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The state sum invariant of 3–manifolds
constructed from the E6 linear skein

KENTA OKAZAKI

The E6 state sum invariant is a topological invariant of closed 3–manifolds con-
structed by using the 6j–symbols of the E6 subfactor. In this paper, we introduce
the E6 linear skein as a certain vector space motivated by E6 subfactor planar
algebra, and develop its linear skein theory by showing many relations in it. By using
this linear skein, we give an elementary self-contained construction of the E6 state
sum invariant.

57M27, 57M15; 46L37

1 Introduction

In [14], Turaev and Viro constructed a state sum invariant of 3–manifolds based
on their triangulations, by using the 6j–symbols of representations of the quantum
group Uq.sl2/. Further, Ocneanu [9] (see also Evans and Kawahigashi [2] and
Kodiyalam and Sunder [6]) generalized the construction to the case of other types of 6j–
symbols, say, the 6j–symbols of subfactors. In the construction, we consider colorings
(called states, historically) of edges and faces of a triangulation of a 3–manifold, and
associate colored tetrahedra to values of the 6j–symbols. A state sum invariant is
defined by a sum of the product of such values of tetrahedra, where the sum runs over all
admissible colorings. When the 6j–symbols can be obtained from representations of a
quantum group, it is known (see Turaev [13]) that the state sum invariant is equal to the
square of the absolute value of the Reshetikhin–Turaev invariant, and the calculation of
the state sum invariant is reduced to the calculation of the Reshetikhin–Turaev invariant.
However, in the case of the 6j–symbols of the E6 subfactor, such a Reshetikhin–Turaev
invariant can not be defined, and it is necessary to calculate the state sum invariant
directly. For some calculations of the E6 state sum invariant, see Suzuki and Wakui [12]
and Wakui [15], where they construct the E6 state sum invariant directly from concrete
values of the 6j–symbols of the E6 subfactor given by Izumi in [3].

We briefly recall the E6 subfactor; see, for example, [2] for details. A subfactor N
is a certain subalgebra of a certain C �–algebra M. A principal graph of a subfactor
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is (roughly speaking) a graph whose vertices are irreducible N–N bimodules and
irreducible N–M bimodules, and an irreducible N–N bimodule X is connected
to an irreducible N–M bimodule Y by an edge when Y appears in the irreducible
decomposition of X ˝N M. The E6 subfactor is the subfactor whose principal graph
is of the form

(1.1)

where circled vertices are N–N bimodules and the other vertices are N–M bimodules.
The 6j–symbols are coefficients of a transformation between bases of

(1.2) Hom.Vl ; .Vi ˝Vj /˝Vk/; Hom.Vl ;Vi ˝ .Vj ˝Vk//;

though it is difficult in general to calculate their concrete values directly from the
subfactor, since these bimodules are infinite-dimensional.

We briefly recall the sl2 linear skein; see Kauffman and Lins [5] and Lickorish [7]
for details. It is known that the Jones polynomial of links can be defined by using
the Kauffman bracket, which is defined by a recursive relation among link diagrams.
Lickorish introduced the sl2 linear skein, which is the vector space spanned by link
diagrams subject to the recursive relation of the Kauffman bracket. It is a key point
that we can calculate the value of any link diagram by graphical calculation using the
defining relations of the linear skein recursively. Further, he introduced the Jones–Wenzl
idempotents as elements of the sl2 linear skein (white boxes defined in (2.5)), corre-
sponding to irreducible representations of the quantum group Uq.sl2/. By using these
Jones–Wenzl idempotents, he gave an elementary self-contained construction of the
Reshetikhin–Turaev invariant; in fact, this construction is quite useful when calculating
the Reshetikhin–Turaev invariant of concrete 3–manifolds; see [5]. Moreover, it is
known [5; 7] that we can describe the 6j–symbols of representations of Uq.sl2/ in
terms of the sl2 linear skein, as coefficients of a transformation between the following
two graphs,

(1.3)  !

which describes the transformation of (1.2) graphically.
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As a graphical approach to subfactors, Jones [4] introduced planar algebras, which are
a kind of algebra given graphically in the plane. As the Kuperberg program says (see
Morrison, Peters and Snyder [8]), it is a problem to

(i) give a presentation by generators and relations for each planar algebra,

(ii) show basic properties of the planar algebra based on such a presentation.

For the D2n planar algebra, (i) and (ii) have been done in [8]. For the E6 and E8

planar algebras, Bigelow [1] has done (i), and has partially done (ii) by using the
existence of the subfactor planar algebra, though idempotents corresponding to N–N
bimodules are not given in the E6 planar algebra in [1].

In this paper, we introduce the E6 linear skein, motivated by Bigelow’s generators
and relations of the E6 planar algebra. We define the E6 linear skein S.R2/ of R2

to be the vector space spanned by certain 6–valent graphs (which we call planar
diagrams) subject to certain relations (Definition 2.1). Our relations are a modification
of Bigelow’s relations; we show that they are equivalent in Section 6.1. We show
that S.R2/ is 1–dimensional (Proposition 2.2), which means the key point is that we
can calculate the value of any planar diagram by graphical calculation using the defining
relations of the linear skein recursively. That is, in order to prove Proposition 2.2, we
show that

(1) any planar diagram is equal to a scalar multiple of the empty diagram in S.R2/,

(2) such a scalar is uniquely determined for any planar diagram.

We give a self-contained combinatorial proof of them. To show them, it is important to
give an efficient algorithm to reduce any planar diagram to the empty diagram. Such a
reduction is done by decreasing the number of 6–valent vertices of a planar diagram.
To do this, we use the relation (2.4) (one of our relations), which can reduce two
vertices connected by two parallel edges, while the corresponding relation (6.1) (one
of Bigelow’s relations) reduces two vertices connected by three parallel edges. In fact,
to reduce planar diagrams, our relations are more efficient than Bigelow’s relations,
and this is a reason why we define the E6 linear skein by our relations, instead of
Bigelow’s relations. We show (1) by decreasing the number of vertices of any planar
diagram by using (2.4). To show (2), we show that the resulting value does not depend
on the choice of a process of decreasing the number of vertices; we consider all such
processes and show the independence on them concretely.

Further, we introduce idempotents (gray boxes in Section 3) in our linear skein, corre-
sponding to the irreducible N–N bimodules V0;V2;V4 in (1.1). It is known, see [3],
that the fusion rule algebra of the E6 subfactor is given by the product shown in the
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following table, and the quantum dimensions of V0 , V2 , V4 are equal to 1, 1C
p

3, 1

respectively.
V0 V2 V4

V0 V0 V2 V4

V2 V2 V0C 2V2CV4 V2

V4 V4 V2 V0

In particular, V0 is the N–N bimodule N , which gives the unit of the fusion rule
algebra. Corresponding to V0 , we define the gray box over 0 strands to be the empty
diagram. Further, V2 is an irreducible N–N bimodule in the irreducible decomposition
of M˝M M. Corresponding to V2 , we define the gray box over 2 strands to be
the Jones–Wenzl idempotent over 2 strands. Furthermore, V4 is an irreducible N–N
bimodule in the irreducible decomposition of M˝MM˝NM˝MM. Corresponding
to V4 , we define the gray box over 4 strands to be a certain idempotent over 4 strands.
We show that the values of the closures of these gray boxes are equal to the quantum
dimensions of V0 , V2 , V4 (Lemma 3.2). By using these gray boxes, we introduce
colored planar trivalent graphs, whose edges are colored by these gray boxes, where we
define admissible trivalent vertices in (3.5) corresponding to the above mentioned fusion
rule algebra. In particular, we note that we consider two kinds of trivalent vertices when
the adjacent three edges are colored by 2, 2, 2, since the summand V2 in V2˝V2 has
multiplicity 2. Moreover, we consider the linear skein H.i1; i2; : : : ; in/ spanned by
planar diagrams on a disk bounded by the gray boxes over i1 strands, i2 strands, : : : ,
in strands, corresponding to the intertwiner space Hom.V0;Vi1

˝Vi2
˝� � �˝Vin

/. We
show that a basis of this space is given by colored trivalent trees (Proposition 4.9). In
particular, when nD 4, we can describe the 6j–symbols in terms of colored planar
trivalent graphs as coefficients of a transformation between bases of the forms in (1.3).

By using these 6j–symbols, we give a construction of our state sum invariant in terms
of colored planar trivalent graphs (Definition 5.1). It is known as a general procedure
that the topological invariance of such a state sum invariant is shown from the defining
relation of the 6j–symbols. We review this procedure in terms of our E6 linear skein
(the proof of Theorem 5.2). In particular, in the proof, we show a pentagon relation of
the 6j–symbols by using a basis of H.i1; i2; : : : ; i5/ given in Proposition 4.9. We show
that our state sum invariant is equal to the E6 state sum invariant (Proposition 6.2),
since our 6j–symbols can be transformed into the 6j–symbols of the E6 subfactor
given in [3].

We comment on a topological aspect of our construction; see [5] for this aspect. A
triangulation of a 3–manifold is locally described by a triangulation of a 3–ball. When
a 3–ball has a triangulation, it induces a triangulation of the boundary 2–sphere, and we
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consider its dual planar trivalent graph. In this correspondence, “gluing a tetrahedron
on a 3–ball” corresponds to a fusion of the dual trivalent graph, which is described by
6j–symbols.

A triangulation of S2

Gluing a tetrahedron

6j–symbol

The dual graph

From this viewpoint, we calculate our state sum invariant for some concrete 3–manifolds
in Section 7. It is expected that, when we study topological aspects of the invariant, it
is useful to construct a state sum invariant in terms of the linear skein.

The paper is organized as follows. In Section 2, we introduce the E6 linear skein S.R2/

of R2 , and show that S.R2/ is 1–dimensional. Further, we show that S.R2/ is
spherical, that is, we can regard planar diagrams in R2 as in S2 D R2 [ f1g. In
Section 3, we introduce gray boxes and colored planar trivalent graphs. In Section 4,
we introduce the space H.i1; i2; : : : ; in/, and give a basis of this space. By using this
basis, we define the 6j–symbols. In Section 5, we construct our state sum invariant by
using these 6j–symbols. In Section 6, we show that the defining relations of our E6

linear skein are equivalent to Bigelow’s relations. Further, we show that our state
sum invariant is equal to the E6 state sum invariant. In Section 7, we calculate our
state sum invariant for the lens spaces L.4; 1/, L.5; 2/ and L.5; 1/ in terms of the
E6 linear skein. In Appendix A, we present the concrete values of the weights. In
Appendix B, we show that our 6j–symbols can be transformed into the 6j–symbols of
the E6 subfactor.

Notation Throughout the paper, the scalar field for every vector space is the com-
plex field C . We will set q D exp.�

p
�1=12/, Œn� D .qn � q�n/=.q � q�1/, and

! D exp.4�
p
�1=3/. Further, d0 D 1, d2 D Œ3�, d4 D 1 (by Lemma 3.2), and we put

w D d2
0
C d2

2
C d2

4
D 2C Œ3�2 D 6C 2

p
3. We note that

(1.4) Œ2�D

p
2C
p

6

2
; Œ3�D

p
2Œ2�D 1C

p
3; Œ4�D

p
3Œ2�D

3
p

2C
p

6

2
;

Œ5�D Œ2�2 D 2C
p

3; Œ6�D 2Œ2�D
p

2C
p

6; Œ12� n�D Œn�:
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2 The E6 linear skein

In this section, we introduce the E6 linear skein of R2 and show that it is 1–dimensional
in Section 2.1. Further, we introduce the E6 linear skein of a disk and show some
properties in the E6 linear skein in Section 2.2.

2.1 The E6 linear skein of R2

In this section, we introduce the E6 linear skein S.R2/ of R2 as a vector space spanned
by certain planar graphs in Definition 2.1, and show that S.R2/ is a 1–dimensional
vector space spanned by the empty diagram in Proposition 2.2.

We define a planar diagram to be a 6–valent graph (possibly containing closed curves)
embedded in R2 such that each vertex is depicted by a disk whose boundary has a
base point, as shown in the following picture.

We regard isotopic planar diagrams as equivalent planar diagrams. A planar diagram
is said to be connected if it is connected as a graph. A cap of a planar diagram is an
edge bounding a region of the shape of a disk as shown in . A digon of a planar
graph is a region of the shape of a disk bounded by two edges and two vertices as
shown in .

Definition 2.1 We define the E6 linear skein of R2 , denoted by S.R2/, to be the
vector space spanned by planar diagrams subject to the following relations:

D[ .a closed curve/D Œ2�D for any planar diagram D;(2.1)

.A planar diagram containing a cap/D 0;(2.2)

D ! ;(2.3)

D Œ4� C Œ3� Œ4� :(2.4)

Algebraic & Geometric Topology, Volume 13 (2013)



The state sum invariant of 3–manifolds constructed from the E6 linear skein 3475

Here, in each of (2.3) and (2.4), pictures in the formula mean planar diagrams, which
are identical except for a disk, where they differ as shown in the pictures. The white

boxes, called the Jones–Wenzl idempotents, are inductively defined by D , and

(2.5) D �
Œn� 1�

Œn�
for 2� n� 11;

where a thick strand attached with an integer n means n parallel strands.

