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CAT.0/ spaces with boundary
the join of two Cantor sets

KHEK LUN HAROLD CHAO

We will show that if a proper complete CAT.0/ space X has a visual boundary
homeomorphic to the join of two Cantor sets, and X admits a geometric group action
by a group containing a subgroup isomorphic to Z2 , then its Tits boundary is the
spherical join of two uncountable discrete sets. If X is geodesically complete, then
X is a product, and the group has a finite index subgroup isomorphic to a lattice in
the product of two isometry groups of bounded valence bushy trees.

20F65; 20F67, 51F99

1 Introduction

CAT.0/ spaces with homeomorphic visual boundaries can have very different Tits
boundaries. However, if X admits a proper and cocompact group action by isometries,
or a geometric group action in short, then this places a restriction on the possible Tits
boundaries for a given visual boundary. (We follow the definition of a proper group
action in Bridson–Haefliger [3, Chapter I.8]; some use the term “properly discontinuous”
for this.) Kim Ruane has showed in [13] that for a CAT.0/ space X with boundary
@X homeomorphic to the suspension of a Cantor set, if it admits a geometric group
action, then the Tits boundary @TX is isometric to the suspension of an uncountable
discrete set. In this paper we will show the following.

Theorem 1.1 If a CAT.0/ space X has a boundary @X homeomorphic to the join
of two Cantor sets C1 and C2 and if X admits a geometric group action by a group
containing a subgroup isomorphic to Z2 , then its Tits boundary @TX is isometric to
the spherical join of two uncountable discrete sets. So if X is geodesically complete,
then X DX1 �X2 with @Xi homeomorphic to Ci , i D 1; 2.

As for the group acting on X, we will prove the following.

Theorem 1.2 Let X be a geodesically complete CAT.0/ space such that @X is
homeomorphic to the join of two Cantor sets. Then for a group G < Isom.X / acting
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geometrically on X and containing a subgroup isomorphic to Z2 , either G or a
subgroup of G of index 2 is a uniform lattice in Isom.X1/� Isom.X2/. Furthermore, a
finite index subgroup of G is a lattice in Isom.T1/� Isom.T2/, where Ti is a bounded
valence bushy tree quasi-isometric to Xi , i D 1; 2.

Remark The assumption that G contains a subgroup isomorphic to Z2 is only used
to obtain a hyperbolic element in G with endpoints in @X n.C1[C2/, which we use in
Section 4 to prove Theorem 1.1. It is conjectured that a CAT.0/ group is either Gromov
hyperbolic or it contains a subgroup isomorphic to Z2 . Without using the assumption
on G, we can show that G cannot be hyperbolic, which follows from Lemma 2.3 and
the flat plane theorem [3, Theorem III.H.1.5]. Thus if the conjecture is shown to be true
for general CAT.0/ groups, the assumption on G will not be necessary. The conjecture
has been proved for some classes of CAT.0/ groups; see Kapovich–Klein [8] and
Caprace–Haglund [5] for examples.

If Xi are proper geodesically complete, one might hope that they are trees, so G will
be a uniform lattice in the product of two isometry groups of trees. Surprisingly, this
may not be the case. Ontaneda constructed a 2–complex Z which is non-positively
curved and geodesically complete with free group Fn as its fundamental group (see
Ontaneda [10, Proposition 1]). Its universal cover is quasi-isometric to Fn , so it is
a Gromov hyperbolic space with Cantor set boundary, while being also a CAT.0/
space. Under an additional condition that the isotropy subgroup of Isom.Xi/ of every
boundary point of Xi acts cocompactly on Xi , then Xi is a tree (see Caprace–Monod [6,
Theorem 1.3]).

There are irreducible lattices in a product of two trees, so G may not have a finite index
subgroup which splits as a product. See Burger–Mozes [4] for a detailed investigation.

Acknowledgement I would like to thank my advisor Chris Connell for suggesting
this problem to me and providing me with a lot of valuable discussions, assistance and
encouragements while I was working on this project.

