Volume 13, issue 6 (2013)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
The Farrell–Jones conjecture for graph products

Giovanni Gandini and Henrik Rüping

Algebraic & Geometric Topology 13 (2013) 3651–3660
Abstract

We show that the class of groups satisfying the K– and L–theoretic Farrell–Jones conjecture is closed under taking graph products of groups.

Keywords
algebraic $K$– and $L$–theory, group rings with arbitrary coefficients
Mathematical Subject Classification 2010
Primary: 18F25
Secondary: 19A31, 19B28, 19G24
References
Publication
Received: 7 December 2012
Accepted: 25 June 2013
Published: 14 October 2013
Authors
Giovanni Gandini
Institut for Matematiske Fag
Københavns Universitet
Universitetsparken 5
DK-2100 København
Denmark
http://www.math.ku.dk/~zjb179
Henrik Rüping
Mathematisches Institut
Rheinische Wilhelms-Universität Bonn
Endenicher Allee 60
D-53115 Bonn
Germany
http://www.math.uni-bonn.de/people/rueping