It is known, see for example [7], that the Jones–Wenzl idempotents satisfy the following
properties in the linear skein:

D ;(2.6)

D 0 .i D 1; : : : ; n� 1/;(2.7)

D D
ŒnC 1�

Œn�
;(2.8)

for 1� n� 11.

The aim of this section is to show the following proposition, which implies that S.R2/

is 1–dimensional.

Proposition 2.2 There exists an isomorphism h � iW S.R2/!C which takes the empty
diagram ∅ to 1.

Proof We show that S.R2/ is spanned by the empty diagram ∅, ie, at most 1–
dimensional, as follows. Let D be a planar diagram. We show that D is equal to a
scalar multiple of ∅ in S.R2/. By considering an innermost connected component
of D , we can reduce the proof to the case where D is connected. If D has no vertices,
then D is the empty diagram or a closed curve. Thus, by (2.1), D is equal to ∅
or Œ2�∅. If D has just one vertex, then D must have a cap, and thus D D 0 by (2.2).
Hence, we can assume that D is a connected planar diagram with at least two vertices
and no caps. Then, by Lemma 2.3 below, D has a digon. By using (2.3), we move
the base points of the vertices of this digon as shown in the left-hand side of (2.4).
Further, by applying the left-hand side of (2.4) to this digon, D is presented by a linear
sum of planar diagrams with fewer vertices. By repeating this argument, D can be
presented by a scalar multiple of ∅ in S.R2/. Hence, S.R2/ is spanned by the empty
diagram ∅.
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We show the proposition by improving the above argument. Let zSk.R
2/ be the vector

space freely spanned by planar diagrams with at most k vertices. We will inductively
define the linear map h � ik W zSk.R

2/ ! C for k D 0; 1; 2; : : :, extending h � ik�1 ,
satisfying that h∅ik D 1 and˝

D[ .a closed curve/
˛
k
D Œ2�hDik for any planar diagram D;(2.9) ˝

.A planar diagram containing a cap/
˛
k
D 0;(2.10) D E

k
D !

D E
k
;(2.11) D E

k
D Œ4�

D E
k
C Œ3�Œ4�

D E
k
:(2.12)

If such linear maps exist, we obtain a nontrivial linear map h � iW S.R2/! C as the
inductive limit of them, and such a linear map h � i must be isomorphic, since S.R2/

is at most 1–dimensional as shown above. In the following of this proof, we define
h � ik for k D 0; 1; : : : by induction on k showing (2.9)–(2.12).

When k D 0, we define h � i0 , as follows. Let D be a planar diagram with no vertices.
Then, D is a union of closed curves. We define hDi0 D Œ2�m , where m is the number
of closed curves of D . We can verify (2.9) for k D 0 by definition, and the conditions
(2.10)–(2.12) are trivial in this case.

When k D 1, we define h � i1 , as follows. For a planar diagram D with no vertices,
we put hDi1 D hDi0 . For a planar diagram D with just one vertex, we put hDi1 D 0,
noting that D must have a cap. We can verify (2.9)–(2.11) for k D 1 by definition,
and the condition (2.12) is trivial in this case.

When k�2, assuming that there exists a linear map h � ik�1W
zSk�1.R

2/!C satisfying
(2.9)–(2.12) for k�1, we define a map h � ik , as follows. For a planar diagram D with
at most k � 1 vertices, we put hDik D hDik�1 . For a planar diagram D with just k

vertices, we define hDik , as follows. When D is disconnected, we put hDik to be
the product of hconnected component of D ik . If D contains a cap, we put hDik D 0.
Hence, it is sufficient to define hDik for a connected planar diagram D with no caps.
By Lemma 2.3 below, such a planar diagram has a digon. By applying the left-hand
side of the following formula to this digon, we define hDik by

(2.13)
D E

k
D !�

�
Œ4�
D E

k�1
C Œ3�Œ4�

D E
k�1

�
;

where the integer � is defined by the position of the base points of the diagram in
the left-hand side, as follows. We move each of the base points around the vertices

clockwise until the diagram becomes , and � is the number of times the base
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points pass the edges. For example, if the diagram in the left-hand side is , then

�D 5C 2D 7. We note that the planar diagram in the left-hand side has k vertices,
and the planar diagrams in the right-hand side have k � 1 and k � 2 vertices. We also
note that the definition (2.13) is well defined independently of the � –rotation of this
substitution, since the right-hand side of (2.13) is invariant under the � –rotation by
the k � 1 case of Lemma 2.5 below. Further, in order to complete the proof, we must
show that hDik does not depend on the choice of a digon, and that this h � ik satisfies
(2.9)–(2.12).

We show that hDik does not depend on the choice of a digon, as follows. For a planar
diagram D with a digon R, we put DR to be the linear sum of planar diagrams
obtained from D by substituting

!�
�
Œ4� C Œ3�Œ4�

�
into

of this digon. We define J .4/ by:

D Œ4� C Œ3�Œ4�

Let D be a planar diagram with two digons R1 and R2 . Then, we have the following
three cases of the mutual positions of R1 and R2 ; see Figure 1:

(a) The vertices of R1 and R2 are distinct.

(b) R1 and R2 have one common vertex.

(c) The vertices of R1 and R2 are equal.

We assume that the base points of vertices of R1 and R2 are as shown in Figure 1,
since the other cases are reduced to this case from the definition of �. It is sufficient to
show that hDR1

ik�1 D hDR2
ik�1 in each of cases (a)–(c).

Figure 1: Possible positions of two digons R1 and R2

Case (a) hDR1
ik�1 D hDR2

ik�1 , since they are equal to
�

q

�
k�1

by
(2.12) for k � 1, completing this case.
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Case (b) The equation hDR1
ik�1 D hDR2

ik�1 is rewritten as

(2.14)
D E

k�1
D !s

D E
k�1

.s D 0; 1/;

and we show this formula in Lemma 2.10 below, completing this case.

Case (c) When R1 and R2 have one common edge, it is enough to show that� �
k�1

D

� �
k�1

and this follows from (2.8) and Lemma 2.4 below. When the edges of R1 and R2 are
distinct, it is enough to show that

(2.15)
� �

k�1

D !t�s

� �
k�1

.0� s; t � 2/

with sC t being even, and we show this formula in Lemma 2.8 below, completing this
case.

Therefore, we showed that hDik does not depend on the choice of a digon, and hence,
we obtain a well-defined linear map h � ik W zSk.R

2/!C .

Finally, we show that h � ik satisfies (2.9)–(2.12), as follows. We recall that h � ik is
defined by

hDik D

8̂̂<̂
:̂
Q
hconnected component of Dik if D is disconnected,

0 if D is a connected planar diagram with a cap,

hDRik�1 if D is a connected planar diagram with no cap.

For any planar diagram D with k vertices, we have that

hD[ .a closed curve/ik D hDikh.a closed curve/ik D Œ2�hDik ;

from the definition of h � ik for disconnected planar diagrams, and hence, we obtain
(2.9). From the definition of h � ik , we obtain (2.10). From the definition of h � ik and
(2.11) for k�1, we obtain (2.11). The remaining case is to show (2.12). Let D be the
planar diagram in the left-hand side of (2.12). It is sufficient to show (2.12) when D

is connected. If D does not have a cap, (2.12) is obtained from (2.13). We assume
that D has a cap. If the cap is on a vertex outside the picture of the left-hand side of
(2.12), both sides of (2.12) are 0 by definition. Otherwise, the cap is on a vertex in the
picture of the left-hand side of (2.12). In this case, the left-hand side of (2.12) is 0 by
definition, and the right-hand side of (2.12) is also 0 by (2.7). Hence, we obtain (2.12).
Therefore, we showed that h � ik satisfies (2.9)–(2.12), completing the proof.
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In the proof of Proposition 2.2, we used Lemmas 2.3, 2.4, 2.5, 2.8 and 2.10 below. We
show them in the following of this section.

Lemma 2.3 A connected planar diagram with at least two vertices and no caps has a
digon.

Proof Let D be a planar diagram with no caps. In this proof, we regard D as on
R2[f1g D S2 . It is sufficient to show that D has at least two digons in S2 .

Let v , e , and f be the numbers of vertices, edges, and faces of D respectively.
Let Cn be the number of n–gons of D . By definition, f D

P
k�2 Ck . Further,

6vD 2eD
P

k�2 kCk , since D is 6–valent. From these equations and Euler’s formula
v� eCf D 2, we obtain 6D C2�

P
k�4.k�3/Ck � C2 . Hence, D has at least two

digons in S2 , as required.

Lemma 2.4 For an integer k � 2, let h � ik be a linear map zSk.R
2/! C satisfying

(2.9)–(2.11). Then, D E
k
D

D E
k
D

1

Œ4�

D E
k
:

Proof By calculating the Jones–Wenzl idempotent concretely by definition, we have
that

(2.16) D �
Œ3�

Œ4�

�
C

�
C
Œ2�

Œ4�

�
C C C

�
�
Œ2�2

Œ4�
�

1

Œ4�

�
C

�
C

Œ2�

Œ3�Œ4�
�
Œ2�2

Œ3�Œ4�

�
C

�
C
Œ2�3

Œ3�Œ4�
:

By using the above formula, we have that

(2.17) D �
Œ3�

Œ4�

�
C

�
C
Œ2�

Œ4�

�
C

�
�

1

Œ4�

�
C

�
:

Hence, D E
k
D .Œ2��

2Œ3�

Œ4�
/
D E

k
D

1

Œ4�

D E
k
;

D E
k
D�

1

Œ4�
.!C!�1/

D E
k
D

1

Œ4�

D E
k
;

which implies the required formula of the lemma.
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Lemma 2.5 For an integer k � 2, let h � ik be a linear map zSk.R
2/! C satisfying

(2.9)–(2.12). Then, D E
k
D

D E
k
:

Proof We put

D D and D0 D ;

ie, D and D0 are planar diagrams which are identical except for a disk, where they
differ as shown in these pictures. Let � be a planar graph obtained from D by replacing
the disk with an 8–valent vertex. If � has a cap on a 6–valent vertex, then both hDik
and hD0ik are equal to 0 by (2.10). Hence, we assume that there are no caps on
6–valent vertices of � .

If � has at least three 6–valent vertices, then, by Lemma 2.6 below, � has a digon
whose vertices are 6–valent. By applying (2.12) to this digon, we can decrease the
number of vertices of D and D0 , keeping the required formula unchanged. Hence,
repeating this argument, we can reduce the proof of the lemma to the case where �
has at most two vertices.

If � has no 6–valent vertex, then both hDik and hD0ik are equal to 0 by (2.10), since
any planar diagram with just one vertex must have a cap. Hence, the lemma holds in
this case.

If � has one 6–valent vertex, then � must have a cap on the 8–valent vertex. Hence,
by (2.7) and Lemma 2.4, we have that hDik D hD0ik . Therefore, the lemma holds in
this case.

If � has two 6–valent vertices, then we show the lemma, as follows. If � has a cap on
the 8–valent vertex, we obtain the lemma as shown above. Hence, we assume that �
has no cap on the 8–valent vertex. Then, � must be either

�1;i D .0� i � 2/ or �2;i D .0� i � 4/;

where we depict the 8–valent vertex by . Among them, �1;i for i ¤ 1 and �2;i

for any i have a digon, and we can show the lemma as shown above in this case. The
remaining case is �1;1 . In this case, the outer region of D and D0 is depicted by

.0� j � 4/;

and hence, D and D0 are isotopic. Therefore, the lemma holds in this case.

Algebraic & Geometric Topology, Volume 13 (2013)



The state sum invariant of 3–manifolds constructed from the E6 linear skein 3481

Lemma 2.6 Let � be a connected planar graph with no caps, whose vertices are one
8–valent vertex and at least three 6–valent vertices. Then, � has a digon whose vertices
are 6–valent.

Proof In this proof, we regard � as lying on R2[f1g D S2 . We put v , e , f and
Cn .n D 2; 3; : : :/ of � in the same way as in the proof of Lemma 2.3. Let C 0

2
be

the number of digons of � whose vertices are 6–valent, and let C 00
2

be the number
of digons of � which have the 8–valent vertex. By definition, C2 D C 0

2
CC 00

2
. It is

sufficient to show that C 0
2
� 2.

Let m be the number of the vertices adjacent to the 8–valent vertex. We can verify
that m� 2 and C 00

2
� 8�m. In a similar way as in the proof of Lemma 2.3, we have

that 6.v� 1/C 8D 2e D
P

k�2 kCk and f D
P

k�2 Ck . From these equations and
Euler’s formula v� eCf D 2, we have that

C 02�
X
k�4

.k � 3/Ck D 7�C 002 �m� 1:

If m � 3 or � has a k –gon with k � 4, we have that C 0
2
� 2, as required. Hence,

we assume that m D 2, and that each face of � is a digon or a 3–gon. Then, the
neighborhood of the 8–valent vertex must be:

Since � has at least three 6–valent vertices, this contradicts to the connectivity of � .
Hence, we obtain the lemma.