2 Preliminaries

First we fix the notations. For a CAT.0/ space X, its (visual) boundary with the
cone topology is @X. For a subset H � X, we denote by @H WD xH \ @X, where
the closure xH is taken in xX WD X [ @X. The angular and the Tits metrics on the
boundary are denoted as †. � ; � / and dT. � ; � / respectively. We denote the boundary
with the Tits metric by @TX. The identity map from the Tits boundary @TX to the
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visual boundary @X is continuous but usually not a homeomorphism (see Bridson–
Haefliger [3, Proposition II.9.7]). If g is a group element acting on X by isometry, we
denote by xg the action of g extended to @X by homeomorphism. If g acts on X by a
hyperbolic isometry, the two endpoints of its axes on @X are denoted by g˙1 . We
refer to [3] for details on basic facts about CAT.0/ spaces.

Let X be a complete CAT.0/ space with @X homeomorphic to the join of two Cantor
sets C1 and C2 , and G < Isom.X / be a group acting on X geometrically. We will not
assume that G contains a subgroup isomorphic to Z2 until Section 4. By the following
lemma, we can assume that G stabilizes C1 and C2 .

Lemma 2.1 Either G or a subgroup of G of index 2 stabilizes each of C1 and C2 .

Proof Consider @X as a complete bipartite graph with C1;C2 as the two sets of
vertices. For any g 2G, if xg �x1 2 C1 for some x1 2 C1 , then xg �Ci D Ci , i D 1; 2;
otherwise xg �C1 D C2 and xg �C2 D C1 . So the homomorphism from G to symmetric
group on two elements is well-defined and its kernel is the subgroup of G which
stabilizes each of C1 and C2 .

By an arc we specifically mean a segment from a point in C1 to a point in C2 which
does not pass through any other point of C1 or C2 , and by open (closed) segment a
segment on the boundary excluding (including) its two endpoints. We will investigate
the positions of the endpoints of hyperbolic elements in G.

We quote a basic result on dynamics on CAT.0/ space boundary by Ruane:

Lemma 2.2 (Ruane [12, Lemma 4.1]) Let g be a hyperbolic isometry of a CAT.0/
space X and let c be an axis of g . Let z 2 @X, z ¤ g�1 and let zi D xg

i � z . If
w 2 @X is an accumulation point of the sequence .zi/ in the cone topology, then
†.g�1; w/C †.w;g1/ D � , and †.g�1; z/ D †.g�1; w/. If w ¤ g1 , then
dT.g

�1; w/C dT.w;g
1/ D � . In this case c and a ray from c.0/ to w span a flat

half plane, and dT.g
�1; z/D dT.g

�1; w/.

Recall that a hyperbolic isometry is of rank one if none of its axes bounds a flat half
plane, and it is of higher rank otherwise.

Lemma 2.3 There is no rank-one isometry in G.

Proof Take any hyperbolic g 2 G. Assume without loss of generality that g1 2

@X nC2 . Then for any point y 2 C2 , xgn � y cannot accumulate at g1 since C2 is
closed in @X. Any accumulation point of xgn �y will form a boundary of a half plane
with g˙1 by Lemma 2.2. So g is not rank one.
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We note also that no finite subset of points on the boundary is stabilized by G, which
readily follows from a result by Ruane, quoted in a paper by Papasoglu and Swenson,
and the fact that our @X is not a suspension.

Lemma 2.4 (Ruane, Papasoglu–Swenson [11, Lemma 26]) If G virtually stabilizes
a finite subset A of @X, then G virtually has Z as a direct factor. In this case @X is a
suspension.

3 Endpoints of a hyperbolic element

We will show that there is no hyperbolic element of G with one of its endpoints in
C1 but not the other one. We will proceed by contradiction, using as a key result
the following theorem by Papasoglu and Swenson to @X, itself a strengthening of a
previous result by Ballmann and Buyalo [2]. This theorem is applicable to our @X in
light of the previous lemmas.

Theorem 3.1 (Papasoglu and Swenson [11, Theorem 22]) If the Tits diameter of
@X is bigger than 3�

2
then G contains a rank 1 hyperbolic element. In particular: If

G does not fix a point of @X and does not have rank 1, and I is a (minimal) closed
invariant set for the action of G on @X, then for any x 2 @X, dT.x; I/�

�
2

.

