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A note on subfactor projections

SAMUEL J TAYLOR

We extend some results of Bestvina and Feighn [4] on subfactor projections to show
that the projection of a free factor B to the free factor complex of the free factor A is
well defined with uniformly bound diameter, unless either A is contained in B or A

and B are vertex stabilizers of a single splitting of Fn , ie, they are disjoint. These
projections are shown to satisfy properties analogous to subsurface projections, and
we give as an application a construction of fully irreducible outer automorphisms
using the bounded geodesic image theorem.

20F65; 57M07

1 Introduction

In their recent work on the geometry of Out.Fn/, Mladen Bestvina and Mark Feighn
define the projection of a free factor B <Fn to the free splitting complex (or free factor
complex) of the free factor A, when the two factors are in “general position.” They
show that these subfactor projections have properties that are analogous to subsurface
projections used to study mapping class groups, and they use their results to show
that Out.Fn/ acts on a product of hyperbolic spaces in such a way that exponentially
growing automorphisms have positive translation length.

Because the authors were primarily interested in projections to the splitting complex of
a free factor, relatively strong conditions were necessary in order to guarantee that the
projections have uniformly bounded diameter, ie, that they are well defined. They show
that one may project B to the splitting complex of A if either A and B have distance at
least 5 in the free factor complex of Fn or if they have the same color in a specific finite
coloring of the factor complex. In this note, we show that if one considers projections
to the free factor complex of a free factor, simpler and more natural conditions can be
given. In particular, we show that for free factors A;B < Fn with rank .A/ � 2 the
projection �A.B/� F.A/ into the free factor complex of A is well defined so long
as (1) A is not contained in B , up to conjugation, and (2) A and B are not disjoint.
This exactly mimics the case for subsurface projection. Here, free factors A and B

are disjoint if they are distinct vertex stabilizers of a splitting of Fn , or equivalently, if
they can be represented by disjoint subgraphs of a marked graph G . These are also the
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obvious necessary condition for the projection to be defined. As a consequence of this
more inclusive projection, we are able to merge the Bestvina–Feighn projections with
those considered in Taylor [17].

The first part of this note should be considered as a direct follow-up to the work of
Bestvina and Feighn, as our arguments rely on the techniques developed in [4]. Our
contribution toward defining subfactor projections is an extension of their results. In
summary, we show:

Theorem 1.1 There is a constant D depending only on n D rank.Fn/ so that if A

and B are free factors of Fn with rank.A/� 2, then either

(1) A� B , up to conjugation,

(2) A and B are disjoint, or

(3) �A.B/� F.A/ is defined and has diameter at most D .

Moreover, these projections are equivariant with respect to the action of Out.Fn/ on
conjugacy classes of free factors and they satisfy the following: There is an M � 0 so
that if free factors A;B < Fn overlap and G is a marked Fn –graph, then

minfdA.B;G/; dB.A;G/g �M:

Here, free factors overlap if one is not contained in the other, up to conjugation, and
they are not disjoint. Hence, for overlapping free factors both subfactor projections
are defined. For subsurface projections, the final property in Theorem 1.1 is known as
Behrstock’s inequality [1]. We also have the following strengthening of the bounded
geodesic image theorem of [4]. For subsurface projections, this was first shown in
Masur and Minsky [15].

Theorem 1.2 For n � 3, there is M � 0 so that if A is a free factor of Fn with
rank.A/� 2 and 
 is a geodesic of Fn with each vertex of 
 meeting A (ie, having
well-defined projection to F.A/) then diam.�A.
 //�M .

Finally, as an application of subfactor projections we give a construction of fully
irreducible automorphism similar to Mangahas [14, Proposition 3.3], where pseudo-
Anosov mapping classes are constructed. Here, free factors A and B fill Fn if no free
factor C is disjoint from both A and B .

Theorem 1.3 Let A and B be rank at least 2 free factors of Fn that fill and let
f;g 2 Out.Fn/ satisfy the following:

(1) f .A/DA and f jA 2 Out.A/ is fully irreducible, and

(2) g.B/D B and gjB 2 Out.B/ is fully irreducible.
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Then there is an N � 0 so that the subgroup hf N;gN i � Out.Fn/ is free of rank 2

and any nontrivial automorphism in hf N;gN i that is not conjugate to a power of f or
g is fully irreducible.

See Section 6 for a stronger statement. Theorem 1.3 adds a new construction of fully
irreducible automorphisms to the methods found in Clay and Pettet [5], where they
arise as compositions of Dehn twists, and in Kapovich and Lustig [11], where they are
compositions of powers of other fully irreducible automorphisms.

As a final remark, we warn the reader that the projection �A. � / is into the free factor
complex of A and dA. � ; � / denotes distance in F.A/. This is different from [4]
where these symbols denote projections and distance in the free splitting complex of
A, denoted S.A/. Because of the simple conditions under which subfactor projections
into the free factor complex are defined, we hope that this note convinces the reader
that projecting to the factor complex of a free factor is a useful notion of projection.
An entirely different type of projection for free groups appears in Sabalka and Savchuk
[16], and the relationship between these projections is explained in [17].