In order to show Lemmas 2.8 and 2.10, we show Lemma 2.7 below, which says that an
edge can “pass-over” a vertex. It is known, see for example [7], that a tangle diagram
is regarded as in the linear skein by putting

DA CA�1

with AD
p
�1q1=2 D

p
�1 exp.�

p
�1=24/, noting that Œ2�D�A2�A�2 . Further,

it is known, see [7], that the value of a tangle diagram in the linear skein is invariant
under Reidemeister moves II and III.

Lemma 2.7 For an integer k � 2, let h � ik be a linear map zSk.R
2/! C satisfying

(2.9)–(2.12). Then, � �
k

D

� �
k

:
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Proof Since h � ik of the right-hand side of the following formula is equal to 0 by
Lemma 2.5,

(2.18) � D � ;

it is sufficient to show the above formula. In the following of this proof, we show that
each side of (2.18) is equal to

7X
jD0

�j Dj ;

where we put � D exp.��
p
�1=4/ and

D0 D ; D1 D ; D2 D ; : : : ; D7 D :

We show that the left-hand side of (2.18) is equal to
P7

jD0 �
j Dj , as follows. By

expanding all crossings of the left-hand side of the following formula and by moving
the base point, we have that

DA�6
C!�1A�4

C!�2A�2
C � � �CA6

D

7X
jD1

!�jC1A2j�8Dj D�

7X
jD1

�j Dj D �

7X
jD0

�j Dj :

Hence, the left-hand side of (2.18) is equal to
P7

jD0 �
j Dj .

We show that the right-hand side of (2.18) is equal to
P7

jD0 �
j Dj , as follows. By

(2.17), we have that

DD0�
Œ3�

Œ4�
.!�1D1C!D7/C

Œ2�

Œ4�
.!D2C!

�1D6/�
1

Œ4�
.D3CD5/:

By considering its mirror image, we have that

DD4�
Œ3�

Œ4�
.!D3C!

�1D5/C
Œ2�

Œ4�
.!�1D2C!D6/�

1

Œ4�
.D1CD7/:

Hence, the right-hand side of (2.18) is equal to

D0�D4C
1� Œ3�!�1

Œ4�
.D1�D5/C

Œ2�.! �!�1/

Œ4�
.D2�D6/C

Œ3�! � 1

Œ4�
.D3�D7/:
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Further, we can verify that

1� Œ3�!�1

Œ4�
D �;

Œ2�.! �!�1/

Œ4�
D �2;

Œ3�! � 1

Œ4�
D �3;

by direct calculation. Therefore, the right-hand side of (2.18) is equal to
P7

jD0 �
j Dj ,

as required.

It is known, see for example [7], that

(2.19) D .�1/nAn.nC2/ ; D .�1/nA�n.nC2/ .1� n� 11/:

Lemma 2.8 The formula (2.15) holds for s; t 2 f0; 1; 2g with sC t being even.

Proof When s ¤ t , that is, .s; t/D .2; 0/ or .0; 2/, the both sides of (2.15) are equal
to 0 from Lemma 2.9 below. Hence, we may assume s D t . By Lemma 2.7, the
left-hand side of (2.15) is equal to

D E
k�1
D

D E
k�1
D Œ4�Œ5�

D E
k�1

where the first equality is obtained by expanding the crossings, the second one is
obtained by Lemma 2.4 and (2.8). In the same way, we can verify that the right-hand
side of (2.15) is equal to:

Œ4�Œ5�
D E

k�1

Further, we have thatD E
k�1
D

D E
k�1
D

D E
k�1

where the first equality is obtained by Lemma 2.7, the second one is obtained by (2.19)
and by expanding the crossings. Therefore, we obtain (2.15), as required.

Lemma 2.9 For an integer k � 2, let h � ik be a linear map zSk.R
2/ �!C satisfying

(2.9)–(2.12). Then, for m 2 f1; 2; 4; 5g:D E
k
D 0:
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Proof We have thatD E
k
D

D E
k
D

D E
k
DA�4m.mC1/

D E
k
;

where the second equality is obtained by Lemma 2.7 and the third one is obtained
by (2.19). Since A�4m.mC1/ D exp.�2�

p
�1 � m.mC1/

12
/¤ 1, we obtain the required

formula.

Lemma 2.10 The formula (2.14) holds for s D 0; 1.

Proof We first show (2.14) for s D 0, that is:

(2.20)
D E

k�1
D

D E
k�1

By using (2.16), we have that:D E
k�1
D

D E
k�1
D

D E
k�1
C
Œ2�

Œ4�

D E
k�1

D Œ4�
D E

k�1
C Œ3�Œ4�

D E
k�1
C
Œ2�

Œ4�

D E
k�1

D Œ4�
D E

k�1
� Œ3�

D E
k�1
C Œ3�Œ4�

D E
k�1

C
Œ2�

Œ4�

D E
k�1

Therefore, the left-hand side of (2.20) is equal to:

Œ4�
D E

k�1
C Œ3�Œ4�

D E
k�1

D Œ4�2
D E

k�1
C Œ3�Œ4�2

D E
k�1
C Œ2�

D E
k�1

By using Lemma 2.5, we can verify that the right-hand side of (2.20) is also equal to
the above formula. Hence, we obtain (2.20).

We next show (2.14) for s D 1, that is:

(2.21)
D E

k�1
D !

D E
k�1

We have D E
k�1
D

D E
k�1
D�A6

D E
k�1
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where the first equality is obtained by Lemma 2.7 and the second one is obtained by
expanding the crossings. By applying (2.20), this is equal to

�A6
D E

k�1
D�A6

D E
k�1
D�A8

D E
k�1

:

Since �A8 D ! , we obtain (2.21).

2.2 Some properties in the E6 linear skein

In this section, we introduce the E6 linear skein of a disk and show some properties in
the E6 linear skein.

For an integer m � 0, let .D2; 2m/ denote a disk D2 with fixed distinct 2m points
on its boundary. We define a planar diagram in .D2; 2m/ to be a graph (possibly
containing closed curves) embedded in D2 whose vertices are 2m univalent vertices on
the fixed points of the boundary of D2 and 6–valent vertices, such that each 6–valent
vertex is depicted by a disk whose boundary has a base point, as shown in the following
picture:

.mD 7/

We regard isotopic planar diagrams as equivalent planar diagrams. In the following of
this paper, we omit to draw the disk D2 of a planar diagram. For an integer m � 0,
we define the E6 linear skein of .D2; 2m/, denoted by S.D2; 2m/, to be the vector
space spanned by planar diagrams in .D2; 2m/ subject to the relations (2.1)–(2.4).

Lemma 2.11 For any planar diagram T in .D2; 2/,

D

in S.R2/.

Proof From (2.4), we have that

D Œ4� C Œ3�Œ4� ;

D Œ4� C Œ3�Œ4� ;
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in S.D2; 8/. Comparing these equations, we have that

D

in S.D2; 8/. Hence, in the same way as in the proof of Lemma 2.7, we obtain

(2.22) D

in S.D2; 8/. Therefore, we have that

D D

where the first equality is obtained by (2.22) and the second one is obtained by (2.19).
Hence, we obtain the required formula.

By this lemma, we can regard planar diagrams in R2 as in S2 DR2[f1g.

3 Colored planar trivalent graphs

In this section, we introduce gray boxes as certain idempotents in the E6 linear skein,
and introduce colored planar trivalent graphs as planar trivalent graphs whose edges are
colored by such gray boxes. Further, we calculate the values of some simple colored
planar trivalent graphs.

We define gray boxes 2 S.D2; 2n/ for nD 0; 2; 4 by

D∅; D ; D �
1

Œ2�2Œ4�
:

We note that, by definition, these gray boxes are symmetric with respect to � rotation,
like the white boxes of the Jones–Wenzl idempotents. We show some basic properties
of the gray boxes in the following lemma.

Lemma 3.1 (1) D 0 for i D 0; 1; 2

(2) D
1

Œ4�
�

1

Œ2�2Œ4�

(3) D�Œ3� D

(4) D for nD 0; 2; 4
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Proof We obtain (1) from the definition of gray boxes and (2.2) and (2.7).

We show (2) as follows. In the same way as in the proof of Lemma 2.4, we have that:

(3.1) D
1

Œ4�

Applying this formula and (2.8) to (2.4), we have that:

(3.2) D C Œ2�2Œ3�

Hence,

D �
1

Œ2�2Œ4�
D
Œ5�� Œ3�

Œ4�
�

1

Œ2�2Œ4�
;

where we get the second equality by (2.8) and (3.2). Since Œ5�� Œ3�D 1, we obtain (2).

We show (3) as follows. From (2.4) and the definition of the gray box, we have that:

(3.3) D
1

Œ2�2

�
�

�
Hence, we have that

D
1

Œ2�2

�
�

�
D

1

Œ2�2

�
� C

Œ3�

Œ4�

�

D
1

Œ2�2

�
� Œ2�2Œ3� C

Œ3�

Œ4�

�
D�Œ3� ;

where the first equality is obtained by (3.3), the second one is obtained by (2.16) and
the third one is obtained by (2.2), (2.7), (2.16) and (3.2). Hence, we obtain the first
equality of (3). We can obtain the second equality of (3) in a similar way.

We show (4) as follows. When n D 0 or 2, the required formula is obtained by
definition. When nD 4, we have that

D �
1

Œ2�2Œ4�
D C

Œ3�

Œ2�2Œ4�
D ;

where the second equality is obtained by (3) and the third one is obtained by (2.16)
and (1). Hence, we obtain (4), completing the proof.

We define dn for n 2 f0; 2; 4g by

dn D

D E
:
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We recall (see, for example, [7]) that

(3.4)
˝ ˛

D ŒnC 1�;

which can be obtained by using (2.8) repeatedly.

Lemma 3.2 The values of dn are given by

dn D

�
1 if nD 0; 4,
Œ3�D 1C

p
3 if nD 2.

In particular, these values are positive real numbers.

Proof When nD 0, the required formula is trivial.

When nD 2, we obtain the formula from the definition of the gray box and (3.4).

When nD 4, we show the formula as follows. By Lemma 3.1(2), we have that

d4 D
1

Œ4�

˝ ˛
�

1

Œ2�2Œ4�

˝ ˛
D 1;

where we obtain the second equality by (3.4) and (2.2). Hence, we obtain the required
formula.

A planar trivalent graph is a trivalent graph embedded in R2 . We consider two kinds
of vertices; one is depicted by �, and the other is depicted by a disk whose boundary
has a base point. A coloring of a planar trivalent graph � is a map from the set of
edges of � to f0; 2; 4g and a map from the set of vertices of � to f�; g. A coloring
of a planar trivalent graph � is said to be admissible if the neighborhood of each vertex
of � is colored as shown in either of the following pictures:

(3.5)

We define a colored planar trivalent graph to be a planar trivalent graph with an
admissible coloring, for example, as shown in the following picture:

We regard a colored planar trivalent graph as in the E6 linear skein, by substituting
into each of the edges colored by n, and substituting the following diagrams into
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vertices,

D .i; j ; k 2 f0; 2; 4g/; D ;

where we put

aD
�i C j C k

2
; b D

i � j C k

2
; c D

i C j � k

2
:

We remark that, abusing the notation, the symbol denotes n parallel edges in a
planar diagram, while it denotes an edge colored by n in a colored planar trivalent
graph. Further, the symbol denotes a 6–valent vertex in a planar diagram, while it
denotes a kind of a trivalent vertex in a colored planar trivalent graph.

Set �.i; j ; k; �/D
D E

and �.2; 2; 2; /D
D E

for a triple i; j ; k 2 f0; 2; 4g

such that is one of the pictures in (3.5) up to rotation.

Lemma 3.3 The values of �.�/ are given by

�.i; j ; k; �/D �.j ; k; i; �/;

�.0; n; n; �/D dn;

�.2; 2; 2; �/D Œ3�Œ4�=Œ2�2 D
p

6;

�.2; 2; 2; /D Œ2�2Œ3�Œ4�D 12
p

2C 7
p

6;

�.2; 2; 4; �/D 1:

In particular, these values are positive real numbers.

Proof We obtain the first formula of the lemma by Lemma 2.11.

We obtain the second formula of the lemma from the definition of �.i; j ; k/ and
Lemma 3.1(4).

We obtain the third formula of the lemma, since

�.2; 2; 2; �/D
D E

D

D E
�

1

Œ2�

D E
D

� Œ3�
Œ2�

�2
� Œ2��

1

Œ2�
� Œ3�D

.Œ3�� 1/Œ3�

Œ2�
D
Œ3�Œ4�

Œ2�2
:
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We obtain the fourth formula of the lemma, since

�.2; 2; 2; /D
D E

D Œ4�
D E

C Œ3�Œ4�
D E

D Œ3�Œ4�Œ5�D Œ2�2Œ3�Œ4�;

where the third equality is obtained by (3.1) and (3.4).