We put the word minimal in parentheses as it is not a necessary condition, for if I � @X

is a closed invariant set, then it contains a minimal closed invariant set I 0 , and so for
any x 2 @X, dT.x; I/� dT.x; I

0/� �
2

.

Note that the above theorem implies that @X has finite Tits diameter, and hence the
CAT(1) space @TX is connected.

Now assume that g 2G is hyperbolic such that g1 2 C1 and g�1 2 @X nC1 .

Lemma 3.2 Fix.xg/ contains boundary of a 2–flat.

Proof Since xg acts on @TX by isometry and @TX is connected, if g�1 2 C2 , then
the arc between g1 and g�1 is fixed by xg ; otherwise g�1 62C1[C2 , then g�1 lies
on an open arc joining a point in C1 to a point in C2 , so this arc is fixed by xg . Hence in
both cases there is an arc contained in @Min.g/. Then by [12, Theorems 3.2 and 3.3],
Min.g/D Y �R, @Min.g/D Fix.xg/ and is the suspension of @Y , and Zg=hgi acts
on the CAT.0/ space Y geometrically. Here we have @Y ¤¿, for otherwise @Min.g/
would consist of only two points. Since Y has nonempty boundary, so by Swenson [14,
Theorem 11] there is a hyperbolic element in Zg=hgi which has an axis in Y with
two endpoints on @Y . Thus there is a 2–flat in Min.g/.
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x1 x2

y1 y2

C1

C2

Figure 1: Boundary of a 2–flat in Min.h/

Denote this 2–flat by F , and let z be a point in @F \C1 other than g1 .

Lemma 3.3 If F0 is a 2–flat whose boundary is contained in Fix.xh/D @Min.h/ for
some hyperbolic h 2G, then @F0 intersects each of C1 and C2 at exactly 2 points.

Proof Suppose not, then denote the points at which @F0 alternatively intersects C1 ,
C2 by x1;y1;x2;y2; : : : ;xn;yn . Consider the segment joining x1 and y2 . We may
assume that not both of x1 , y2 are endpoints of h. (If not, choose y1 and x3 instead.)
From the assumption on @F0 , this segment is not part of @F0 . Its two endpoints are
fixed, but the arc joining them is not in Fix.xh/ because Fix.xh/ is a suspension with
suspension points h˙1 . However, this arc is stabilized by xh because of the cone
topology of @X. Take a point p in the open arc between x1 and y2 . Since @TX is
connected there exists a Tits segment in this arc from p to one of x1 and y2 , say x1 .
The action of G on @TX is by isometries. Choose a new point on this segment as p if
necessary, we can assume dT.p;x1/ < dT.y2;x1/. Now dT.xh �p; xh �x1/D dT.xh �p;x1/

and xh �p is also on the arc. xh �p cannot be on the open segment between p and x1 .
If xh �p were on the open segment between p and y2 , the Tits geodesic from xh �p to
x1 would go through p or y2 , both would contradict dT.xh �p;x1/D dT.p;x1/. So
xh �pD p . Then p 2 @Min.h/ and lies on a path in @Min.h/ joining h˙1 , forcing the
arc to be in @Min.h/, which contradicts the previous assertion.

We describe our strategy for proving the main result about endpoints of hyperbolic
elements in this section: Denote the segment in @X from g1 to z passing through
g�1 by ˇ . Let y be the point where ˇ intersects C2 . The essence of the following
arguments is to look for a point in @TX that is over �=2 away from C1 or C2 , which
are closed G –invariant subsets, so obtaining a contradiction to Theorem 3.1.

Lemma 3.4 g�1 cannot be on the closed segment in ˇ from g1 to y .
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Proof Suppose g�1 is on that segment. Since dT.g
1;g�1/D � , the Tits length of

this segment from g1 to y is at least � . Let 0<ı <�=2 be such that 2ı� dT.y;C1/.
Take a point p on this segment so that dT.p;g

1/D�=2Cı . Then dT.p;y/��=2�ı .
Now for any point x 2 C1 other than g1 , if the Tits geodesic segment from p to x

passes through y , then

dT.p;x/� dT.p;y/C dT.y;C1/� .�=2� ı/C 2ı D �=2C ıI

while if it passes through g1 , then obviously dT.p;x/ > dT.p;g
1/D �=2C ı . So

dT.p;C1/� �=2C ı , which contradicts Theorem 3.1.