Acknowledgements
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well as his encouragement to write up this note. The author also thanks Alan Reid for
his advice and support and Hossein Namazi for suggesting the use of the graph Cn in
Section 6.

2 Background

We briefly review some background material needed for this note and refer the reader
to the references below for additional details. Denote by Fn the free group of rank n

and by Out.Fn/ its group of outer automorphisms. A graph is a 1–dimensional CW
complex and a tree is a simply connected graph. A finite graph is a core graph if all
its vertices have valence at least 2 and any connected graph with finitely generated,
nontrivial fundamental group has a unique core subgraph that carries its fundamental
group. A core graph has a unique CW structure, or triangulation, where each vertex
has valence at least 3 and we refer to vertices and edges in this triangulation as natural.
If the modifier natural is omitted then we are referring to the graph with its given
triangulation.

By a free splitting of Fn , we mean a minimal action of Fn on a nontrivial simplicial
tree T with trivial edge stabilizers. Recall that the action Fn Õ T is minimal if there
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is no invariant subtree. By Bass–Serre theory, free splittings of Fn correspond to graph
of groups decompositions of Fn with trivial edge groups; we will make free use of both
of these perspectives. An equivariant map T ! T 0 between splittings is a collapse
map if all point preimages are connected. In this case, we say that T refines T 0 . The
splittings T;T 0 are conjugate if there is an equivariant homeomorphism T ! T 0 .

The free splitting complex of Fn , denoted Sn , is the complex whose vertices are
conjugacy classes of 1–edge free splittings of Fn and two vertices are joined by an
edge if they have a common refinement. See Handel and Mosher [8] for details. The
free factor complex of Fn , denoted Fn , for n� 3 is the complex whose vertices are
conjugacy classes of free factors and factors A0; : : : ;Ak span a k –simplex if after
choosing representatives and possibly reordering A0 � � � � �Ak . Fn was introduced
in Hatcher and Vogtmann [9]. When n D 2, F2 is modified to be the graph whose
vertices are conjugacy classes of rank 1 free factors and two vertices are joined by an
edge if there are representatives of each that together form a basis for F2 . This makes
F2 into the standard Farey graph. We remark that throughout this note, we sometimes
blur the distinction between a free factor and its conjugacy class when it is clear from
context what is meant.

Both Fn and Sn are known to be hyperbolic. This was first show for Fn in Bestvina
and Feighn [3] and for Sn in Handel and Mosher [8]. See also Kapovich and Rafi [12],
and Hilion and Horbez [10]. Relating these complexes, there is a coarse 4–Lipschitz
map � W Sn!Fn given by mapping the splitting T to its vertex stabilizers in Fn . For
an arbitrary free splitting T of Fn , we use the same notation to denote the map that
associates to T the set of free factors that arise as a vertex stabilizer of a one-edge
collapse of T .

To study Out.Fn/, Culler and Vogtmann introduce Outer space Xn , the space of metric
graphs marked by Fn , or equivalently, the space of minimal, proper actions of Fn on
simplicial R–trees [6]. Recall that a marking of the graph G is a homotopy equivalence
�W Rn!G , where Rn is the rose with n petals whose fundamental group has been
identified with Fn . A metric l W E.G/!RC on the marked graph G is an assignment
of a positive real number, or length, to each edge of G and a marked metric graph
is the ordered triple .G; �; l/, which we usually simplify to G . The volume of G

is the sum of the lengths of the edges of G . Outer space Xn is defined to be the
space of marked metric core graphs of volume one, up to equivalence. Here, .G; �; l/
and .G0; �0; l 0/ are equivalent if there is an isometry i W G!G0 that is homotopic to
�0 ı��1W G!G0 . In general, any map hW G!G0 homotopic to �0 ı��1 is called a
change of marking. For G 2 Xn and ˛ a conjugacy class of Fn , let lG.˛/ denote the
length of the immersed loop in G that correspond to ˛ through the marking for G .
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We use the notation yXn to denote unprojectivized Outer space, where the requirement
that graphs have volume one is dropped.

We consider Xn with its Lipschitz metric defined by

dX .G;G
0/D infflog L.h/ W h' �0 ı��1

g;

where L.h/ is the Lipschitz constant for the change of marking h and �W Rn! G

and �0W Rn!G0 are the corresponding markings. We remark that this (asymmetric)
metric induces the standard topology on Xn that is got by considering lengths of
immersed loops representing conjugacy classes in Fn (Francaviglia and Martino [7]).
Also, viewing Xn as the space of minimal, proper Fn –actions on simplicial R–trees,
we have the map � W Xn! Sn! Fn , as described above. Note that free factors in the
image �.G/ of G 2 Xn are represented by embedded subgraphs of G .