We obtain the last formula of the lemma, since

�.2; 2; 4; �/D
D E

D
˝ ˛

D d4 D 1;

where the second equality is obtained by Lemma 3.1(1).

4 6j–symbols in the E6 linear skein

In this section, we consider the vector space H.i1; : : : ; in/ spanned by planar diagrams
whose ends are gray boxes colored by i1; : : : ; in , and give a basis of this vector space
in Proposition 4.2 and Proposition 4.9. Further, we introduce 6j–symbols of the E6

linear skein as coefficients of a transformation between certain bases of H.i; j ; k; l/

as we show in Proposition 4.10.

For i1; : : : ; in 2 f0; 2; 4g .n� 2/, we define the vector space H.i1; : : : ; in/ to be the
subspace of S.D2; i1C � � �C in/ spanned by planar diagrams of the form

with T being a planar diagram in .D2; i1C � � �C in/.

In order to prove Proposition 4.2, we show the following lemma.

Lemma 4.1 For an integer m� 4, let T be a planar diagram in .D2; 2m/. Then, T

can be presented by a linear sum of planar diagrams in .D2; 2m/ with at most one
vertex.

Proof By (2.1), we may assume that T has no closed curves. If T has at most one
vertex, the assertion of the lemma is trivial. If T has at least two vertices, we show the
lemma, as follows.

Let � be a planar graph on S2 obtained from T by regarding the outer region of the
unit disk of T as a 2m–valent vertex. We call this 2m–valent vertex 1. Similarly as

Algebraic & Geometric Topology, Volume 13 (2013)



The state sum invariant of 3–manifolds constructed from the E6 linear skein 3491

the proof of Lemma 2.5, it is enough to show that � has a digon whose vertices does
not contain 1. If � is disconnected, then, by considering an innermost connected
component which does not contain 1, we see that T has a digon from Lemma 2.3.
Hence, we may assume that � is connected.

When mD 4, we obtain the lemma in a similar way as the proof of Lemma 2.6.

When m � 3, we show the lemma, as follows. In a similar way as the proof of
Lemma 2.3, we can verify that there exists at least mC 3 digons. The number of
digons which contain 1 is at most 2m� 1, because 1 is 2m–valent. Thus, � has
at least mC 3� .2m� 1/D 4�m digons whose vertices does not contain 1. Since
4�m� 1, we obtain the assertion of the lemma.

In the following proposition, we give a basis of H.i; j /.

Proposition 4.2 For any i; j 2 f0; 2; 4g and T 2 S.D2; i C j /,

D ıij �
1

di

� �
;

where ıij D 1 if i D j , and 0 otherwise. As a consequence, we have that

H.i; j /D

(
spnC

n o
i D j ;

0 i ¤ j:

Proof By Lemma 4.1, we may assume that T has at most one vertex.

If T has just one vertex, then we can verify that there exists a cap, or parallel three
edges connecting the vertex and . Hence, by (2.2) and Lemma 3.1(3), we can
reduce the proof of the proposition to the case where T has no vertices.

If T has no vertices, we show the proposition, as follows. When i ¤ j , the left-hand
side of the first formula of the proposition is equal to 0, by Lemma 3.1(1). When
i D j , the left-hand side is equal to a scalar multiple of the identity diagram by (2.1)
and Lemma 3.1(1). Hence, we can put

D ˛

for some ˛ 2C . By closing the diagrams of both sides, using Lemma 3.1(4) and taking
the bracket, we obtain

˛ D
D E

=di ;

noting that di ¤ 0 by Lemma 3.2. Therefore, we obtain the first formula of the
Proposition.
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The second formula of the proposition is obtained from the first formula, noting that

is nonzero in S.D2; 2i/, since the value di of its closure is nonzero by Lemma 3.2.

In order to prove Proposition 4.9, we need Lemmas 4.7 and 4.8 below. In order to show
Lemma 4.7, we show the following four lemmas.

Lemma 4.3 For n 2 f1; 2; 4; 5g and T 2 S.D2; 2n/, we suppose that D 0

for any i D 0; 1; : : : ; 2n� 2. Then, T D 0 in S.D2; 2n/.

Proof In the same way as the proof of Lemma 2.9 using (2.22), we obtain that

D 0

in S.D2; 2n/. Further, we have that

D C

�
a linear sum of planar diagrams of the form

�
in the linear skein, which can be shown by induction on m from the definition of the
Jones–Wenzl idempotents. Hence, by the assumption of the lemma putting mD 2n,
we obtain that T D 0.

Lemma 4.4 In S.D2; 10/:

D Œ2�

Proof By Lemma 4.3, it is sufficient to show that

D ;(4.1)

D ;(4.2)

D ;(4.3)
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for any i D 0; 1; : : : ; 3.

We show (4.1), as follows. Equation (4.1) is rewritten as

D Œ2�

and this is shown by Lemma 3.1(4).

We show (4.2), as follows. When i D 0; 1; 2, this is shown by Lemma 3.1(1). When
i D 3, (4.2) is rewritten as

D Œ2� :

By Lemma 3.1(2), we have that

Œ2� D
1

Œ2�Œ4�

�
Œ2�2 �

�
D
Œ2�2C Œ3�

Œ2�Œ4�
D ;

where the second equality is obtained by Lemma 3.1(1) and (3). Therefore, we ob-
tain (4.2).

We can verify (4.3) in a similar way as above.

Lemma 4.5 In S.D2; 12/:

D Œ3�

Proof We have that

(4.4) D �
1

Œ2�
D �

1

Œ2�
D 0;

where the second equality is obtained by Lemma 3.1(4), and the last one is obtained by
Lemma 4.4. Hence:

0D D �
1

Œ2�2Œ4�

From (2.16), Lemma 3.1(1) and (3), this is equal to:

�

�
Œ3�

Œ4�
C

Œ3�2

Œ2�2Œ4�

�
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Since Œ3�
Œ4�
C

Œ3�2

Œ2�2Œ4�
D

Œ3�
Œ2�
�
Œ2�2CŒ3�

Œ2�2Œ4�
D

Œ3�
Œ2�

, we obtain that:

Œ3�

Œ2�
D

Further, the right-hand side is calculated as

D
1

Œ2�
D

1

Œ2�
;

where we obtain the first equality by Lemma 4.4. Therefore, we obtain the required
formula of the lemma.

Lemma 4.6 In S.D2; 16/:

D

Proof We have that

D D Œ3� ;

where the first equality is obtained by Lemma 3.1(1) and (4), and the second one is
obtained by Lemma 4.5. As the �=2 rotation of this formula, we have that:

D Œ3�

From the above two formulas, we obtain the required formula.

For A 2 f�; g, we denote

D

8̂<̂
:

if AD �,

if AD .

Lemma 4.7 For any i; j 2 f0; 2; 4g,

D

X
k;A

dk

�.i; j ; k;A/

in S.D2; 2.i C j //, where k 2 f0; 2; 4g and A 2 f�; g of the sum run over all
admissible colorings of the colored planar trivalent graph in the summand.
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Proof Since the gray boxes are symmetric with respect to � rotation, we may assume
that i � j without loss of generality.

When j D 0, the required formula is rewritten as

D
di

�.i; i; 0; �/
D

and this is obtained by Lemma 3.1(4).

When .i; j /D .2; 2/, the required formula is rewritten as:

D

X
kD0;2;4

dk

�.2; 2; k; �/
C

d2

�.2; 2; 2; /

D
1

Œ3�
C
Œ2�2

Œ4�
C C

1

Œ2�2Œ4�

From the definition of the gray box, this is rewritten as:

D
1

Œ3�
C
Œ2�2

Œ4�
C

We can verify the above formula by direct calculation, using (2.16).

When .i; j /D .4; 2/, the required formula is rewritten as

D
d2

�.4; 2; 2; �/
D Œ3�

and this is obtained by Lemma 4.5.

When .i; j /D .4; 4/, the required formula is rewritten as

D
d0

�.4; 4; 0; �/
D

and this is obtained by Lemma 4.6.

Therefore, the proof of the lemma is completed.

Lemma 4.8 For A;A0 2 f�; gD E
D ıAA0�.2; 2; 2;A/:
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Proof When ADA0 , we obtain the lemma from the definition of �. � /.

When A¤A0 , is presented by a linear sum of planar diagrams with just one
vertex. Since any planar diagram with just one vertex has a cap, the left-hand side of
the lemma is equal to 0. Hence, we obtain the required formula.

In the following proposition, we give a basis of H.i1; : : : ; in/ for n� 3.

Proposition 4.9 For i1; : : : ; in 2 f0; 2; 4g .n� 3/, the vector space H.i1; : : : ; in/ has
a basis

(4.5)

( )
.j1;:::;jn�3;A1;:::;An�2/

where j1; : : : ; jn�3 2 f0; 2; 4g and A1; : : : ;An�2 2 f�; g run over all admissible
colorings.

Proof We first show that H.i1; : : : ; in/ is spanned by the planar diagrams in (4.5) by
induction on n, as follows.

When nD 3, we have that

D

X
k;A

dk

�.i1; i2; k/
D

X
A

D E
�.i1; i2; i3/

for any T 2 S.D2; i1C i2C i3/, where the first equality is obtained by Lemma 4.7,
and the second one is obtained by Proposition 4.2. Hence, H.i1; i2; i3/ is spanned by
the planar diagrams in (4.5).

When n� 4, we show that H.i1; : : : ; in/ is spanned by the planar diagrams in (4.5),
assuming the case of n� 1, as follows. In a similar way as above, we have that

D

X
k;A1

dk

�.i1; i2; k;A1/

for any T 2 S.D2; i1 C � � � C in/. By the assumption of the induction, this can be
presented by a linear sum of planar diagrams in (4.5). Therefore, H.i1; : : : ; in/ is
spanned by the planar diagrams in (4.5).
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We next show that the planar diagrams in (4.5) are linearly independent, as follows.
We denote the index set of (4.5) by J . We assume thatX

.j 0
1
;:::;j 0

n�3
;A0

1
;:::;A0

n�2
/2J

˛
A0

1
;:::;A0

n�2

j 0
1
;:::;j 0

n�3

D 0

for some scalars

˛
A0

1
;:::;A0

n�2

j 0
1
;:::;j 0

n�3

2C:

For any .j1; : : : ; jn�3;A1; : : : ;An�2/ 2 J , by gluing the planar diagram

to the above formula and taking the bracket, we have that

(4.6)
X

.j 0
1
;:::;j 0

n�3
;A0

1
;:::;A0

n�2
/2J

˛
A0

1
;:::;A0

n�2

j 0
1
;:::;j 0

n�3

� �
D 0:

By Proposition 4.2, we have that

� �

D
ıj1j 0

1

dj1

� �� �

D
ıj1j 0

1
ıA1A0

1
�.i1; i2; j1;A1/

dj1

� �
D � � �

D

n�1Y
kD1

ıjkj 0
k

n�2Y
lD1

ıAl A0
l
�
�.i1; i2; j1;A1/�.j1; i3; j2;A2/ � � � �.jn�1; in�1; in;An�2/

dj1
dj2
� � � djn�1

;

where we obtain the second equality by Lemma 4.8, and obtain the last line by repeating
this procedure. Hence, from (4.6), we obtain that

˛
A1;:::;An�2

j1;:::;jn�3
�
�.i1; i2; j1;A1/�.j1; i3; j2;A2/ � � � �.jn�1; in�1; in;An�2/

dj1
dj2
� � � djn�1

D 0:
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Since all of �.�/ in the above formula are nonzero by Lemma 3.3, we obtain that
˛

A1;:::;An�2

j1;:::;jn�3
D0 for any .j1; : : : ; jn�3;A1; : : : ;An�2/2J . Hence, the planar diagrams

in (4.5) are linearly independent, as required.

We consider the values

dj4

�.j3; j4; j5;A3/�.j2; j4; j6;A4/

� �

for j1; j2; : : : ; j6 2 f0; 2; 4g and A1;A2;A3;A4 2 f�; g with the colored planar
trivalent graph in the above formula being admissible. These values satisfy the formula
of the following proposition, which is the defining relation of the 6j–symbols. In this
sense, the above values give the 6j–symbols of the E6 linear skein.

Proposition 4.10 (Defining relation of the 6j–symbols) For i; j ; k; l;m 2 f0; 2; 4g

and A;B 2 f�; g with

being admissible,

D

X
n;C;D

dn

�.k; l; n;C /�.i; j ; n;D/

� �

where n 2 f0; 2; 4g and C;D 2 f�; g of the sum run over all admissible colorings of
the colored planar trivalent graph in h � i.

Proof In the proof, indices of a sum run over all admissible colorings of the colored
planar trivalent graphs in the summand.

By using Lemma 4.7 twice, the left-hand side of the required formula is equal to:

X
n;n0;C;D

dndn0

�.k; l; n;C /�.i; j ; n0;D/
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By Proposition 4.2, this is equal to:

X
n;C;D

dn

�.k; l; n;C /�.i; j ; n;D/

� �

From Lemma 2.11, this is equal to the right-hand side of the required formula.