Now we deal with the case that g�1 is in the open segment in ˇ from y to z . We
state a lemma first which will also be used in later arguments.

Lemma 3.5 Suppose h 2 G is a hyperbolic element such that F0 �Min.h/ whose
boundary intersects C1 and C2 alternatively at x1;y1;x2;y2 . Assume that the endpoint
h�1 is on some open arc, say the open arc between xi and yj , while another endpoint
h1 is not contained in the closed arc between xi and yj . Then for any point x 2 C1

other than x1 and x2 , the sequence xhn �x can only accumulate at x1 or x2 . Similarly,
for any point y 2 C2 other than y1 and y2 , the sequence xhn �x can only accumulate at
y1 or y2 .

Proof Suppose not, then the sequence has an accumulation point x0 2 C1 n fx1;x2g.
By Lemma 2.2, x0 forms boundary of a half flat plane with h˙1 . This boundary goes
from h1 to x0 , and then passes through xi or yj before ending at h�1 . If it passes
through xi , then the Tits length of segment on this boundary joining h1 to xi is the
total length of the half-plane boundary � minus the length of the segment from xi to
h�1 , thus it is equal to the length of the Tits geodesic segment on @F0 joining these
two points, so there are two geodesics for these two points. But this contradicts the
uniqueness of Tits geodesic between two points less than � apart. If the boundary of
the half flat plane goes through yj , apply the same argument to the points h1 and
yj and we have the same contradiction. For the case y 2 C2 n fy1;y2g use the same
argument.

Lemma 3.6 g�1 cannot be in the open segment from y to z .

Proof Suppose g�1 is on this segment. For any point z0 2 C1 other than g1 and z ,
the sequence xg�n � z0 converges to z by Lemma 3.5 and Lemma 2.2 which says that
xg�n � z0 cannot accumulate at g1 .
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The segment ˇ has Tits length larger than � , so there is a point w 2 ˇ which is more
than �=2 away from g1 and from z .

By lower semi-continuity of the Tits metric,

dT.w; z
0/D lim

n!1
dT.xg

�n
�w; xg�n

� z0/

� dT. lim
n!1

xg�n
�w; lim

n!1
xg�n
� z0/D dT.w; z/:

So dT.w;C1/ > �=2, a contradiction to Theorem 3.1.

g1 2 C1

y 2 C2

w

z 2 C1

ˇ

g�1

g1 2 C1

y 2 C2

z 2 C1

ˇ

g�1

w

Figure 2: @F in Lemma 3.6

We see from these lemmas that the endpoints of a hyperbolic element must be both in
C1 , or both in C2 , or none is in C1[C2 .

If g is a hyperbolic element of G with endpoints not in C1[C2 , we have the following
results.

Lemma 3.7 @Min.g/ is the boundary of a 2–flat.

Proof Since @Min.g/ is a suspension, so it can only be a circle or a set of two points.
However, as xg is an isometry of @TX, we see that xg must fix the arc on which g1 lies.
So @Min.g/D Fix.xg/ can only be a circle. Then by the same reason as in Lemma 3.2
Min.g/ contains a 2–flat, whose boundary is the circle.

Suppose for convenience that g1 is on the open arc from x1 2 C1 to y1 2 C2 , and
x2 2 C1 , y2 2 C2 are the two other points on the boundary @F .

Lemma 3.8 For g as above, g�1 can only be on the open arc from x2 to y2 .
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Proof Suppose g�1 were not on this arc. Without loss of generality let g�1 be on
the arc joining y1 and x2 . Now the segment from x1 to x2 through y1 has Tits length
larger than � , so we can choose a point p on this segment so that p is at distance more
than �=2 away from x1 and x2 . By Lemma 3.5, for any other point x0 2 C1 , xgn �x0

cannot have an accumulation point other than x1 and x2 . Passing to a subsequence
xgnk �x0! xi , i D 1 or 2, we have

dT.p;x
0/D lim

nk!1
dT.xg

nk �p; xgnk �x0/

� dT

�
lim

nk!1
xgnk �p; lim

nk!1
xgnk �x0

�
D dT.p;xi/;

then dT.p;C1/ > �=2, contradicting Theorem 3.1.

