Volume 13, issue 6 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The Farrell–Jones conjecture for graph products

Giovanni Gandini and Henrik Rüping

Algebraic & Geometric Topology 13 (2013) 3651–3660
Bibliography
1 A Bartels, F T Farrell, W Lück, The Farrell–Jones conjecture for cocompact lattices in virtually connected Lie groups arXiv:1101.0469
2 A Bartels, W Lück, The Borel conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups, Ann. of Math. 175 (2012) 631 MR2993750
3 A Bartels, W Lück, H Reich, The $K$–theoretic Farrell–Jones conjecture for hyperbolic groups, Invent. Math. 172 (2008) 29 MR2385666
4 A Bartels, W Lück, H Reich, H Rüping, $K$– and $L$–theory of group rings over $\mathrm{GL}_n(Z)$, to appear in Publ. Math. IHES arXiv:1204.2418
5 M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445 MR1465330
6 T Farrell, X Wu, Farrell–Jones conjecture for the solvable Baumslag–Solitar groups arXiv:1304.4779
7 D F Holt, S Rees, Generalising some results about right-angled Artin groups to graph products of groups, J. Algebra 371 (2012) 94 MR2975389
8 P Kühl, Isomorphismusvermutungen und $3$–Mannigfaltigkeiten arXiv:0907.0729
9 W Lück, H Reich, The Baum–Connes and the Farrell–Jones conjectures in $K$– and $L$–theory, from: "Handbook of $K$–theory, Vol. 1, 2" (editors E M Friedlander, D R Grayson), Springer (2005) 703 MR2181833
10 J P Serre, Trees, Springer Monographs in Mathematics 9, Springer (2003) MR1954121