5 A state sum invariant of 3–manifolds

It is known, see [2; 6], that a state sum invariant of 3–manifolds can be constructed
from a set of 6j–symbols, and the topological invariance of the invariant is shown by
using the orthogonal relation and the pentagon relation of the 6j–symbols, which are
naturally obtained from the defining relation of the 6j–symbols. See also [13; 14] for
similar procedures of such constructions, and see [15] for a construction of the E6

state sum invariant. In this section, along such a general procedure, we construct a state
sum invariant of 3–manifolds based on our E6 linear skein in Definition 5.1, and show
its topological invariance in Theorem 5.2. The outline of the proof of the topological
invariance is the known procedure, and we check it concretely based on our E6 linear
skein in this section.

We relate an oriented tetrahedron to a planar trivalent graph, as follows, where, in the
left picture below, we regard gray characters as on faces of the hidden side.

 
dual

decomposition

�
isotopy
on S2

For a given tetrahedron (the left picture), we consider the triangulation of the boundary
of the tetrahedron, and consider its dual decomposition on S2 (the middle picture).
Further, by isotopy on S2 , we obtain a planar trivalent graph (the right picture). Here,
we fix an orientation of the plane of the trivalent graph, and we make the above
correspondence in such a way that the induced orientation of the boundary of the
tetrahedron coincides with the orientation of the plane under this correspondence.
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We consider colorings of a tetrahedron corresponding to colorings of a planar trivalent
graph, as follows. A coloring of a tetrahedron T is a map from the set of faces of T

to f�; g and a map from the set of edges of T to f0; 2; 4g. A coloring of a tetrahedron
T is said to be admissible if each face of T is colored as shown in either of the
following pictures, noting that these are dual to the pictures of (3.5).

Here, when a face is colored by , we consider a marking such as at a vertex of
a triangle of the face corresponding to the base point of . For A 2 f�; g, we denote

D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

if AD �,

if AD .

Let M be a closed oriented 3–manifold, and let T be a triangulation of M . A coloring
of T is a map from the set of faces of T to f�; g and a map from the set of edges
of T to f0; 2; 4g. A coloring of T is said to be admissible if the coloring of each
tetrahedron of T is admissible. When a face is colored by , we consider a marking

such as at a vertex of a triangle of the face. We define a weight j � j of a colored
oriented tetrahedron by

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

� �
p
�.i; j ; n;A/�.j ; k; l;B/�.l;m; n;C /�.i; k;m;D/

;

where the colored planar trivalent graph in the right-hand side is obtained from the
tetrahedron as mentioned above. The position of the base points of the colored planar
trivalent graph in the right-hand side is defined by the markings of the tetrahedron in
the left-hand side. When the markings of the tetrahedron is given in other ways, the
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position of the base points change. For example,

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

� �
p
�.i; j ; n;A/�.j ; k; l;B/�.l;m; n;C /�.i; k;m;D/

:

We note that the values of �.�/ are positive real numbers by Lemma 3.3. We also
note that, by Lemma 2.11, the colored planar trivalent graph in the right-hand side
can be regarded as in S2 , which guarantees that its value is well determined from a
colored oriented tetrahedron. We denote by v the number of vertices of T . We put
w D d2

0
C d2

2
C d2

4
D 2C Œ3�2 .

Definition 5.1 We define the E6 state sum of a closed oriented 3–manifold M with
a triangulation T by

ZE6.M; T /D w�v
X
�

Y
E

d�.E/
Y
T

j.T; �/j;

where the sum of � runs over all admissible colorings of T , the product of E runs
over all edges of T , and the product of T runs all tetrahedra of T .

We note that ZE6.M; T / does not depend on a choice of markings of faces, because,
when we change a marking of a face, the changes of the weights of the adjacent
tetrahedra cancel together. Further, we show that ZE6.M; T / does not depend on a
choice of a triangulation T in the following theorem.

Theorem 5.2 The E6 state sum ZE6.M; T / is a topological invariant of a closed
oriented 3–manifold M , independently of a choice of a triangulation T .

We will show a proof of the theorem later in this section. In order to show the
theorem, we recall the Pachner moves. Let M and M 0 be closed 3–manifolds with
triangulations T and T 0 respectively. It is known (see Pachner [10]) that M and M 0

are homeomorphic if and only if T and T 0 are related by a finite sequence of simplicial
isomorphisms and the Pachner moves P1;4 and P2;3 shown below,

P1;4

 !
P2;3

 !
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where the pictures consist of one tetrahedron, four tetrahedra, two tetrahedra and three
tetrahedra, respectively. Hence, in order to show Theorem 5.2, it is sufficient to show
that ZE6.M; T / is invariant under the Pachner moves P1;4 and P2;3 .

Further, it is known [14] that the P1;4 move can be simplified by using the P2;3 move,
as follows. We consider singular triangulations, extending the usual triangulations. By
applying the P2;3 move to the upper three tetrahedra of the right-hand side of the P1;4

move, the right-hand side of the P1;4 move is rewritten as

the union obtained by gluing along P;Q;R.

Hence, by using the P2;3 move, the P1;4 move can be replaced with the following
move.

(5.1)

 
the union
obtained by gluing along P , Q, R

!
 !

Further, we will show later in the proof of Theorem 5.2 that invariance under this move
can be reduced to invariance under the following move [14],

(5.2)  !

where the left-hand side consists of two (singular) tetrahedra, and the right-hand side
consists of two triangles (with no tetrahedra). Hence, in order to show Theorem 5.2, it
is sufficient to show that ZE6.M; T / is invariant under the move (5.2) and the P2;3

move.

Furthermore, it is known as general procedures (see [2; 6; 13; 14]) that invariance
under the move (5.2) and the P2;3 move are obtained from the orthogonal relation
and the pentagon relation of the 6j–symbols, which are naturally obtained from the
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defining relation of the 6j–symbols (Proposition 4.10). We show them in the following
two lemmas.

Lemma 5.3 (The orthogonal relation)

dm

X
n;C;D

dn

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD ımm0ıAA0ıBB0

Proof In the proof, indices of a sum run over all admissible colorings of the colored
trivalent graph in the summand, and we denote �.i; j ; k;A/D �A

ijk
.

From the definition of the weights, the required formula is rewritten as

dmq
�A

ilm
�B

kjm
�A0

ilm0
�B0

jkm0

X
n;C;D

dn

�C
kln
�D

ijn

* C

D

A B

l
n

k

i j

m

+ * B0

A0

C D

k
m0

j

l i

n

+
D ımm0ıAA0ıBB0 :

In the above formula,
p
� is equal to �A

ilm
�B

kjm
when mDm0 , ADA0 and B D B0 .

Thus, it is sufficient to show that

(5.3)
dm

�A
ilm
�B

kjm

X
n;C;D

dn

�C
kln
�D

ijn

* C

D

A B

l
n

k

i j

m

+ * B0

A0

C D

k
m0

j

l i

n

+
D ımm0ıAA0ıBB0 :

By using Proposition 4.10 twice, we have that:

D

X
n;C;D

dn

�C
kln
�D

ijn

* C

D

A B

l
n

k

i j

m

+

D

X
m00;n;

A00;B00;C;D

dm00dn

�A00

ilm00
�B00

jkm00
�C

kln
�D

ijn

* C

D

A B

l
n

k

i j

m

+ * B00

A00

C D

k
m00

j

l i

n

+

Hence, by Proposition 4.9 for nD 4, we obtain (5.3), as required.
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Lemma 5.4 (The pentagon relation)

X
C

ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌

D

X
l;C1;C2;C3

dl

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

Proof In the proof, indices of a sum run over all admissible colorings of the colored
planar trivalent graphs in the summand, and we denote �A

ijk
D �.i; j ; k;A/. From the

definition of the weights, the required formula is rewritten as:

(5.4)
X
C

1

�C
i1i2i3

* + * +

D

X
l;C1;C2;C3

dl

�
C1

j1k1l
�

C2

j2k2l
�

C3

j3k3l

* + * + * +

We show the above formula by calculating a certain colored planar trivalent graph in
two ways, as follows. By using Proposition 4.10 twice, we have that:

D

X
i0
3
;A0

3
;C 0

di0
3

�
A0

3

i0
3
k1k2

�C 0

i1i2i0
3

* +

D

X
i0
3
;j 0

1
;

A0
3
;B0

2
;B0

3
;C 0

dj 0
1
di0

3

�
A0

3

i0
3
k1k2

�
B0

2

i2j 0
1
j3
�

B0
3

i0
3
j 0

1
j2
�C 0

i1i2i0
3

�

* + * +
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On the other hand, by using Proposition 4.10 three times, we have that:

D

X
l 0;C 0

2
;C 0

3

dl 0

�
C 0

2

j2k2l 0
�

C 0
3

j3k3l 0

* +

D

X
l 0;j 0

1
;

B0
2
;C 0

1
;C 0

2
;C 0

3

dj 0
1
dl 0

�
B0

2

i2j 0
1
j3
�

C 0
1

j 0
1
k1l 0

�
C 0

2

j2k2l 0
�

C 0
3

j3k3l 0

�

* + * +

D

X
l 0;j 0

1
;i0

3
;

A0
3
;B0

2
;B0

3
;C 0

1
;C 0

2
;C 0

3

dj 0
1
di0

3
dl 0

* + * + * +

�
A0

3

i0
3
k1k2

�
B0

2

i2j 0
1
j3
�

B0
3

i0
3
j 0

1
j2
�

C 0
1

j 0
1
k1l 0

�
C 0

2

j2k2l 0
�

C 0
3

j3k3l 0

�

From these formulae and Proposition 4.9 for nD 5, we obtain (5.4), as required.

We now show a proof of Theorem 5.2.

Proof of Theorem 5.2 As mentioned before, it is sufficient to show that ZE6.M; T /
is invariant under the P2;3 move and the move (5.1).

We obtain the invariance under the P2;3 move by Lemma 5.4.

We show the invariance under the move (5.1), as follows. In the following of this proof,
indices of a sum run over all admissible colorings of tetrahedra in the summand. By
Lemma 5.3, we have that
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di3

X
j3;B1;B2

dj3

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
D ıi3i0

3
ıA0A0

0
ıB3B0

3

for any i1; i2; j1; j2 2 f0; 2; 4g and A0;A
0
0
;B3;B

0
3
2 f�; g such that the colored

triangles

; ; and

are admissible. By putting i3D i 0
3

, B3DB0
3

, by multiplying d�1
i3

dj1
dj2

by both sides
and by summing over j1; j2;B3 , we have that

X
j1;j2;j3;

B1;B2;B3

dj1
dj2

dj3

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌D d�1

i3

X
j1;j2;B3

dj1
dj2
� ıA0A0

0
D wıA0A0

0
;

where the last equality is obtained by Lemma 5.5 below. This means the invariance
under the move (5.1), as required.

In the proof of Theorem 5.2, we used the following lemma.

Lemma 5.5 For any k 2 f0; 2; 4g,

d�1
k

X
i;j ;A

didj D w;

where i; j 2 f0; 2; 4g and A 2 f�; g in the sum run over all admissible colorings of a

triangle .

Proof When k D 0, we obtain the required formula from the definition of admissible
colorings and the definition of w .

When kD2, is admissible for .i; j ;A/D .0; 2; �/, .2; 0; �/, .2; 2; �/, .2; 2; /,

.2; 4; �/, .4; 2; �/. Hence, the left-hand side of the lemma is equal to

d�1
2 � 2.d0d2C d2

2 C d2d4/D 4C 2Œ3�D 6C 2
p

3D w;
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as required.

When kD 4, is admissible for .i; j ;A/D .0; 4; �/, .4; 0; �/, .2; 2; �/. Hence,

the left-hand side of the lemma is equal to

d�1
4 .2d0d4C d2

2 /D 2C Œ3�2 D w;

as required.

6 Equality to the E6 state sum invariant

In this section, we show our defining relations of the E6 linear skein are equivalent
to Bigelow’s relations of the E6 subfactor planar algebra in Section 6.1. Further, we
show our state sum invariant is equal to the E6 state sum invariant in Section 6.2.

6.1 Equivalence to Bigelow’s relations of the E6 subfactor planar algebra

Bigelow [1] defined a planar algebra fS 0.D2; 2n/gnD0;1;::: (in his paper this is de-
noted by P ) by giving generators and relations, and proved that its principal graph
is the E6 Dynkin diagram. However, his proof relies on the existence of the E6

subfactor planar algebra and some of its known properties. In this section, we show
that S.D2; 2n/ is isomorphic to S 0.D2; 2n/ for any n� 0. We note that an S –labeled
disc of [1] corresponds to a vertex of this paper. As a consequence of this section,
fS.D2; 2n/gnD0;1;::: forms a subfactor planar algebra.

As in [1], for an integer n� 0, we define S 0.D2; 2n/ to be the vector space spanned by
planar diagrams in .D2; 2n/ subject to the relations (2.1)–(2.3) and (6.1), (6.2) below,

D C Œ2�2Œ3� ;(6.1)

D 0:(6.2)

We recall that S.D2; 2n/ is the vector space spanned by planar diagrams in .D2; 2n/

subject to the relations (2.1)–(2.4).