4 Main result

Now we add the assumption that G contains a subgroup isomorphic to Z2 , then the flat
torus theorem [3, Theorem II.7.1] implies that there exist two commuting hyperbolic
elements g1;g2 2G, such that Min.g1/, formed by the axes of g1 , contains axes of
g2 not parallel to those of g1 . Then an axis of g1 and an axis of g2 span a 2–flat in
Min.g1/, and elements gn

1
gm

2
are also hyperbolic and have axes in this 2–flat with

endpoints dense on the boundary of this 2–flat. So we can choose some hyperbolic
element g so that its endpoints are not in C1[C2 .

We start with a lemma about the orbits of the group action, then we will prove
Theorem 1.1.

Lemma 4.1 For any two distinct points w1; w2 2 @X, there is a sequence .gi/
1
iD0
�G

such that the points xgi �wj , where 0� i <1 and j 2 f1; 2g, are distinct.

Proof From Lemma 2.4 we know that every w 2 @X has an infinite orbit G �w . So
let .hi/

1
iD0
� G be a sequence such that xhi �w1 are distinct. We will construct the

sequence .gi/ inductively. First set g0 D e .

Suppose that for n � 0 we have g0; : : : ;gn such that xgi �wj , where 0 � i � n and
j 2 f1; 2g, are distinct. Let Sn WD fxgm �w1; xgm �w2 W 0�m� ng. Pass to a subsequence
of .hi/ so that xhi �w1 62 Sn . (We will keep denoting any subsequence by .hi/.) If
there exists some hj such that xhj �w2 62 Sn , then set gnC1 D hj . Otherwise, there
exists some xgm �wk 2 Sn such that xhi �w2 D xgm �wk for infinitely many hi . Pass to
this subsequence. Since the orbit of xgm �wk is infinite, there exists h0 2G such that
xh0 � .xgm �wk/ 62 Sn , so h0hi �w2 62 Sn . Now h0hi �w1 62 Sn for infinitely many hi . Set
gnC1 D h0hi for one such hi . Hence we get the desired sequence .gi/.
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Remark The only condition required on the group action is that every orbit is infinite.
This proof can be used to show a similar result for any finite set fw1; : : : wng.

Lemma 4.2 For any x 2 C1 , y 2 C2 we have dT.x;y/ D �=2. Hence @TX is
metrically a spherical join of C1 and C2 .

Proof Consider some g 2G which is hyperbolic with endpoints not on C1[C2 . Let
@Min.g/D @F . We will first prove that for x1;x2 2 C1\ @F , y1;y2 2 C2\ @F , we
have dT.xi ;yj /D �=2, where i; j D 1; 2. Take any of the four arcs making up @F ,
say the arc joining x1 and y1 .

The endpoints of hyperbolic elements in Zg are dense on @F , so we can pick a g0 2Zg

so that g0�1 is as close to the midpoint of arc x2 and y2 as we want. Let 0 < ı <

min.dT.x2;C2/; dT.y2;C1//. Pick g0 so that jdT.g
0�1;x2/� dT.g

0�1;y2/j<ı . For
any point x 2 C1 other than x2 , if the Tits geodesic segment from g0�1 to x passes
through y2 , then

dT.g
0�1;x/� dT.g

0�1;y2/C dT.y2;C1/

> dT.g
0�1;x2/� ıC dT.y2;C1/ > dT.g

0�1;x2/I

while if it passes through x2 then obviously dT.g
0�1;x/ > dT.g

0�1;x2/. For any
y 2 C2 other than y2 , by similar reasoning on the Tits geodesic segment from g0�1

to y , we have dT.g
0�1;y/ > dT.g

0�1;y2/.