It is well known that the infimum in the definition of the Lipschitz metric is realized by
some (non-unique) optimal map [7; 3]. We briefly describe the folding path induced
by an optimal f W G ! G0 and refer to [3] for more details. First, an illegal turn
structure on G is an equivalence relation on the set of directions at each vertex of G ;
the equivalence classes are called gates. Here, a turn is an unordered pair of distinct
directions at a vertex and a turn is illegal if both directions are contained in the same
gate and is legal otherwise. An illegal turn structure is a train track structure if, in
addition, every vertex has at least 2 gates. For marked graphs G;G0 2 Xn any change
of marking map hW G!G0 that is linear on edges induces an illegal turn structure on
G whose gates are the directions at each vertex that are identified by h. In fact, there
is always a change of marking f W G ! G0 , called an optimal map, that is constant
slope (ie, stretch) on each edge of G with the property that the subgraph 4.f /�G

consisting of edges of maximal slope, L.f /, is a core subgraph and that the illegal turn
structure on G induced by f restricts to a train track structure on 4.f / (Francaviglia
and Martino [7] and Bestvina [2]). From these properties, it follows that f has minimal
Lipschitz constant over all change of markings G!G0 . If, in addition, 4.f /DG , ie,
every edge is stretched by L.f /, then there is an induced folding path t 7!Gt joining
G and G0 in Xn . Such a path is locally obtained by folding all illegal turns at unit
speed and then rescaling to maintain volume one. For each a� b , there is an induced
optimal map fabW Ga! Gb . These folding maps compose naturally and send legal
segments to legal segments, where a legal segment of Ga is an immersed path that
makes only legal turns. See [3] for a detailed construction. Arbitrary points G;G0 2Xn

are joined by a geodesic path that first rescales edge lengths of G and is then followed
by a folding path. For a folding path Gt in Xn , a family of subgraphs Ht � Gt is
called forward invariant if for all a � b , Ha maps into Hb under the folding map
fabW Ga!Gb .
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Finally, we recall the projection of a splitting of Fn to the free factor complex of a
subfactor. See [17] for details. For G 2 Xn and a rank at least 2 free factor A we
can consider the core subgraph of the cover of G corresponding to the conjugacy
class of A. We denote this marked A–graph by AjG and the associated immersion
by pW AjG!G . Pulling back the metric on G , we obtain AjG 2 yX .A/. Denote by
�A.G/ D �.AjG/ � F.A/ the projection of AjG to the free factor complex of A.
Alternatively, if G corresponds to the action Fn Õ T (ie, T is the universal cover
of G ) with minimal A–subtree T A , then A Õ T A represents a point in yX .A/. The
projection �A.T /D �A.G/� F.A/ is the set of free factors of A that arise as vertex
stabilizers of one-edge collapses of T A . Note that this projection is defined whenever
T is a splitting of Fn where A does not fix a vertex (ie, where T A is not trivial).

For a free factor A of Fn , we use the symbol dA to denote distance in F.A/, the free
factor complex of A, and for Fn –trees T1;T2 we use the shorthand

dA.T1;T2/ WD dA.�A.T1/; �A.T2//D diamA.�A.T1/[�A.T2//;

when both projections are defined.

3 Folding paths and the Bestvina–Feighn projections

Let A and B be (conjugacy classes of) free factors of Fn with rank.A/� 2. Suppose
that A and B are not disjoint and that A is not contained in B , up to conjugation. In
this case, we say that B meets A. Define the projection of B to the free factor complex
of A to be the following subset of F.A/:

�A.B/D
[
f�A.T / W T is a splitting of Fn with vertex stabilizer Bg

D

[
f�A.G/ WG 2 Xn and BjG �G is embeddedg

In other words, �A.B/ is the set of vertex groups of splittings of A that are refined
by the splitting A Õ T A , where T is any free splitting with vertex stabilizer B . For
convenience, if A�B or A and B are disjoint we define �A.B/ to be empty and say
that B misses A. If A meets B and B meets A, then both projections are nonempty
and we say that A and B overlap. Note that the conditions for �A.B/ to be nonempty
are precisely that the tree T A is non-degenerate for any choice of T with B as a vertex
stabilizer. The main result of this note is that diam.�A.B// is uniformly bounded and,
therefore, can be used as a coarse projection. This is shown in [4] in the case that either
dF .A;B/ > 4 or A and B have the same color in a specific finite coloring of Fn . This,
however, excludes cases of interest: for example when the free factors have nontrivial
intersection, as in [17]. We note that by “uniformly bounded” we mean bounded by a
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constant depending only on n, the rank of Fn . Unlike the subsurface case, where the
bound is 3, we do not explicitly compute this constant.

We recall some of the technical results from [4] that are needed here. Suppose that
Gt is a folding path for t 2 Œ˛; !� as in Section 2 and that A is a free factor. Then
for all t 2 Œ˛; !�, we have the immersion pt W AjGt ! Gt corresponding to the core
of the A–cover of Gt and AjGt induces a path in yX .A/. The results of [4] explain
the behavior of the path AjGt and track the progress of �A.Gt /D �.AjGt / in F.A/.
Note that pt W AjGt !Gt induces an illegal turn structure on AjGt . Call a valence 2

vertex, ie, a vertex appearing in the interior of a natural edge, an interior illegal turn if
it has only one gate.

