a map M ! ZŒC2� corresponding to a
quintuple of integers is unaltered by applying the operations �0i ; �

00
i to the integers.

Lemma 4.2 Any minimal element of �3.Z/ is isomorphic to the kernel of a map
sW M ! ZŒC2�, where s D Œ.1; 0; 0/; .r;x/� with r an odd integer and x; r coprime.

Proof From Lemma 3.4 and Lemma 3.7 we know that any minimal element of �3.Z/
is isomorphic to the kernel of some map sW M !ZŒC2�, with sD Œ.s1; s2; s3/; .s4; s5/�

satisfying the conditions of Lemma 3.7. Further by Lemma 4.1 we are free to apply the
operations �0i and �00i to the five integers, without altering the isomorphism class of the
kernel. Note also that these operations preserve the coprimality and oddness conditions
of Lemma 3.7. It remains to show that by repeatedly applying the operations �0i , we
may reduce .s1; s2; s3/ to .1; 0; 0/.

We apply a version of Euclid’s algorithm first to s1; s2 , using the operations �0
1
; �0

3
.

Note that whilst �0
1

allows us to divide s2 by s1 and replace s2 with the remainder,
�0

3
only allows us to divide s1 by 2s2 and replace s1 with the remainder. However

this is still sufficient for guaranteeing that the remainder has modulus less than or equal
to the modulus of s2 (allowing negative remainders).

Thus eventually we will have s2 D 0 (we cannot have s1 D 0 as s1 remains odd). We
then repeat the process with the operations �0

2
and �0

4
to obtain s3D 0. As .s1; s2; s3/

remain coprime under the all operations �0i , we must have s1 D˙1. If s1 D�1, then
we may apply �0

2
�0

4
�0

2
to .�1; 0; 0/ to get .1; 0; 0/.

Now let s D Œ.1; 0; 0/; .r;x/� with r an odd integer and x; r coprime. Recall that s is
the composition of the quotient map M!M=M.a�1/ with a map sW M=M.a�1/!

ZŒC2�.
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Lemma 4.3 The kernel of s is generated over Z by the images of:

w2; w4; w1.1C b/x� .w3Cw4n/r:

Proof Recall from Lemma 3.6 that M=.M.a�1/ŠZŒC2�˚ZT ˚ZT ˚Z, with the
summands generated by w1; w2; w4; w3Cw4n respectively. Also recall that s maps
the last three of these to elements of even augmentation in ZŒC2�, and maps w1 to an
element of odd augmentation in ZŒC2�. Thus given an element � of the kernel of s ,
the ZŒC2� coefficient on the image of w1 must have even augmentation.

Thus � is in the span of the images of w1.1� b/; w2; w4 and w1.1C b/; w3Cw4n

and we may write � D �1C �2 with �1 in the span of the first three and �2 in the span
of the latter two. Then s.�/D 0 if and only if s.�1/D 0 and s.�2/D 0.

As sD Œ.1; 0; 0/; .r;x/�, we have �1 in the span of the images of w2; w4 and �2 in the
span of the image of w1.1C b/x� .w3Cw4n/r .

Fix yK D hM.a� 1/; w2; w4i �M and let

�x;r D w1.1C b/x� .w3Cw4n/r:

Also let Kx;r denote the kernel of s . We may conclude:

Lemma 4.4 We have Kx;r D h
yK; �x;r i �M .

Lemma 4.5 For integers p; q not both 0, the isomorphism class of h yK; �p;qi is
determined by the congruence classes of p modulo 2n and q modulo 2.

Proof We have:

�pC2n;q D �p;qCw1.1C b/2n� �p;qCE1.1C b/†;

�p;qC2 D �p;q � .w3Cw4n/2� �p;q �w32�w4†D �p;q �E3.1C b/†:

Each of h yK; �p;qi; h yK; �pC2n;qi; h yK; �p;qC2i is isomorphic to yK˚Z as an abelian
group, where the generator t 2M of the summand Z is

�p;q; �p;qCE1.1C b/†; �p;q �E3.1C b/†;

respectively.

In each case, the isomorphism class of the module is then determined by the action of
ZŒD4n� on t , which is given by the values of t.a� 1/; t.b� 1/ 2M.a� 1/. However
these values are clearly the same in all three cases.
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Note that as r is always odd (Lemma 4.2) we have in general Kx;r ŠKx;1 (clearly
the integers x; 1 are always coprime). Thus we now have that any minimal element
of �3.Z/ is isomorphic to Kx;1 for some congruence class of integer x modulo 2n.
We complete this section by showing that multiplying x by a unit in Z=2nZ does not
alter the isomorphism class of Kx;1 .