For any arc joining x¤x2 2C1 and y¤y2 2C2 , since dT.g
0�1;x/> dT.g

0�1;x2/,
the point x2 cannot be an accumulation point of xg0

n
� x by Lemma 2.2, then by

Lemma 3.5, xg0
n
�x! x1 . Likewise, xg0

n
�y! y1 . So

(4-1)

dT.x;y/D lim
n!1

dT. xg0
n
�x; xg0

n
�y/

� dT

�
lim

n!1
xg0

n
�x; lim

n!1
xg0

n
�y
�

D dT.x1;y1/:

For any other arc joining xi to yj in @F , by Lemma 4.1 there exists h 2G such that
xh �xi ¤ x2 and xh �yj ¤ y2 , so from the inequality (4-1) we get

dT.xi ;yj /D dT.xh �xi ; xh �yj /� dT.x1;y1/:

Thus all arcs have equal length �=2. Now for any x 2 C1 , y 2 C2 , by Lemma 3.5 the
sequence xgn �x can accumulate at x1 or x2 , and xgn �y can accumulate at y1 or y2 ,
so passing to some subsequence .xgnk /, we have convergence sequences xgnk �x! xi
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and xgnk �y! yj . Then we have the inequality

dT.x;y/D lim
nk!1

dT.xg
nk �x; xgnk �y/� dT.xi ;yj /D �=2:(4-2)

Take a point p on the open arc joining x and y . Without loss of generality assume
that p and x are connected in @TX by a segment in the arc. For any � > 0, we may
choose a new point on the segment from p to x to replace p so that 0< dT.x;p/ < � .
Consider the Tits geodesic from p to some point in C2 . If it passes through x , then
it consists of the segment from p to x and an arc from x to some point in C2 , so
by the inequality (4-2) its Tits length is at least �=2C dT.x;p/. By Theorem 3.1
dT.p;C2/ � �=2, so there must be a Tits geodesic from p to some point in C2 that
does not pass through x , hence it passes through y . Its length is at least dT.p;y/, so
y is the closest point in C2 to p , so dT.p;y/D dT.p;C2/� �=2. Then dT.x;y/�

dT.x;p/C dT.p;y/ < �=2C � . Letting �! 0 we have dT.x;y/� �=2. Combining
with the inequality (4-2), dT.x;y/D �=2.

Theorem 4.3 If X is a CAT.0/ space which admits a geometric group action by
a group containing a subgroup isomorphic to Z2 , and @X is homeomorphic to the
join of two Cantor sets, then @TX is the spherical join of two uncountable discrete
sets. If X is geodesically complete, that is, every geodesic segment in X can be
extended to a geodesic line, then X is a product of two CAT.0/ space X1;X2 with
@Xi homeomorphic to a Cantor set.

Proof We have shown that for any x 2 C1 , y 2 C2 , dT.x;y/D �=2 in Lemma 4.2,
so every two distinct points in Ci has Tits distance at most � for i D 1; 2. Since the
identity map @TX ! @X is continuous, any Tits path joining two distinct points in
Ci is also a path in the visual boundary @X, and every such path in @X has to pass
through some point in the other Cj , thus the distance between the two point must
be exactly � , hence Ci with the Tits metric is an uncountable discrete set. Then
@TX is isomorphic to the spherical join of C1 and C2 , giving the first result. So with
the additional assumption that X is geodesically complete, it follows by Bridson–
Haefliger [3, Theorem II.9.24] that X splits as a product X1 �X2 , with @Xi D Ci for
i D 1; 2.

5 Some properties of the group

We will show Theorem 1.2 in this section. Assuming that X is geodesically complete,
and hence reducible by Theorem 4.3, we have the following result for the group G. We
do not require that G stabilizes each of C1 and C2 in this section.
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Theorem 5.1 Let X be a CAT.0/ space such that @X is homeomorphic to the join of
two Cantor sets and suppose X is geodesically complete. For a group G < Isom.X /
containing Z2 and acting geometrically on X, either G or a subgroup of it of index 2

is a uniform lattice in Isom.X1/� Isom.X2/, where X1;X2 are given by Theorem 4.3.

Proof We know from Theorem 4.3 that X DX1 �X2 , so we only need to show that
G or a subgroup of it of index 2 preserves this decomposition.