Lemma 3.1 [4, Lemma 3.1] For a folding path Gt , t 2 Œ˛; !� and a finitely generated
subgroup A < Fn , the interval Œ˛; !� can be divided into three subintervals Œ˛; ˇ/,
Œˇ; 
 / and Œ
; !� so that the following properties characterize the restriction of AjGt

to the middle interval Œˇ; 
 /: all vertices of AjGt have at least 2 gates, there are no
interior illegal turns, and all natural edges of AjGt have length less than 2. Moreover,
the images of fAjGt W t 2 Œ˛; ˇ/g and fAjGt W t 2 Œ
; !�g in S.A/ (and F.A/) have
uniformly bounded diameter.

From this lemma, it is shown that the projection of the folding path Gt to the free
splitting (or free factor) complex of A is an unparametrized quasi-geodesic with uniform
constants. We will not need this fact in what follows. Note that for a; b 2 Œˇ; 
 /, where
Œˇ; 
 / is the middle interval given in Lemma 3.1, the folding map fabW Ga ! Gb

induces a map AjGa!AjGb between the cores of the A–covers.

For the immersion pW AjG ! G , define � � G as the set of edge of G that are at
least double covered by p and set z�� AjG to be the subgraph p�1.�/� AjG . If
z�D∅, then AjG!G is an embedding and we say that A (or AjG ) is embedded in
G . If z� is a forest (a disjoint union of trees), then we say that A (or AjG ) is nearly
embedded. The following lemma states that if a folding path makes significant progress
in F.A/ then A must be nearly embedded along the path.

Lemma 3.2 Let Gt be a folding path for t 2 Œ˛; !� and let Œˇ; 
 / be the middle
interval determined by Lemma 3.1. Then after restricting Gt to t 2 Œˇ; 
 /, the subgraph
z�t � AjGt is forward invariant and if for some t0 , z�t0

is not a forest (ie, A is not
nearly embedded in Gt0

), then �A.fGt W t � t0g/ has uniformly bounded diameter
in F.A/.

Proof That z�t is forward invariant on the middle interval is contained in [4, Lemma
4.3]. The other statement is essentially in [4, Lemma 4.4]. There, it is shown that if
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z�t1
DAjG then �A.fGt W t � t1g/ is uniformly bounded. Since z�t is forward invariant

it suffices to show that progress of AjGt in F.A/ is bounded so long as z�t is a proper
subgraph of AjGt that is not a forest. Suppose this is the case for z�t0

�AjGt0
and

let x0 be an immersed loop in AjGt0
that is contained in z�t0

. Denote by xt the
immersed representative of the image of x0 through AjGt0

! AjGt . Since z�t is a
proper subgraph, xt fails to cross some edge of AjGt . This implies that the cyclic free
factor represented by x0 has distance at most 5 from �A.Gt /D �.AjGt / in Fn , so
long as z�t is a proper subgraph. This completes the proof.

4 Diameter bounds

The following lemmas determine when the projection of a factor B to the free factor
complex of the factor A is well defined. The first provides a criterion for when two
free factors can be embedded in a common marked graph and the second shows that
the failure of a joint embedding is enough to block progress of subfactor projections
along a folding path. We recall that in [4], the authors show that if the finitely generated
subgroup A < Fn is nearly embedded in G , then A is a free factor of Fn . Similar
arguments are used to prove the following:

Lemma 4.1 Suppose that pW AjG!G is the canonical immersion and that BjG�G

is an embedding for free factors A and B of Fn . Let EB be the collection of edges of
AjG that map to edges of BjG . If z�[EB �AjG is a forest, then there is a marked
graph G0 where A and B are disjointly embedded.

Proof Enlarge the forest z�[EB to a maximal tree T and let E be the set of edges
not contained in T . These edges are in bijective correspondence with the edges of
p.E/, since they are not in z�. For x 2 T , define

G0 DAjG _xDp.x/ .G np.E//:

As in [4], we have the morphism (edge isometry) G0!G induced by pW AjG!G and
the inclusion of G np.E/ into G . Folding the edges of the tree T into G np.E/, we
arrive at an intermediate graph G00 with an induced morphism G00!G . Because T is
a tree, such folds do not change the homotopy type of the graph. Further, since no edges
outside of T are identified when mapped to G , the morphism G00! G is bijective.
We conclude that the map G0! G is a homotopy equivalence and that G0 contains
disjoint, embedded copies of both AjG0 DAjG and BjG0 D BjG �G np.E/.