Proposition 6.1 For any n� 0, S.D2; 2n/ is isomorphic to S 0.D2; 2n/.
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Proof We assume (2.1)–(2.3) in this proof. It is enough to show that (2.4) is equivalent
to (6.1) and (6.2).

Assuming (2.4), we show (6.1) and (6.2), as follows. We obtain (6.1) from (3.2).
Further, we obtain (6.2) in the similar way as the proof of Lemma 2.9 in the case
mD 4, using (2.22).

Assuming (6.1) and (6.2), we show (2.4), as follows. From the E6 version of the proof
of [1, Lemma 3.1], an edge can pass-over a vertex. Hence, the formula of Lemma 4.3
holds in S 0.D2; 2m/ in the similar way as the proof of Lemma 2.9. Hence, it is
sufficient to show that

(2.4) D (2.4) ;(6.3)

(2.4) D (2.4) ;(6.4)

(2.4) D (2.4) ;(6.5)

for any i D 0; 1; 2. We obtain (6.3) by (2.8), (3.1) and (6.1), and we obtain (6.4) and
(6.5) by (2.2) and (2.7), noting that the relations (2.1)–(2.3) implies (2.7), (2.8) and
(3.1). Therefore, we obtain (2.4), as required.

6.2 Equality of our state sum invariant to the E6 state sum invariant

The E6 state sum invariant of 3–manifolds is the state sum invariant defined from the
6j–symbols of the E6 subfactor. The E6 state sum invariant is concretely formulated
and calculated in [12; 15]. In this section, we show that our state sum invariant defined
in Section 5 is equal to the E6 state sum invariant in Proposition 6.2.

We briefly review the formulation of the E6 state sum invariant; for further details,
see [12; 15]. Similarly as our formulation, edges are colored by 0; 2; 4 (they are
denoted by “id”, “�”, “˛” in [12; 15]). Admissible colorings are defined similarly
as our formulation. A face whose edges are colored by i; j ; k is colored by � unless
i D j D k D 2, and is colored by S3 and S4 if i D j D k D 2, while a face whose
edges are colored by 2; 2; 2 is colored by � and in our formulation. (To be precise,
their faces are colored by S1;S2;S3;S4 , though the color is uniquely determined
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unless i D j D k D 2, and we denote it by � here.) Unlike our formulation, a total
order of the vertices is given, and edges are oriented by using this order. The weight of
a tetrahedron ˇ̌̌̌

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

is given by the 6j–symbols of the E6 subfactor; we review their concrete values in
Appendix B.

Proposition 6.2 Our state sum invariant of a closed oriented 3–manifold M defined
in Section 5 is equal to the E6 state sum invariant of M .

Proof We note that basic parts of their formulation are similar to our formulation. The
differences are that their edges are oriented, and that a face whose edges are colored
by 2; 2; 2 is colored by S3 and S4 , while such a face is colored by � and in our
formulation.

We transfer the colors of faces by putting

D ; D unless i D j D k D 2,

D ua C va ;

D xua Cxva ;

with some unitary matrix
�

u3 v3

u4 v4

�
. By the unitarity of this matrix, we have that

˝ C ˝

D ˝ C ˝ ;

which justifies that the substitution of S3 , S4 can be transformed into the substitution
of �, in the definition of the state sum invariant.
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It is shown, see Lemma B.1 (due to T Ohtsuki), that our 6j–symbols can be transformed
into the 6j–symbols of the E6 subfactor by such a transformation as above. Hence,
our state sum invariant is equal to the E6 state sum invariant.

7 Properties and examples of our state sum invariant

The values of the E6 state-sum invariant have been calculated for the lens space L.p; q/

for q D 1; 2; 3 in [12], and for some other 3–manifolds in Sato and Wakui [11]. In
this section, we calculate the values of the E6 state-sum invariant for the lens spaces
L.4; 1/, L.5; 2/ and L.5; 1/ in terms of our E6 linear skein in Examples 7.5, 7.6 and
7.7. Further, we review some property of the E6 state sum invariant in Proposition 7.1.

The following proposition is a well-known basic property of the E6 state sum invariant.

Proposition 7.1 For any closed oriented 3–manifold M ,

ZE6. SM /DZE6.M /;

where SM denotes M with the opposite orientation.

Proof We review the proof based on our construction of the state sum invariant. When
we change the orientation of M , the colored planar trivalent graph corresponding to
a tetrahedron becomes its mirror image. Hence, the value of ZE6.M / becomes its
complex conjugate.

In order to calculate our state sum invariant later, we show some properties of colored
planar trivalent graphs in the following three lemmas.

Lemma 7.2 (1) D
2

Œ2�Œ3�

(2) D�
1

Œ2�

(3) D Œ2�4

(4) D�
1

Œ2�
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Proof We obtain (1), since:

D D �
1

Œ2�

D �
2

Œ2�
D
Œ3�� 2

Œ2�
D

2

Œ2�Œ3�

We obtain (2), since:

D D�
1

Œ2�

We show (3), as follows. By Proposition 4.9, H.2; 2; 2/ is spanned by:

and

Further, since the left-hand side of the required formula is symmetric with respect to
2
3
� rotation, we can put

(7.1) D c

with some scalar c . By closing one strand at the bottom, we have that:

(7.2) D c

By expanding white boxes, we calculate the diagram of the right-hand side as:

D
Œ3�� 1

Œ2�
D
Œ4�

Œ2�2

Further, by (3.2), the left-hand side of (7.2) is calculated as:

D C Œ2�2Œ3�
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We can verify that the second summand of the right-hand side is equal to 0 by expanding
the white box. Hence, by using (3.2) again, we can show that:

D Œ2�2Œ4�

Therefore, from (7.2), c D Œ2�4 . Hence, from (7.1), we obtain (3) of the lemma.

We obtain (4), since:

D D�
1

Œ2�
D�

1

Œ2�

Lemma 7.3 The values of
� �

are given, as follows.

(1)
� �

D ıAB�.i; j ; k;A/ for i; j ; k 2 f0; 2; 4g and A;B 2 f�; g

(2)
� �

D
2

Œ2�Œ3�
�.2; 2; 2; �/D

2Œ4�

Œ2�3

(3)
� �

D 0

(4)
� �

D�
1

Œ2�
�.2; 2; 2; /D�Œ2�Œ3�Œ4�

(5)
� �

D Œ2�2Œ3�Œ4�

(6)
� �

D 0

(7)
� �

D�
1

Œ2�
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(8)
� �

D�Œ3�

(9)
� �

D Œ2�3

(10)
� �

D�
1

Œ3�

Proof We obtain (1) by Lemma 3.1(4) and Lemma 3.3.

We obtain (2) by applying Lemma 7.2 (1) to a triangle of a diagram of the required
formula and by using Lemma 3.3.

We obtain (3), since any planar diagram with just one vertex must have a cap and such
a diagram is equal to 0 in the linear skein.

We obtain (4) by applying Lemma 7.2(2) to a triangle of a diagram of the required
formula and by using Lemma 3.3.

We obtain (5) and (6) by applying Lemma 7.2(3) to a triangle of a diagram of the
required formulas and by using Lemmas 3.3 and 4.8.

We obtain (7) by applying Lemma 7.2(4) to a triangle of a diagram of the required
formula and by using Lemma 3.3.

We obtain (8), since� �
D

� �
D

� �
D�Œ3�d4 D�Œ3�;

where the third equality is obtained by Lemma 3.1(3).

We obtain (9), since� �
D

� �
D

� �
�

1

Œ2�2Œ4�

� �

D
Œ2�

Œ3�Œ4�

� �
D

Œ2�

Œ3�Œ4�
�.2; 2; 2; /D Œ2�3;

where the third equality is obtained by (2.16) and (6) of the lemma.
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We obtain (10), since

� �
D

� �
D

� �
�

1

Œ2�2Œ4�

� �

D
Œ2�

Œ3�Œ4�

� �
�

1

Œ2�2Œ4�

� �
D

Œ2�

Œ3�Œ4�
d4�

Œ2�

Œ4�
D
Œ2�.1� Œ3�/

Œ3�Œ4�
D�

1

Œ3�
;

where the fourth equality is obtained by (9) of the lemma.

Lemma 7.4 (1) D�Œ2�3 C

(2) D Œ2�3

Proof We show (1), as follows. Since the space H.2; 2; 2/ is spanned by

and

by Proposition 4.9, we can put

(7.3) D c1 C c2

with some scalars c1 and c2 . By closing the diagrams of (7.3) with

we have that � �
D c1 � �.2; 2; 2; �/

by Lemma 4.8. Further, by Lemmas 3.3 and 7.3,

�Œ2�Œ3�Œ4�D c1 �
Œ3�Œ4�

Œ2�2
:
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Hence, c1 D�Œ2�
3 . By closing the diagrams of (7.3) with

we have that � �
D c2 � �.2; 2; 2; /

by Lemma 4.8. Further, by Lemmas 3.3 and 7.3,

Œ2�2Œ3�Œ4�D c2 � Œ2�
2Œ3�Œ4�:

Hence, c2 D 1. Therefore, from (7.3), we obtain (1) of the lemma.

We show (2), as follows. Since the space H.4; 2; 2/ is spanned by by
Proposition 4.9, we can put

(7.4) D c

with some scalars c . By closing the diagrams of (7.4) with , we have that

� �
D c � �.2; 2; 4; �/:

Further, by Lemmas 3.3 and 7.3,

Œ2�3 D c:

Hence, from (7.4), we obtain (2) of the lemma.

We briefly review the construction of the state sum invariant based on spines of 3–
manifolds; see [13; 14] for details. A spine of a closed oriented 3–manifold is a
2–polyhedron obtained from M � .3–balls/ by collapsing all 3–cells in such a way
that each point of the resulting 2–polyhedron has a neighborhood of either of the
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following forms.

Thus, we have that a spine consists of vertices (the right picture), edges (the middle
picture) and faces (the left picture). A typical spine of a 3–manifold M is the 2–
skeleton of the dual decomposition of a triangulation of M . A coloring of a spine X

is a map from the set of edges of X to f�; g and a map from the set of faces of X

to f0; 2; 4g. We can define an admissible coloring of a spine in an appropriate way,
corresponding to an admissible coloring of a triangulation. We can define a weight of
a colored vertex of a spine corresponding to the weight of a colored tetrahedron, by
using a colored planar trivalent graph obtained as the intersection of the spine and the
boundary of a neighborhood of the vertex. It is known, see [13; 14], that the state sum
invariant of a 3–manifold M with a spine X is presented by

ZE6.M /D w�v
X
�

Y
F

d�.F /
Y
V

.the weight of V colored by �/;

where the sum of � runs over all admissible colorings of X , the product of F runs
over all faces of X , the product of V runs all vertices of X , and v denotes the number
of 3–balls when we make X from M .

Example 7.5 [12] The value of the E6 state sum invariant of the lens space L.4; 1/

is given by

ZE6.L.4; 1//D
3C
p
�3

6
:

Proof In this proof, we calculate the required value based on our construction of the
state sum invariant.

A spine of L.4; 1/ is given by

(7.5)

 
2–polyhedron
obtained by gluing

along x1; : : : ;x4;y

!
[

dashed
line

Algebraic & Geometric Topology, Volume 13 (2013)



The state sum invariant of 3–manifolds constructed from the E6 linear skein 3517

where the resulting 2–polyhedron obtained from the left picture by gluing the edges
labeled by x1; : : : ;x4;y has a boundary of a dashed line, and we consider the union
of this resulting 2–polyhedron and a disk along this dashed line. This spine has one
vertex. This vertex corresponds to the fusion of the left picture below.

The fusion of the left picture corresponds to the tetrahedron of the middle picture; the
upper graph of the fusion is dual to the faces of the front side of the tetrahedron, and the
lower graph is dual to the faces of the hidden side of the tetrahedron. The tetrahedron
of the middle picture corresponds to the planar graph of the right picture; we note that
this planar graph is the union of the upper graph of the fusion and the mirror image of
the lower graph of the fusion, which is equal to the boundary of the left picture of (7.5).

Hence, we calculate the value of ZE6.L.4; 1//, as follows:

(7.6) ZE6.L.4; 1//D w�1
X

i;j2f0;2;4g
A;B2f�; g

didj

ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌

D w�1
X

i;j2f0;2;4g
A;B2f�; g

didj

�.i; i; j ;A/�.i; i; j ;B/

� �

When j D 0, the sum of (7.6) is equal to

X
i2f0;2;4g

did0

�.i; i; 0; �/2

� �
D

X
i2f0;2;4g

d2
i

d2
i

D 3;
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by Lemmas 3.3 and 7.3. When j D 4, the sum of (7.6) is equal to

d2d4

�.2; 2; 4; �/2

� �
D
Œ3�

12
�

�
�

1

Œ3�

�
D�1;

by Lemmas 3.3 and 7.3. When j D 2, the sum of (7.6) is equal to

d2
2

�.2; 2; 2; �/2

� �
C

d2
2

�.2; 2; 2; �/�.2; 2; 2; /

� �

C
d2

2

�.2; 2; 2; �/�.2; 2; 2; /

� �
C

d2
2

�.2; 2; 2; /2

� �

D
Œ3�2

.Œ3�Œ4�=Œ2�2/2
�
2Œ4�

Œ2�3
C2 �

Œ3�2

.Œ3�Œ4�=Œ2�2/.Œ2�2Œ3�Œ4�/
.�Œ2�Œ3�Œ4�!�2/

D
2Œ2�

Œ4�
�

2Œ2�Œ3�!�2

Œ4�
;

by Lemmas 3.3 and 7.3. Hence,

ZE6.L.4; 1//D w�1
�
3� 1C

2Œ2�

Œ4�
�

2Œ2�Œ3�!�2

Œ4�

�
D

3C
p
�3

6
;

by (1.4), as required.

