Volume 14, issue 1 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 21
Issue 4, 1595–2140
Issue 3, 1075–1593
Issue 2, 543–1074
Issue 1, 1–541

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
The proper geometric dimension of the mapping class group

Javier Aramayona and Conchita Martínez-Pérez

Algebraic & Geometric Topology 14 (2014) 217–227
Bibliography
1 J S Birman, H M Hilden, On isotopies of homeomorphisms of Riemann surfaces, Ann. of Math. 97 (1973) 424 MR0325959
2 N Brady, I J Leary, B E A Nucinkis, On algebraic and geometric dimensions for groups with torsion, J. London Math. Soc. 64 (2001) 489 MR1853466
3 M R Bridson, K Vogtmann, Automorphism groups of free groups, surface groups and free abelian groups, from: "Problems on mapping class groups and related topics" (editor B Farb), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 301 MR2264548
4 S A Broughton, Normalizers and centralizers of elementary abelian subgroups of the mapping class group, from: "Topology '90" (editors B Apanasov, W D Neumann, A W Reid, L Siebenmann), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 77 MR1184404
5 K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982) MR672956
6 B Farb, D Margalit, A primer on mapping class groups, Princeton Mathematical Series 49, Princeton Univ. Press (2012) MR2850125
7 J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157 MR830043
8 S Hensel, D Osajda, P Przytycki, Realisation and dismantlability arXiv:1205.0513
9 L Ji, Well-rounded equivariant deformation retracts of Teichmüller spaces arXiv:1302.0877
10 L Ji, S A Wolpert, A cofinite universal space for proper actions for mapping class groups, from: "In the tradition of Ahlfors–Bers, V" (editors M Bonk, J Gilman, H Masur, Y Minsky, M Wolf), Contemp. Math. 510, Amer. Math. Soc. (2010) 151 MR2581835
11 S P Kerckhoff, The Nielsen realization problem, Ann. of Math. 117 (1983) 235 MR690845
12 I J Leary, B E A Nucinkis, Some groups of type $VF$, Invent. Math. 151 (2003) 135 MR1943744
13 W Lück, Transformation groups and algebraic $K$–theory, Lecture Notes in Mathematics 1408, Springer (1989) MR1027600
14 W Lück, Survey on classifying spaces for families of subgroups, from: "Infinite groups: geometric, combinatorial and dynamical aspects" (editors L Bartholdi, T Ceccherini-Silberstein, T Smirnova-Nagnibeda, A Zuk), Progr. Math. 248, Birkhäuser (2005) 269 MR2195456
15 J Maher, Random walks on the mapping class group, Duke Math. J. 156 (2011) 429 MR2772067
16 C Martínez-Pérez, Subgroup posets, Bredon cohomology and equivariant Euler characteristics, Trans. Amer. Math. Soc. 365 (2013) 4351 MR3055698
17 G Mislin, Classifying spaces for proper actions of mapping class groups, Münster J. Math. 3 (2010) 263 MR2775365
18 R C Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299 MR919235