We show that for any marked graphs G and G0 where B is embedded, dA.G;G
0/

is uniformly bounded. For this, fix a marked graph G0 that is a rose and for which
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B is embedded. For any metric graph G 2 Xn with BjG embedded we can choose
edge lengths for G0 so that G0 2 Xn and there is an optimal map f W G0! G with
4.f /DG0 and f .BjG0/�BjG . Then the folding path fGt W t 2 Œ0;T �g induced by
f with GT DG has the property that BjGt is embedded in Gt for all t 2 Œ0;T �, and
for all s � t , fst W Gs!Gt maps BjGs into BjGt . Hence, BjGt is forward invariant.
It suffices to show that the image �A.Gt /� F.A/ of the folding path is bounded by a
constant depending only on n. To do this, first restrict to a subinterval Œa; b�� Œ0;T �
where

(1) for t 2 Œa; b�, the immersion pt W AjGt !Gt induces a train track structure on
AjGt , ie, AjGt has no interior illegal turns and all vertices have at least 2 gates.
Also, each natural edge of AjGt has length less than 2,

(2) for t 2 Œa; b�, the subgraph z�t �AjGt is a forward invariant forest, and

(3) the projections �A.fGt W t 2 Œ0; a�g/ and �A.fGt W t 2 Œb;T �g/ in F.A/ have
uniformly bounded diameter.

Note the such an interval exists by Lemma 3.1 and Lemma 3.2. For pW AjGt !Gt ,
let EB

t �AjGt be the set of edges in the triangulation induced from Gt that project
to edges of BjGt �Gt , as in Lemma 4.1.

Lemma 4.2 With fGt W t 2 Œa; b�g as above, if there is a t0 2 Œa; b� so that AjGt0

has an embedded loop x0 all of whose edges are contained in z�t0
[EB

t0
, then the

projection �A.fAjGt W t � t0g/ has uniformly bounded diameter in F.A/.

Proof Let xt be the image of x0 in AjGt pulled tight, ie, its immersed representative.
We show that for any edge e of AjGt not in EB

t , xt crosses e a bounded number of
times. Since by assumption A is not contained in B such an edge is guaranteed to
exist. By [3, Lemma 3.2], this implies that �A.Gt /D �.AjGt / has bounded distance
from the cyclic factor of A represented by x0 , for all t � t0 .

Suppose that e is an edge of AjGt not contained in EB
t and let p be a point in the

interior of e . Note that x0 is composed of a bounded number of legal segments of z�t0

and edges of EB
t0

. To see this, recall that since x0 is embedded it consists of a bounded
number of natural edges of AjGt0

, each of which is legal because AjGt has no interior
illegal turns. Also, the number of edges of EB

t0
not appearing in z�t0

is bounded by
3 � rank.B/� 3 since there are no more of these edges than edges of BjGt0

. Hence,
each natural edge of AjGt0

crossed by x0 is contained in a bounded number of legal
segments of z�t0

plus edges of EB
t0

that are not contained in z�t0
.

Let s be a legal segment of z�t0
that maps overs p more than twice. Then by forward

invariance of z�t and legality of s , p must be contained in the core of z�t . This
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contradicts the assumption that z�t is a forest. For an edge of EB
t0

we note that by
forward invariance of BjGt , no edge of BjGt0

can map over the edge p.e/. Hence, no
edge of EB

t0
can map over e . We conclude that xt crosses e no more that 2 � jlegal

segments of z�t0
j times. Since we have seen that this quantity is bounded by a constant

depending only on the rank of G , we conclude that �A.fGt W t � t0g/ is uniformly
bounded.

Together, these lemmas complete the proof of our main theorem.

Theorem 4.3 Let A and B be conjugacy classes of free factors of Fn with rank.A/�
2. Then either A and B are disjoint, A� B , or �A.B/ is well defined with uniformly
bounded diameter.

Proof Suppose that A and B are free factors that are not disjoint and that A is not
contained in B , up to conjugation. Let T be any free splitting of Fn with B as a
vertex stabilizer and take G 2Xn to be a graph refining the splitting T , so that BjG is
embedded in G . Let G0 be the marked rose discussed above and construct the folding
path fGt W t 2 Œ0;T �g from G0 to GT DG with subinterval Œa; b�� Œ0;T � satisfying
conditions .1/, .2/ and .3/.

If dA.Ga;Gb/ is larger than the bound determined in Lemma 4.2, then AjGa does
not contain an embedded loop with edges in z�a [EB

a , so z�a [EB
a is a forest. By

Lemma 4.1, this implies that there is a marked graph where A and B are disjointly
embedded, contradicting our assumption. Hence,

dA.G0;T /� dA.G0;G/C 4� dA.G0;Ga/C dA.Ga;Gb/C dA.Gb;G/C 4;

where the first and third terms are uniformly bounded by condition .3/ in the properties
of the folding path Gt and the second term is no larger than the bound determined in
Lemma 4.2. Since T was an arbitrary splitting of Fn with vertex stabilizer B , this
completes the proof.

Having shown that subfactor projections are well defined, we collect some basic facts.
First, for the free group Fn , let D denote the constant determined in Theorem 4.3 so
that if B meets A then diam.�A.B//�D . For free factors A;B each of which meet
the rank at least 2 free factor C set

dC .A;B/ WD dC .�C .A/; �C .B//D diam.�C .A/[�C .B//;

where dC denotes distance in F.C /. If, additionally, A and B are adjacent vertices of
Fn then (up to switching A and B ) A�B and so dC .A;B/� 2D , since each projec-
tion contains the projection of a graph where both A and B are embedded. This shows
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that the projection to F.C / is coarsely Lipschitz along paths in Fn all of whose vertices
meet C . We further remark that the projection �C W Xn!F.C / is coarsely Lipschitz;
this follows from facts in [4] and is proven explicitly in [17, Section 12]. Finally, the
following naturality property is a direct consequence of the definitions: If f 2Out.Fn/

and A and B are free factors that meet the rank at least 2 free factor C , then

df .C /.f .A/; f .B//D dC .A;B/;

where we use the natural action of Out.Fn/ on conjugacy classes of free factors.

