Volume 13, issue 6 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 6, 2971–3570
Issue 5, 2389–2970
Issue 4, 1809–2387
Issue 3, 1225–1808
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Abels's groups revisited

Stefan Witzel

Algebraic & Geometric Topology 13 (2013) 3447–3467
Abstract

We generalize a class of groups introduced by Herbert Abels to produce examples of virtually torsion free groups that have Bredon-finiteness length m 1 and classical finiteness length n 1 for all 0 < m n.

The proof illustrates how Bredon-finiteness properties can be verified using geometric methods and a version of Brown’s criterion due to Martin Fluch and the author.

Keywords
finiteness properties, Bredon homology, Abels's groups, horospheres, arithmetic groups, buildings
Mathematical Subject Classification 2010
Primary: 20J05, 22E40
Secondary: 51E24, 57M07
References
Publication
Received: 8 October 2012
Accepted: 27 February 2013
Published: 10 October 2013
Authors
Stefan Witzel
Mathematisches Institut
Westfälische Wilhelms-Universtität Münster
Einsteinstraße 62
48149 Münster
Germany
http://www.math.uni-muenster.de/u/stefan.witzel/