Let r be a positive integer coprime to 2n and let the positive integer u satisfy
ur C�2nD 1, for some integer �. Let ˛; ˇ be given by:

˛ D

r�1X
iD0

ai ; ˇ D

u�1X
iD0

ari :

Clearly we have:

(4-1) ˛ˇ D ˇ˛ D 1��†:

Let  r ;  
0
r W ZŒD4n�

3! ZŒD4n�
3 be the maps acting as the identity on E2;E3 and

mapping:
 r W E1 7!E1˛;

 0r W E1 7!E1ˇ:

Lemma 4.6 The map  r restricts to an isomorphism Kx;1
��!Krx;1 .

Proof From (4-1) we know that  r 
0
r and  0r r restrict to the identity on M.a�1/.

Thus  r restricts to an isomorphism M.a� 1/ ��!M.a� 1/. Further,

 r .w2/D w2;  r .w4/D w4;

so  r restricts to an isomorphism yK ��! yK . Finally we note:

 r .�x;1/D w1˛.1C b/x� .w3Cw4n/

� w1.1C b/rx� .w3Cw4n/D �rx;1:

Given an integer x , let l D hcf.x; 2n/. There is a positive integer r coprime to 2n, so
that rx � l modulo 2n. We conclude:

Lemma 4.7 Any minimal element of �3.Z/ is isomorphic to Kl;1 for some positive
factor l of 2n.

Proof We know that a minimal element of �3.Z/ is isomorphic to Kx;1 for some
integer x . Picking r; l as above, we have

Kx;1 ŠKrx;1 ŠKl;1:
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5 Separating the stable classes of the Kl;1

Our goal is to show that up to isomorphism there is only one minimal module in �3.Z/.
In Section 3 we showed that any such module must be isomorphic to the kernel of some
surjective map M ! ZŒC2�. In Section 4 we proceeded to construct isomorphisms
between the kernels of such maps, to the point where we know that any such kernel
must be isomorphic to one of the Kl;1 , for l a positive factor of 2n.

That is as far as we go in that direction. We now change tack and instead of constructing
isomorphisms between our remaining candidates, we will eliminate all but one of them,
by showing that they are not even stably equivalent to J (the minimal element of
�3.Z/ from (2-1)).

Lemma 5.1 For each l a positive factor of 2n, we have an exact sequence

(5-1) 0 �!Kl;1 �! ZŒD4n�
3 @2

.l/

�! ZŒD4n�
2 @1

.l/

�! ZŒD4n�;

where

@2
.l/
D

�
† 0 l.1C ba/

0 1C b a� 1

�
; @1

.l/
D
�
1� a l.1� b/

�
;

with respect to the basis fE1;E2;E3g of ZŒD4n�
3 and fe1; e2g of ZŒD4n�

2 .

Proof The component of @2
.l/ mapping into the second summand of ZŒD4n�

2 is just
@0

2
, so it has kernel M . Let

sW M �! ZŒC2�

denote the component of @2
.l/ mapping into the first summand of ZŒD4n�

2 restricted
to M (again making the identification †ZŒD4n�Š ZŒC2�). The kernel of @2

.l/ is then
the kernel of s . We have:

s.w1.1� b//D 1� b; s.w1.1C b//D 1C b;

s.w2/D 0; s.w3Cw4n/D l.1C b/:

s.w4/D 0;

Thus s D Œ.1; 0; 0/; .1; l/� and has kernel precisely Kl;1 .

By evaluation we see that @1
.l/@2

.l/
D 0. Let�

�1

�2

�
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be an arbitrary element of the kernel of @1
.l/ . We have

(5-2) .a� 1/�1 D l.1� b/�2:

Now l.1� b/�2 D l.1� b/p for p some polynomial expression in a. From (5-2) we
know p D .a� 1/q , for q some polynomial expression in a. Now let�

�0
1

�0
2

�
D

�
�1

�2

�
�

�
l.1C ba/

a� 1

�
q:

Then .a� 1/�0
1
D l.1� b/�0

2
D 0 and �0

1
D†�1; �

0
2
D .1C b/�2 , for some �1; �2 2

ZŒD4n�. We conclude:�
�1

�2

�
D

�
l.1C ba/

a� 1

�
qC

�
†

0

�
�1C

�
0

1C b

�
�2;

so the columns of @2
.l/ generate the kernel of @1

.l/ .

Let Il C ZŒD4n� denote the right ideal generated by 1� a, l.1� b/. We regard it as
a right submodule of ZŒD4n�. Note that Il is Z–torsion free as it is a submodule of
ZŒD4n�. From (5-1) we have the exact sequence:

0 �!Kl;1 �! ZŒD4n�
3 @2

.l/

�! ZŒD4n�
2
�! Il �! 0:

Lemma 5.2 If Kx;1 is stably equivalent to Ky;1 for positive factors x;y of 2n, then
Ix is stably equivalent to Iy .