5 Properties

The following properties of subfactor projection are obtained just as in [4]. The point
here is that our conclusions hold for more general pairs of free factors, so long as we
project into the free factor complex rather than free splitting complex of a free factor.
Some proofs are provided for completeness and as a verification that they apply in our
more general setting. We first have the following version of [4, Lemma 4.12].

Lemma 5.1 Suppose that A is nearly embedded in G 2 Xn . Then there is a G0 2 Xn

where A is embedded and a path in Xn from G to G0 with the property that for any
free factor B that A meets, the projection of this path to F.B/ has uniformly bounded
diameter.

Proof We refer to the proof of Lemma 4.1. Since A is nearly embedded in G ,
z��AjG is a forest. Let T be a maximal tree containing z� and set E to be the set of
edge of AjG not contained in T . Recall that pW AjG!G maps edges of E bijectively
to edges of p.E/. If the image of BjG in G crosses no edge of p.E/ then B is
carried by the subgraph G np.E/ of G0DAjG_xDp.x/ .G np.E//. This contradicts
our assumption that A meets B . Hence, the image of BjG crosses the image of some
edge e of E in AjG . In the language of [4], B is good for A. The required path Gt

from G0 to G is then the path determined by folding the morphism G0! G given
in Lemma 4.1. This path makes only bounded progress in F.B/, indeed in S.B/, as
shown in [4]. The point is that the splitting of B determined by the preimage of the
midpoint of p.e/ through the map BjGt !Gt is unaltered along the path.

Theorem 5.2 Given Fn , there is an M � 0 so that if A and B are overlapping free
factors of rank � 2 then for any splitting T that meets both factors

minfdA.B;T /; dB.A;T /g �M:
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Proof We follow the proof of [4, Proposition 4.14] and use Lemma 5.1 above. Assume
that both dA.B;T / and dB.A;T / are very large (relative to D ) and let G 2 Xn be a
refinement of T (as a splitting of Fn ). Define a folding path Gt , t 2 Œ0;S � from G0

to GS DG , where G0 is any graph with A embedded. Since dB.A;T / and, hence,
dB.G0;GS / is large, by Lemma 3.2 there is a subinterval Œt1; t2� where B is nearly
embedded and where Gt makes large progress in F.B/, ie, dB.Gt1

;Gt2
/ is large.

Since B is nearly embedded in Gt2
and dA.B;G/ is big by assumption, Lemma 5.1

and Lemma 3.2 imply that there is an subinterval Œt3; t4�� Œt2;S �, where A is nearly
embedded. Hence, Gt3

is a graph where A is nearly embedded and has very large
distance in F.B/ from G0 , where A is embedded. This contradicts Lemma 5.1 and
the fact that diam.�B.A//�D .

Finally, we note the following version of the bounded geodesic image theorem. The
proof in [4] follows through without change after using the more general conditions
for projection that are explained in this note.

Theorem 5.3 (Bounded geodesic image theorem) For n� 3, there is M � 0 so that
if A is a free factor of Fn of rank at least 2 and 
 is a geodesic of Fn with each vertex
of 
 meeting A (ie, having nontrivial projection to F.A/), then diam.�A.
 //�M .

We conclude this section with a remark: Using Theorem 1.1 one can give a coarse
lower bound on distance in Out.Fn/ or Xn exactly as in [17]. Since these lower bounds
do not cover all distance in Out.Fn/, ie, they do not give upper bounds, we do not
provide the details here. However, we do note that similarly to [4] one needs to bound
the size of a collection of rank at least 2 free factors where pairwise projections are not
defined. This is done in [4] by finding a finite coloring of the free factor complex so
that between similarly colors factors one may project one of the factors to the splitting
complex of the other. As is a theme of this paper, if we consider projections to factor
complexes things become simpler. In particular, if factors A and B are represented
by embedded subgraphs in a graph G and each factor represents the same subgroup
of H1.FnIZ=2/, then these subgraphs must be equal and so AD B . Hence, we can
provide the following coloring of F0

n : define H to be the set of proper subgroups of
H1.FnIZ=2/ and let cW F0

n !H be defined by

c.A/DH1.AIZ=2/�H1.FnIZ=2/:

Then, as explained above, if A and B are distinct free factors with rank at least 2 and
c.A/D c.B/, then A and B overlap.
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6 Constructing fully irreducible automorphisms