Example 7.6 [12] The value of the E6 state sum invariant of the lens space L.5; 2/

is given by

ZE6.L.5; 2//D
3C
p

3

12
:

Proof In this proof, we calculate the required value based on our construction of the
state sum invariant.

A spine of L.5; 2/ is given as follows.

 
2–polyhedron
obtained by gluing

along x1; : : : ;x5;y; z

!
[

dashed
line
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This spine has one vertex. This vertex corresponds to the fusion of the first picture
below.

The second picture shows a part of the first picture, removing the identical part. The
fusion of the second picture corresponds to the third and fourth pictures, similarly as in
the case of L.4; 1/.

Hence, we calculate the value of ZE6.L.5; 2//, as follows:

(7.7) ZE6.L.5; 2//D w�1
X

i;j2f0;2;4g
A;B2f�; g

didj

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

D w�1
X

i;j2f0;2;4g
A;B2f�; g

didj

�.i; i; j ;A/�.i; j ; j ;B/

� �

This colored planar trivalent graph has admissible colorings only if .i; j /D .0; 0/; .2; 2/.
When .i; j /D .0; 0/, the sum of (7.7) is equal to

d2
0

�.0; 0; 0; �/2

� �
D 1:
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When .i; j /D .2; 2/, the sum of (7.7) is equal to

d2
2

�.2; 2; 2; �/2

� �
C

d2
2

�.2; 2; 2; �/�.2; 2; 2; /

� �

C
d2

2

�.2; 2; 2; �/�.2; 2; 2; /

� �
C

d2
2

�.2; 2; 2; /2

� �

D
Œ3�2

.Œ3�Œ4�=Œ2�2/2
�
2Œ4�

Œ2�3
C

Œ3�2

.Œ3�Œ4�=Œ2�2/.Œ2�2Œ3�Œ4�/
.�Œ2�Œ3�Œ4�/.!2

C!�2/

D
2Œ2�

Œ4�
�
Œ2�Œ3�.!2C!�2/

Œ4�
;

by Lemmas 3.3 and 7.3. Hence,

ZE6.L.5; 2//D w�1
�
1C

2Œ2�

Œ4�
�
Œ2�Œ3�.!2C!�2/

Œ4�

�
D

3C
p

3

12
;

by (1.4), as required.

Example 7.7 [12] The value of the E6 state sum invariant of the lens space L.5; 1/

is given by

ZE6.L.5; 1//D
3C
p

3

12
:

Proof In this proof, we calculate the required value based on our construction of the
state sum invariant.

A spine of L.5; 1/ is given as follows:

(7.8)

 
2–polyhedron
obtained by gluing

along x1; : : : ;x5;y; z

!
[

dashed
line
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This spine has two vertices. These vertices correspond to the fusions of the first picture
below.

(7.9)

The second column shows parts of the fusions, removing the identical parts. The
fusions of the second column correspond to the pictures of the third and fourth columns,
similarly as in the cases of L.4; 1/ and L.5; 2/.

Hence, we calculate the value of ZE6.L.5; 1//, as follows:

(7.10) ZE6.L.5; 1//

D w�1
X

i;j ;k2f0;2;4g
A;B;C;D2f�; g

didj dk

ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌

D w�1
X

i;j ;k2f0;2;4g
A;B;C;D2f�; g

didj dk

�.i; i; j ;A/�.i; j ; k;B/�.i; i; k;C /�.i; j ; k;D/

�

� �� �
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In order to calculate this sum, we consider a relation between the upper left graph
and the lower left graph of (7.9). Since the space H.i; i; i; i; i/ has a basis given in
Proposition 4.9, we can put

(7.11) D

X
j 0;k02f0;2;4g

A0;B0;C 02f�; g

ˆ
j 0k0

A0B0C 0

with some scalars ˆj 0k0

A0B0C 0
. Further, by Proposition 4.10, we have that

D

X
k02f0;2;4g

C 0;D2f�; g

dk0

�.i; i; k 0;C 0/�.i; j ; k;D/

� �
;

D

X
j 02f0;2;4g

A0;B02f�; g

dj 0

�.i; i; j 0;A0/�.i; j 0; k 0;B0/

� �
:

Hence, by comparing the above two formulas to (7.11), we have that:

ˆ
j 0k0

A0B0C 0
D

X
D2f�; g

dj 0dk0

�.i; i; j 0;A0/�.i; j 0; k 0;B0/�.i; i; k 0;C 0/�.i; j ; k 0;D/

�

� �� �

Further, by closing the diagrams of (7.11) with a certain diagram, we have that

� �
D

X
j 0;k02f0;2;4g

A0;B0;C 02f�; g

ˆ
j 0k0

A0B0C 0

� �

D
�.i; i; j ;A/�.i; j ; k;B/�.i; i; k;C /

dj dk

ˆ
jk
ABC

;
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where we obtain the second equality in a similar way as in the proof of Proposition 4.9.
Therefore, by presenting ˆjk

ABC
from the above two formulas in two ways, we have

that:

� �
D

X
D2f�; g

1

�.i; j ; k;D/

� �� �

By substituting this formula to (7.10), we have that:

(7.12) ZE6.L.5; 1//D w�1
X

i;j ;k2f0;2;4g
A;B;C2f�; g

didj dk

�.i; i; j ;A/�.i; j ; k;B/�.i; i; k;C /

�

� �

We note that the diagram of this formula is the union of the upper left graph of (7.9)
and the mirror image of the lower left graph of (7.9), which is equal to the boundary of
the left picture of (7.8).

The coloring of the colored planar trivalent graph in (7.12) is admissible only if
.i; j ; k/ D .0; 0; 0/; .2; 0; 2/; .2; 2; 0/; .2; 2; 2/; .2; 2; 4/; .2; 4; 2/. We note that this
graph is symmetric with respect to � rotation of:

Hence, it is sufficient to calculate the cases where .i; j ; k/ D .0; 0; 0/, .2; 0; 2/,
.2; 2; 2/, .2; 2; 4/.

When .i; j ; k/D .0; 0; 0/, the sum of (7.12) is equal to

d3
0

�.0; 0; 0; �/3

� �
D 1:
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When .i; j ; k/D .2; 0; 2/, by using Lemma 3.3, the sum of (7.12) is equal to the sum
of the following two formulas,

d0d2
2

�.0; 2; 2; �/2�.2; 2; 2; �/

� �

D
d0d2

2

�.0; 2; 2; �/2�.2; 2; 2; �/
� �.2; 2; 2; �/D

d2
2

�.0; 2; 2; �/2
D 1;

d0d2
2

�.0; 2; 2; �/2�.2; 2; 2; /2

� �

D
d0d2

2

�.0; 2; 2; �/2�.2; 2; 2; /
�!�2�.2; 2; 2; /D

d2
2

�.0; 2; 2; �/2
�!�2

D !:

When .i; j ; k/D .2; 2; 2/, by the above mentioned symmetry, it is sufficient to calculate
the cases where .A;B;C / D .�; �; �/; .�; �; /; .�; ; �/; .�; ; /; . ; �; /; . ; ; /.
When .A;B;C /D .�; �; �/, the sum of (7.12) is equal to

d3
2

�.2; 2; 2; �/3

� �
D

� Œ3�

Œ3�Œ4�=Œ2�2

�3
�

2

Œ2�Œ3�

� �

D

� Œ2�2
Œ4�

�3
�

2

Œ2�Œ3�
�
2Œ4�

Œ2�3
D

4Œ2�2

Œ3�Œ4�2
;

by Lemmas 7.2, 3.3 and 7.3. When .A;B;C / D .�; �; /, we have that the sum of
(7.12) is equal to

d3
2

�.2; 2; 2; �/2�.2; 2; 2; /

� �
D

Œ3�3

.Œ3�Œ4�=Œ2�2/2 � Œ2�2Œ3�Œ4�
�

2!4

Œ2�Œ3�

� �

D
Œ2�2

Œ4�3
�

2!4

Œ2�Œ3�
.�Œ2�Œ3�Œ4�/D�

2!Œ2�2

Œ4�2

by Lemmas 7.2, 3.3 and 7.3. When .A;B;C / D .�; ; �/, we have that the sum of
(7.12) is equal to

d3
2

�.2; 2; 2; �/2�.2; 2; 2; /

� �
D

Œ3�3

.Œ3�Œ4�=Œ2�2/2 � Œ2�2Œ3�Œ4�

�
�!�2

Œ2�

�� �
D
Œ2�2

Œ4�3
�

�
�!�2

Œ2�

�
.�Œ2�Œ3�Œ4�/D

!Œ2�2Œ3�

Œ4�2
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by Lemmas 7.2, 3.3 and 7.3. When .A;B;C / D .�; ; /, we have that the sum of
(7.12) is equal to

d3
2

�.2; 2; 2; �/�.2; 2; 2; /2

� �

D
Œ3�3

.Œ3�Œ4�=Œ2�2/ � .Œ2�2Œ3�Œ4�/2

�
�

1

Œ2�

�� �
D 0;

by Lemmas 7.2, 3.3 and 7.3. When .A;B;C /D . ; �; /, the sum of (7.12) is equal to

d3
2

�.2; 2; 2; �/�.2; 2; 2; /2

� �

D
Œ3�3

.Œ3�Œ4�=Œ2�2/ � .Œ2�2Œ3�Œ4�/2
�

�
� Œ2�3!�4

� �
C!�2

� ��
D

1

Œ2�2Œ4�3
� .�Œ2�3!�4.�Œ2�Œ3�Œ4�/C!�2

� Œ2�2Œ3�Œ4�/

D
!�1Œ2�2Œ3�

Œ4�2
C
!Œ3�

Œ4�2

by Lemmas 7.4, 3.3 and 7.3. When .A;B;C /D . ; ; /, the sum of (7.12) is equal
to

d3
2

�.2; 2; 2; /3

� �
D

� Œ3�

Œ2�2Œ3�Œ4�

�3
�!�2Œ2�4

� �

D
1

Œ2�6Œ4�3
�!�2Œ2�4 � Œ2�2Œ3�Œ4�D

!Œ3�

Œ4�2

by Lemmas 7.4, 3.3 and 7.3. Hence, the sum of (7.12) for .i; j ; k/D .2; 2; 2/ is equal
to

4Œ2�2

Œ3�Œ4�2
� 2 �

2!Œ2�2

Œ4�2
C
!Œ2�2Œ3�

Œ4�2
C

�!�1Œ2�2Œ3�

Œ4�2
C
!Œ3�

Œ4�2

�
C
!Œ3�

Œ4�2

D
4Œ2�2

Œ3�Œ4�2
�

4!Œ2�2

Œ4�2
�
Œ2�2Œ3�

Œ4�2
C

2!Œ3�

Œ4�2
:
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When .i; j ; k/D .2; 2; 4/, the sum of (7.12) is equal to the sum of the following two
formulas,

d2
2

d4

�.2; 2; 2; �/�.2; 2; 4; �/4

� �

D
Œ3�2

.Œ3�Œ4�=Œ2�2/ � 12

�
�

1

Œ2�

�� �
D
Œ2�2Œ3�

Œ4�

�
�

1

Œ2�

��
�

1

Œ3�

�
D
Œ2�

Œ4�
;

d2
2

d4

�.2; 2; 2; /�.2; 2; 4; �/2

� �

D
Œ3�2

Œ2�2Œ3�Œ4� � 12
�!�2Œ2�3

� �
D

Œ3�

Œ2�2Œ4�
�!�2Œ2�3

�
�

1

Œ3�

�
D�

!Œ2�

Œ4�
;

by Lemmas 7.2, 7.4, 3.3 and 7.3.

Therefore, from (7.12), we obtain that

ZE6.L.5; 1//

D w�1
�
1C 2.1C!/C

� 4Œ2�2

Œ3�Œ4�2
�

4!Œ2�2

Œ4�2
�
Œ2�2Œ3�

Œ4�2
C

2!Œ3�

Œ4�2

�
C 2

� Œ2�
Œ4�
�
!Œ2�

Œ4�

��
D w�1

�
3C

4Œ2�2

Œ3�Œ4�2
�
Œ2�2Œ3�

Œ4�2
C

2Œ2�

Œ4�
C

2!

