Volume 13, issue 6 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 20
Issue 7, 3219–3760
Issue 6, 2687–3218
Issue 5, 2145–2685
Issue 4, 1601–2143
Issue 3, 1073–1600
Issue 2, 531–1072
Issue 1, 1–529

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
The state sum invariant of $3$–manifolds constructed from the $E_6$ linear skein

Kenta Okazaki

Algebraic & Geometric Topology 13 (2013) 3469–3536
Bibliography
1 S Bigelow, Skein theory for the ADE planar algebras, J. Pure Appl. Algebra 214 (2010) 658 MR2577673
2 D E Evans, Y Kawahigashi, Quantum symmetries on operator algebras, Oxford University Press (1998) MR1642584
3 M Izumi, Subalgebras of infinite $C^{*}$–algebras with finite Watatani indices, I: Cuntz algebras, Comm. Math. Phys. 155 (1993) 157 MR1228532
4 V Jones, Planar algebras, I arXiv:math/9909027
5 L H Kauffman, S L Lins, Temperley–Lieb recoupling theory and invariants of $3$–manifolds, Annals Math. Studies 134, Princeton Univ. Press (1994) MR1280463
6 V Kodiyalam, V S Sunder, Topological quantum field theories from subfactors, Research Notes in Mathematics 423, Chapman & Hall/CRC (2001) MR1870810
7 W B R Lickorish, An introduction to knot theory, Graduate Texts in Mathematics 175, Springer (1997) MR1472978
8 S Morrison, E Peters, N Snyder, Skein theory for the $D_{2n}$ planar algebras, J. Pure Appl. Algebra 214 (2010) 117 MR2559686
9 A Ocneanu, Chirality for operator algebras, from: "Subfactors" (editors H Araki, Y Kawahigashi, H Kosaki), World Sci. Publ. (1994) 39 MR1317353
10 U Pachner, PL homeomorphic manifolds are equivalent by elementary shellings, European J. Combin. 12 (1991) 129 MR1095161
11 N Sato, M Wakui, Computations of Turaev–Viro–Ocneanu invariants of $3$–manifolds from subfactors, J. Knot Theory Ramifications 12 (2003) 543 MR1985909
12 K Suzuki, M Wakui, On the Turaev–Viro–Ocneanu invariant of $3$–manifolds derived from the $E_6$–subfactor, Kyushu J. Math. 56 (2002) 59 MR1898345
13 V G Turaev, Quantum invariants of knots and $3$–manifolds, de Gruyter Studies in Mathematics 18, de Gruyter (1994) MR1292673
14 V G Turaev, O Y Viro, State sum invariants of $3$–manifolds and quantum $6j$–symbols, Topology 31 (1992) 865 MR1191386
15 M Wakui, Turaev–Viro–Ocneanu invariants of $3$–manifolds constructed from quantum $6j$–symbols of the Coxeter graph $E_6$, Sūrikaisekikenkyūsho Kōkyūroku (1998) 6 MR1679913