We consider the following modification of the free factor complex. Let Cn for n� 2

be the graph defined as follows: the vertices of Cn are conjugacy classes of rank 1

free factors of Fn and two vertices v;w 2 C0
n are joined by an edge if they can be

represented by elements x and y in Fn , respectively, such that hx;yi is a rank 2 free
factor of Fn ; that is edges are determined by disjointness of vertices. This graph is
obviously quasi-isometric to the free factor complex of Fn . For a free factor A< Fn ,
let XA denote the set of vertices of Cn that fail to project to F.A/, ie, that are disjoint
from A. The complex Cn has the following advantage over Fn : for any free factor A

the diameter of XA in Cn is at most 2. In fact, XA is contained in a 1–neighborhood
of any rank 1 free factor of A. We remark that for 
1; 
2 adjacent vertices of Cn that
are not contained in XA , dA.
1; 
2/� 2D . We also have the corresponding version of
the bounded geodesic image theorem for Cn . We state it here for later reference.

Proposition 6.1 For n � 3, there is an M � 0 so that if A is a free factor of Fn of
rank at least 2 and 
 is a geodesic in Cn with each vertex of 
 meeting A, ie, 
 is
disjoint from XA , then diam.�A.
 //�M .

To make effective use of the graph Cn , we need the following lemma.

Lemma 6.2 Let A and B be free factors of Fn with rank.A/ � 2 and �A.B/¤ ∅.
Then there is a cyclic (ie, rank 1) factor 
 � B with �A.
 /¤∅.

Proof If B is rank 1 there is nothing to show, and if B �A then any rank 1 subfactor
will do. Hence, we may assume that rank.B/ � 2 and that �B.A/ ¤ ∅. Choose a
cyclic factor 
 of B that is at distance greater than DC 4 from �B.A/ in F.B/. If
�A.
 /D∅ then there is a marked graph G containing subgraphs representing A and

 , respectively. Then by definition

�B.G/� �B.A/ and �B.G/� �B.
 /;

implying that dB.A; 
 /� diam.�B.A//C diam.�B.
 //�DC 4, a contradiction.

The following proposition shows how subfactor projections can be used to build up
distance in the graph Cn . In the mapping class group situation, this is proven for the
curve complex in [14]. The idea originates in Kent and Leininger [13].

Proposition 6.3 Let fAig be a collection of free factors and let Xi be the set of vertices
of Cn that do not project to Ai , ie, Xi D XAi

. Let M be the constant determined in
Proposition 6.1. Assume that

(1) Xi and XiC1 are disjoint in Cn and
(2) dAi

.xi�1;xiC1/ > 2M for any xi�1 2Xi�1 and xiC1 2XiC1 .
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Then the Xi are pairwise disjoint and for any xj 2Xj and xjCk 2XjCk , any geodesic
Œxj ;xjCk � contains a vertex from Xi for j � i � j C k .

Proof The proof is adapted from [14]. There are two reasons for providing the details
here. First, the argument is an illustration of how the general subfactor projections
discussed in this note and the complex Cn are in many ways analogous to subsurface
projections and the curve complex. Second, there are several subtleties that make
subfactor projections different; for example, there is no canonical “boundary curve” of
A contained in XA .

The proposition is proven by induction on k ; for k D 1 there is nothing to prove. Let
xj 2 Xj and xjCk 2 XjCk be given and consider a geodesic Œxj ;xjCk �. Select any
xjCk�2 2XjCk�2 . We first show that there exists a geodesic Œxj ;xjCk�2� that avoids
vertices of XjCk�1 . To see this, start with a geodesic Œxj ;xjCk�2� that contains a
vertex xjCk�1 of XjCk�1 and decompose it as

Œxj ;xjCk�2�D Œxj ;xjCk�1�[ ŒxjCk�1;xjCk�2�:

Suppose that we have chosen xjCk�1 to be the first vertex of XjCk�1 that appears
along Œxj ;xjCk�2� so that Œxj ;xjCk�1� is disjoint from XjCk�1 except at its last
vertex. The induction hypotheses now implies that Œxj ;xjCk�1� meets XkCj�2 at a
vertex x0

kCj�2
and we can write

Œxj ;xjCk�2�D Œxj ;x
0
jCk�2�[ Œx

0
jCk�2;xjCk�1�[ ŒxjCk�1;xjCk�2�:

By assumption, these last two geodesics have length at least 1 and since the diameter of
each Xi is less than or equal to 2 we may replace the union of the last two geodesics with
a geodesic fx0jCk�2; ajCk�2;xjCk�2g, where ajCk�2 is a cyclic factor of AjCk�2

whose projection to AjCk�1 is nonempty. This is possible by Lemma 6.2. Hence, we
have produced a geodesic from xj to xjCk�2 that avoids XjCk�1 .