Œ4�2
.Œ4�2� 2Œ2�2C Œ3�� Œ2�Œ4�/

�
D w�1

�
3C

4Œ2�2

Œ3�Œ4�2
�
Œ2�2Œ3�

Œ4�2
C

2Œ2�

Œ4�
C

2!

Œ4�2
� 0
�
D

3C
p

3

12
;

by (1.4), as required.

We note that the graph in (7.12) is dual to the following (singular) triangulation of the
2–sphere,

and we obtain L.5; 1/ from a 3–ball by gluing faces of this triangulation to each other.
Further, like (7.12), the value of our state sum invariant for any lens space can be
presented by using such a graph.
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In general, any closed oriented 3–manifold M can be obtained from a triangulated
3–ball by gluing faces of the boundary 2–sphere to each other. The value of our state
sum invariant of M can be presented by using the dual graph of such a triangulation
of the 2–sphere; see [5] for a similar statement for the Turaev–Viro invariant.

Appendix A: The values of the weights

From Lemmas 3.3 and 7.3, we obtain the following table of the weights.

Proposition A.1 The weights of colored tetrahedra are given as follows, where we
omit to draw the face color �:ˇ̌̌̌

ˇ̌
ˇ̌̌̌
ˇ̌D ıAB �

1p
didj

.i; j ; k 2 f0; 2; 4g;A;B 2 f�; g/;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 1

Œ2�Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 0;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D� Œ2�

Œ3�Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 1

Œ3�Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 0;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D� Œ2�

Œ3�Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D� 1

Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D Œ2�

Œ3�Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D� 1

Œ3�
:

Appendix B: Equivalence to the E6 6j–symbols

In this section, we review the values of the 6j–symbols of the E6 subfactor given in [12;
15]. Further, we review that our 6j–symbols can be transformed into the 6j–symbols
of the E6 subfactor in Lemma B.1 (due to T Ohtsuki).

Similarly as in Section 5, we relate an oriented tetrahedron with oriented edges to a
planar trivalent graph, as follows:

 
dual

decomposition

�
isotopy
on S2
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We review the values of the 6j–symbols of the E6 subfactor given in [12; 15], as
the weight of the tetrahedron, in terms of the above planar graph. When none of
i; j ; k; l;m; n is equal to 2, ˇ̌̌̌

ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD 1:

When one or two of i; j ; k; l;m; n are equal to 2, there are no admissible colorings of
the tetrahedron. When three of i; j ; k; l;m; n are equal to 2,ˇ̌̌̌

ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

1p
Œ3�
:

When four of i; j ; k; l;m; n are equal to 2,ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

(
�

1
Œ3�

if the remaining two are equal to 4,
1
Œ3�

otherwise.

When five of i; j ; k; l;m; n are equal to 2,ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

8̂̂̂<̂
ˆ̂:

q3

Œ3�
if .a; b/D .3; 3/;

q�3

Œ3�
if .a; b/D .4; 4/;

0 if .a; b/D .3; 4/; .4; 3/;

(B.1)

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

(
1
Œ3�

if .a; c/D .3; 3/; .4; 4/;

0 if .a; c/D .3; 4/; .4; 3/;
(B.2)

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

(
1
Œ3�

if .a; d/D .3; 3/; .4; 4/;

0 if .a; d/D .3; 4/; .4; 3/;
(B.3)
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ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

8̂̂̂̂
<̂
ˆ̂̂:

q7
p

2Œ3�
if .b; c/D .3; 3/; .4; 3/;

q
p

2Œ3�
if .b; c/D .4; 4/;

�
q
p

2Œ3�
if .b; c/D .3; 4/;

(B.4)

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

(
1
Œ3�

if .b; d/D .3; 3/; .4; 4/;

0 if .b; d/D .3; 4/; .4; 3/;
(B.5)

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

8̂<̂
:
�

q2
p

2Œ3�
if .c; d/D .3; 3/; .3; 4/; .4; 3/;

q2
p

2Œ3�
if .c; d/D .4; 4/;

(B.6)

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

8̂̂̂<̂
ˆ̂:

0 if .a; b/D .3; 3/; .4; 4/;

q3

Œ3�
if .a; b/D .3; 4/;

q�3

Œ3�
if .a; b/D .4; 3/;

(B.7)

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

8̂̂<̂
:̂

1
Œ3�

if .a; c/D .3; 3/;
1
Œ3�

if .a; c/D .4; 4/;

0 if .a; c/D .3; 4/; .4; 3/;

(B.8)

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

(
1
Œ3�

if .a; d/D .3; 4/; .4; 3/;

0 if .a; d/D .3; 3/; .4; 4/;
(B.9)

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

8̂̂̂̂
<̂
ˆ̂̂:

q7
p

2Œ3�
if .b; c/D .3; 3/;

�
q7
p

2Œ3�
if .b; c/D .4; 3/;

�
q
p

2Œ3�
if .b; c/D .3; 4/; .4; 4/;

(B.10)

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

8̂̂̂<̂
ˆ̂:

q6

Œ3�
if .b; d/D .3; 4/;

�
q6

Œ3�
if .b; d/D .4; 3/;

0 if .b; d/D .3; 3/; .4; 4/;

(B.11)
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ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

8̂<̂
:
�

q2
p

2Œ3�
if .c; d/D .3; 3/; .4; 3/; .4; 4/;

q2
p

2Œ3�
if .c; d/D .3; 4/;

(B.12)

When all of i; j ; k; l;m; n are equal to 2,

(B.13)

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇD

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

�
1
Œ3�2

if .a; b; c; d/D .3; 3; 3; 3/; .3; 4; 3; 4/;

q3
p

2Œ3�
if .a; b; c; d/D .3; 3; 4; 3/;

�
q3
p

2Œ3�
if .a; b; c; d/D .3; 4; 4; 4/;

q�3
p

2Œ3�
if .a; b; c; d/D .4; 3; 3; 4/; .4; 4; 3; 3/;

q�6

Œ3�2
if .a; b; c; d/D .4; 3; 4; 4/;

q6

Œ3�2
if .a; b; c; d/D .4; 4; 4; 3/;

0 otherwise.

We rewrite the list of Proposition A.1, in terms of the dual planar graph, as follows:

(B.14)

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D ıAB �

1p
didj

.i; j ; k 2 f0; 2; 4g;A;B 2 f�; g/;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 1

Œ2�Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 0;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D� Œ2�

Œ3�Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 1

Œ3�Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 0;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D� Œ2�

Œ3�Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D� 1

Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D Œ2�

Œ3�Œ4�
;

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D� 1

Œ3�
:

We review a proof of the following lemma, which was shown by T Ohtsuki.

Lemma B.1 (T Ohtsuki) The 6j–symbols given in Section 5 can be transformed into
the 6j–symbols of the E6 subfactor.
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Proof We put

u3 D exp
��p�1

8

�
�

s
3�
p

3

6
; u4 D� exp

�
�
�
p
�1

8

�
�

s
3C
p

3

6
;

v3 D exp
�
�

5�
p
�1

24

�
�

s
3C
p

3

6
; v4 D exp

�
�

11�
p
�1

24

�
�

s
3�
p

3

6
:

Then,

u3xu3 D
3�
p

3

6
; u4xu4 D

3C
p

3

6
; u3xv3 D

q4

p
6
;

v3xv3 D
3C
p

3

6
; v4xv4 D

3�
p

3

6
; u4xv4 D�

q4

p
6
;

u3xu3Cu4xu4 D 1; v3xv3C v4xv4 D 1; u3xv3Cu4xv4 D 0:

Hence,
�

u3 v3

u4 v4

�
is a unitary matrix.

By putting

D ; D unless i D j D k D 2,

D ua C va ; D xua Cxva ;

we calculate ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌

by using (B.14), and verify that it is equal to the above mentioned value. When all
vertices are colored by �, it is easy to check the proof. Hence, we consider the case
where there are vertices colored by S3 , S4 , ie, we verify the values of (B.1)–(B.13) in
the following of this proof.
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As for (B.1),ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌D uaub

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C vavb!

2

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 1

Œ3�
.uaubC vavb!

2/:

Hence, we can verify (B.1) by concrete calculation for each .a; b/.

As for (B.2),ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌D uaxuc

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C vaxvc

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 1

Œ3�
.uaxuc C vaxvc/:

Hence, we can verify (B.2) for each .a; c/, since

u3xu3C v3xv3 D 1; u4xu4C v4xv4 D 1; u3xu4C v3xv4 D 0;

which can be checked concretely.

As for (B.3),ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌D uaxud

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C vaxvd

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 1

Œ3�
.uaxud C vaxvd /;

and we can verify (B.3) in the same way as the case of (B.2).

As for (B.4),ˇ̌̌̌
ˇ̌̌

ˇ̌̌̌
ˇ̌̌D ubxuc

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C vbxvc!

2

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 1

Œ3�
.ubxuc C vbxvc!

2/:

Hence, we can verify (B.4) by concrete calculation for each .b; c/.

As for (B.5),ˇ̌̌̌
ˇ̌̌

ˇ̌̌̌
ˇ̌̌D ubxud

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C vbxvd

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 1

Œ3�
.ubxud C vbxvd /;

and we can verify (B.5) in the same way as the case of (B.2).
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As for (B.6),ˇ̌̌̌
ˇ̌̌

ˇ̌̌̌
ˇ̌̌D xucxud

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌Cxvcxvd!

2

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌D 1

Œ3�
.xucxud Cxvcxvd!

2/:

Hence, we can verify (B.6) by concrete calculation for each .c; d/.

As for (B.7),ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌D uaub

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C .vaub!

2
Cuavb/

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌
C vavb!

2

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌

D�
Œ2�

Œ3�Œ4�
uaub �

1

Œ4�
.vaub!

2
Cuavb/C

Œ2�

Œ3�Œ4�
vavb!

2:

Hence, we can verify (B.7) by concrete calculation for each .a; b/.

As for (B.8),ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌D uaxuc

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C .vaxuc!

�2
Cuaxvc!

2/

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌
C vaxvc

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌

D�
Œ2�

Œ3�Œ4�
uaxuc �

1

Œ4�
.vaxuc!

�2
Cuaxvc!

2/C
Œ2�

Œ3�Œ4�
vaxvc :

Hence, we can verify (B.8) by concrete calculation for each .a; c/.

As for (B.9),ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌D uaxud

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C .vaxud Cuaxvd /

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C vaxvd

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌

D�
Œ2�

Œ3�Œ4�
uaxud �

1

Œ4�
.vaxud Cuaxvd /C

Œ2�

Œ3�Œ4�
vaxvd :
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Hence, we can verify (B.9) by concrete calculation for each .a; d/.

As for (B.10),ˇ̌̌̌
ˇ̌̌

ˇ̌̌̌
ˇ̌̌D ubxuc

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C .vbxuc!

�2
Cubxvc!

�2/

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌

C vbxvc!
2

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌

D�
Œ2�

Œ3�Œ4�
ubxuc �

1

Œ4�
.vbxuc!

�2
Cubxvc!

�2/C
Œ2�

Œ3�Œ4�
vbxvc!

2:

Hence, we can verify (B.10) by concrete calculation for each .b; c/.

As for (B.11),ˇ̌̌̌
ˇ̌̌

ˇ̌̌̌
ˇ̌̌D ubxud

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C .vbxud!

2
Cubxvd!

�2/

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌

C vbxvd

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌

D�
Œ2�

Œ3�Œ4�
ubxud �

1

Œ4�
.vbxud!

2
Cubxvd!

�2/C
Œ2�

Œ3�Œ4�
vbxvd :

Hence, we can verify (B.11) by concrete calculation for each .b; d/.

As for (B.12),ˇ̌̌̌
ˇ̌̌

ˇ̌̌̌
ˇ̌̌D xucxud

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C .xvcxud C xucxvd!

2/

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌
Cxvcxvd!

2

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌

D�
Œ2�

Œ3�Œ4�
xucxud �

1

Œ4�
.xvcxud C xucxvd!

2/C
Œ2�

Œ3�Œ4�
xvcxvd!

2:

Hence, we can verify (B.12) by concrete calculation for each .c; d/.
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As for (B.13),ˇ̌̌̌
ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌D uaubxucxud

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌C .vavbxucxud!

2
C vaubxvcxud C vaubxucxvd

Cuavbxvcxud!
2
Cuavbxucxvd Cuaubxvcxvd!

2/

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌

C .vavbxvcxud!
2
C vavbxucxvd!

�2
C vaubxvcxvd!

�2

Cuavbxvcxvd!
2/

ˇ̌̌̌
ˇ̌

ˇ̌̌̌
ˇ̌

D
1

Œ2�Œ4�
uaubxucxud �

Œ2�

Œ3�Œ4�
.vavbxucxud!

2
C vaubxvcxud C vaubxucxvd

Cuavbxvcxud!
2
Cuavbxucxvd Cuaubxvcxvd!

2/C
1

Œ3�Œ4�
.vavbxvcxud!

2

C vavbxucxvd!
�2
C vaubxvcxvd!

�2
Cuavbxvcxvd!

2/:

Hence, we can verify (B.13) by concrete calculation for each .a; b; c; d/, completing
the proof.
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