Volume 13, issue 6 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 7, 3789–4436
Issue 6, 3145–3787
Issue 5, 2527–3144
Issue 4, 1917–2526
Issue 3, 1265–1915
Issue 2, 645–1264
Issue 1, 1–644

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
 
Author index
To appear
 
Other MSP journals
The Farrell–Jones conjecture for graph products

Giovanni Gandini and Henrik Rüping

Algebraic & Geometric Topology 13 (2013) 3651–3660
Bibliography
1 A Bartels, F T Farrell, W Lück, The Farrell–Jones conjecture for cocompact lattices in virtually connected Lie groups arXiv:1101.0469
2 A Bartels, W Lück, The Borel conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups, Ann. of Math. 175 (2012) 631 MR2993750
3 A Bartels, W Lück, H Reich, The $K$–theoretic Farrell–Jones conjecture for hyperbolic groups, Invent. Math. 172 (2008) 29 MR2385666
4 A Bartels, W Lück, H Reich, H Rüping, $K$– and $L$–theory of group rings over $\mathrm{GL}_n(Z)$, to appear in Publ. Math. IHES arXiv:1204.2418
5 M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445 MR1465330
6 T Farrell, X Wu, Farrell–Jones conjecture for the solvable Baumslag–Solitar groups arXiv:1304.4779
7 D F Holt, S Rees, Generalising some results about right-angled Artin groups to graph products of groups, J. Algebra 371 (2012) 94 MR2975389
8 P Kühl, Isomorphismusvermutungen und $3$–Mannigfaltigkeiten arXiv:0907.0729
9 W Lück, H Reich, The Baum–Connes and the Farrell–Jones conjectures in $K$– and $L$–theory, from: "Handbook of $K$–theory, Vol. 1, 2" (editors E M Friedlander, D R Grayson), Springer (2005) 703 MR2181833
10 J P Serre, Trees, Springer Monographs in Mathematics 9, Springer (2003) MR1954121