Since Œxj ;xjCk�2� avoids XjCk�1 , Proposition 6.1 implies that

dAjCk�1
.xj ;xjCk�2/�M:

Hence,

dAjCk�1
.xj ;xjCk/� dAjCk�1

.xjCk�2;xjCk/� dAjCk�1
.xj ;xjCk�2/

> 2M �M �M:

Another application of Proposition 6.1 gives that any geodesic Œxj ;xjCk � must contain
a vertex that misses AjCk�1 , hence there is a vertex xjCk�1 2XjCk�1 with xjCk�1 2

Œxj ;xjCk �. This implies that we may write Œxj ;xjCk �D Œxj ;xjCk�1�[ŒxjCk�1;xjCk �

and applying the induction hypothesis to Œxj ;xjCk�1� we conclude that the geodesic
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Œxj ;xjCk � contains a vertex from each Xi for j � i � j Ck . Also, if Xj \XjCk con-
tained a vertex x then the geodesic Œx;x� would have to intersect XjC1 , contradicting
our hypothesis. This concludes the proof.

The next theorem is similar to [14, Proposition 3.3], where pseudo-Anosov mapping
classes are constructed using the curve complex. Say that a collection of free factors
fA1; : : : ;Ang of Fn fill if for any free factor C < Fn , �Ai

.C / ¤ ∅ for some i . In
other words, every free factor meets some factor in the collection.

Theorem 6.4 Let A and B be rank at least 2 free factors of Fn that fill and let
f;g 2 Out.Fn/ satisfy the following:

(1) f .A/DA and f jA 2Out.A/ has translation length greater than 2M C4D , and

(2) g.B/D B and gjB 2 Out.B/ has translation length greater than 2M C 4D .

Then the subgroup hf;gi �Out.Fn/ is free of rank 2 and any nontrivial automorphism
in hf;gi that is not conjugate to a power of f or g is fully irreducible. Moreover, any
finitely generated subgroup of hf;gi consisting entirely of such automorphisms has
the property that any orbit map into Fn is a quasi-isometric embedding.

Before beginning the proof we make the following remark: By [3], an outer automor-
phism has positive translation length in Fn (or Cn ) if and only if it is fully irreducible.
Hence, if f and g fix the free factors A and B , respectively, and their restrictions are
fully irreducible, then conditions .1/ and .2/ are satisfied after passing to a sufficiently
high power. If there were to exist a uniform lower bound on the translation length of a
fully irreducible automorphism in Fn , depending only on n, then such a power would
be independent of f and g .

Proof We sketch the proof as the details are similar to [14]. First, note that we have
chosen translation lengths sufficiently large so that any geodesic of Cn joining vertices
of XB and f .XB/ must contain a vertex of XA , and similarly any geodesic joining
vertices of XA and g.XA/ must contain a vertex of XB . To see this, note that since
A and B fill, XA \XB D ∅. Also, if b is a rank 1 free factors of B that meets A,
which exists by Lemma 6.2,

diam.�A.XB//� 2 �maxfdA.b; ˇ/ W ˇ 2XBg � 2D:

Hence, for any ˇ 2XB and ˇ0 2 f .XB/, let aˇ 2 �A.ˇ/ so that

dA.ˇ; ˇ
0/� dA.ˇ; f .ˇ//� dA.f .ˇ/; ˇ

0/

� dA.aˇ; f .aˇ//� 2 � diam.�A.ˇ//� dA.f .ˇ/; ˇ
0/

> .2M C 4D/� 2D� 2D � 2M >M:
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Then by the Proposition 6.1, any geodesic from ˇ to ˇ0 must contain a vertex that
misses A, ie, that is contained in XA . The proof now proceeds by using Proposition 6.3
to show that elements not conjugate to powers of f or g act with positive translation
length on Cn and are therefore fully irreducible.

For any w 2 hf;gi in reduced form, write w D s1 � � � sn where each si is a syllable of
w , ie, a maximal power of either f or g . Suppose for simplicity that s1 is a power
of f and sn is a power of g (so in particular n is even) and set Xi D s1 � � � si�1XA

for i odd and Xi D s1 � � � si�1XB for i even. By naturality of the Out.Fn/–action,
these are precisely the sets of vertices of Cn that fail to project to the free factors
Ai D s1 � � � si�1A and Bi D s1 � � � si�1B , respectively. Using that fact that XA is
fixed by f and XB is fixed by g , it is quickly verified that the sets Xi satisfy the
conditions of Proposition 6.3 for 1 � i � nC 1. We conclude that for ˛ 2 XA and
w˛ 2 wXA DXnC1 , the geodesic Œ˛; w˛� contains at least nC 1 vertices and so

dC.˛; w˛/� nD jwjs;

where j � js denotes the number of syllables. In general, one shows that either
dC.˛; w˛/ � jwjs or dC.ˇ;wˇ/ � jwjs , where ˇ 2 XB , depending on the first and
last syllable of w .

To finish the proof, observe that any w 2 hf;gi that is not a conjugate to a power of f
or g has a conjugate w0 with an even number of syllables and w0 has the property that
jw0njs D njw0js . Hence, w0 has positive translation length in Cn , as does its conjugate
w . This shows that w is fully irreducible.

The statement about quasi-isometric orbit maps follows as in [14].

We conclude with the remark that Theorem 6.4 can be generalized to free groups of
higher rank as well as the right-angled Artin subgroups of Out.Fn/ constructed in [17].
This will be the subject of future work.
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