Proof Suppose Kx;1˚F1 ŠKy;1˚F2 for fg free modules F1;F2 . We have exact
sequences:

0 �!Kx;1˚F1 �! ZŒD4n�
3
˚F1

.@2
.x/;0/

�����! ZŒD4n�
2
�! Ix �! 0;

0 �!Ky;1˚F2 �! ZŒD4n�
3
˚F2

.@2
.y/;0/

�����! ZŒD4n�
2
�! Iy �! 0:

All the modules in these exact sequences are Z–torsion free and finitely generated
over Z, so we preserve exactness when we dualise the sequences by applying the
functor HomZ. � ;Z/. Note this functor takes a right ZŒD4n� module N to a right
ZŒD4n� module N � , with the ZŒD4n� action given by .fg/x D f .xg�1/ for all
f 2N �;x 2N;g 2D4n .

Thus by Schanuel’s Lemma we have

I�x ˚F3 Š I�y ˚F4;

for fg free modules F3;F4 . Dualising again we have Ix stably equivalent to Iy .
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Clearly @2
.1/
D @2 , K1;1 D J and I1 D I , the augmentation ideal in ZŒD4n�.

Lemma 5.3 Let y be a positive factor of 2n. Then Iy is stably equivalent to I if and
only if Iy Š I .

Proof As D4n is a finite group satisfying the Eichler condition, we have that cancel-
lation of free modules holds in the stable class of I [4, Proposition 2.7(i)]. We then
need only note that Iy and I have the same rank over Z.

It remains to show that for y > 1 a factor of 2n, the modules I and Iy are not
isomorphic and hence not stably equivalent.

Lemma 5.4 For y > 1 a factor of 2n, the modules I and Iy are not isomorphic.

Proof Let � W I ! Iy be an isomorphism. Note the cokernel of the inclusion I ,!

ZŒD4n� is torsion free and finitely generated. The module ZŒD4n� is strongly injective
relative to the tame class of fg torsion free ZŒD4n� modules [6, Lemma 19.5]. We
therefore have a ZŒD4n�–linear map y� W ZŒD4n�! ZŒD4n� such that the following
diagram commutes:

I //

�
��

ZŒD4n�

y�
��

Iy
// ZŒD4n�

Then y‚ is just left multiplication by some element pC qb 2 ZŒD4n�, where p; q are
polynomial expressions in a.

Now � restricts to an isomorphism between the annihilators of † in I and Iy . These
annihilators of † are

.a� 1/ZŒD4n�C I; .a� 1/ZŒD4n�C Iy :

Let � W .a� 1/ZŒD4n�! .a� 1/ZŒD4n� denote the inverse of this restriction.

As before, the cokernel of the inclusion .a� 1/ZŒD4n� ,! ZŒD4n� is torsion free and
finitely generated. Thus we have a commutative diagram:

.a� 1/ZŒD4n� //

�

��

ZŒD4n�

y�
��

.a� 1/ZŒD4n� // ZŒD4n�
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where y� W ZŒD4n�!ZŒD4n� is left multiplication by some element p0Cq0b 2ZŒD4n�,
with p0; q0 polynomial expressions in a.

We know that y� y� restricts to the identity on .a� 1/ZŒD4n�. Thus

.p0C q0b/.pC qb/D 1C†
;

for some 
 2 ZŒD4n�.

Let t W ZŒD4n�! Z be the ring homomorphism mapping a 7! 1; b 7! �1. We have

t.p0C q0b/t.pC qb/� 1 modulo 2n:

Thus we have t.pC qb/ coprime to 2n.

Now
�.1� b/D .pC qb/.1� b/

D .p� q/.1� b/

D t.pC qb/.1� b/C .a� 1/ı.1� b/;

for some ı a polynomial expression in a.

But �.1� b/ 2 Iy , so y divides t.pC qb/. This contradicts t.pC qb/ coprime to
2n.

Theorem A Over ZŒD4n� any module in �3.Z/ is of the form J ˚ZŒD4n�
r .

Proof Suppose K is in �3.Z/ and not isomorphic to J ˚ZŒD4n�
r for any integer

r � 0. Then K must be a minimal element of �3.Z/, so by Lemma 4.7 we know that
K Š Ky;1 for some y > 1 a factor of 2n. Then by Lemma 5.2 we have that Iy is
stably equivalent to I , and hence by Lemma 5.3 we know that I Š Iy , contradicting
Lemma 5.4.

As Johnson has verified the D(2) property for D4nC2 [5; 6], in the light of Theorem 1.2
taken from [14] we may conclude:

Theorem B All finite dihedral groups satisfy the D.2/ property.

Proof This has been shown for the dihedral groups D4nC2 [5; 6]. Suppose now that
X is a cohomologically 2–dimensional finite cell complex with fundamental group
D4n . By Theorem A we know that �2.X /Š J ˚ZŒD4n�

r , for some integer r . Hence
by Theorem 1.2 we know that X is homotopy equivalent to a 2–dimensional finite cell
complex.
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