By Lemma 2.1, either G or a subgroup of it of index 2 stabilizes C1 and C2 . Replacing
G by its subgroup if necessary, we assume G stabilizes C1 and C2 .

Denote by �i the projection of X to Xi , i D 1; 2. Take any p1;p2 2 X such that
�2.p1/D �2.p2/. Extend Œp1;p2� to a geodesic line 
 , its projection to each of Xi

is the image of a geodesic line. Since X1 is totally geodesic, the geodesic segment
Œp1;p2� projects to a single point �2.p1/ on X2 , that is, a degenerated geodesic
segment, so �2.
 / is also a degenerated geodesic line. Thus the endpoints 
 .˙1/
are in C1 . Now g �
 is a geodesic line passing through g �p1 , g �p2 , and its endpoints
xg � 
 .˙1/ 2 C1 , so �2.g �p1/D �2.g �p2/. Similarly, for any q1; q2 2X such that
�1.q1/D �1.q2/ we have �1.g � q1/D �1.g � q2/. So G preserves the decomposition
X DX1 �X2 , hence the result.

We will show that Isom.Xi/ is isomorphic to a subgroup of Homeo.Ci/ by the follow-
ing lemma.

Lemma 5.2 Suppose X 0 is a proper complete CAT.0/ space, and G0 < Isom.X 0/
acts properly on X 0 by isometries.

(1) If S � @X 0 is a set of points on the boundary such that the intersection\
w2S

BT.w; �=2/

is empty, then there exists a point q 2 X such that any g 2 Isom.X 0/ that
stabilizes all horospheres with centers in S will fix q . In particular, such g is
elliptic.

(2) Assume that G0 does not have parabolic isometries of positive translation lengths.
If @X 0 is not a suspension and the radius of @TX 0 is larger than �=2, then the
map G0! Homeo.@X 0/, defined by extending the action of G0 to the boundary
@X 0 , has a finite kernel, that is, the subgroup of G0 that acts trivially on the
boundary is finite. Moreover, assume the action of G0 is cocompact, then the
kernel fixes a subspace of X 0 with boundary @X 0 .
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Proof To prove (1), as any such g stabilizes all horospheres by assumption, thus
g stabilizes all horoballs centered at every w 2 S . Take an arbitrary point q0 2 X

and choose for each w a closed horoball Hw centered at w that contains q0 . Their
intersection

T
w2SHw is non-empty since it contains q0 . By Caprace–Monod [6,

Lemma 3.5] @Hw D BT.w; �=2/, then @.
T
w2S Hw/ �

T
w2S .@Hw/ D ¿. SoT

w2SHw is bounded. Also as every Hw is stabilized by g , so is
T
w2SHw . AsT

w2SHw is convex and compact, it contains a unique circumcenter q . Then g fixes q .

To prove (2), first we claim that if g 2G0 has zero translation length, and g fixes a point
w 2 @X, then the horospheres centered at w are stabilized by g . Let 
 be a geodesic
ray with endpoint w , and b
 .�/ be the corresponding Busemann function. Since g � 


is asymptotic to 
 , we have b
 .x/D bg�
 .g �x/D b
 .g �x/CC for some constant C.
Then as Busemann functions are 1–Lipschitz, it follows that jC j � dX .x;g �x/. We
have assumed that jgj D infx dX .x;g �x/D 0, so C D 0, that is, b
 .x/D b
 .g �x/,
hence the claim.

Now if g 2G0 acts by hyperbolic isometry, then @Min.g/D Fix.xg/ is a suspension.
Since we assumed @X 0 is not a suspension, any g acting trivially on the whole boundary
@X 0 is not hyperbolic, so by assumption g is either elliptic or parabolic with zero
translation length, thus by the previous claim g stabilizes all the horospheres centered
at any point on @X 0 . As @TX 0 has radius larger than �=2, for every x 2 @X 0 there
is some w 2 @X 0 such that dT.x; w/ > �=2, so x 62 BT.w; �=2/, hence S D @X 0

satisfies the condition in (1). Now (1) implies that the kernel of G0! Homeo.@X 0/ is
a subgroup of the stabilizer of some point q 2X 0 . As the action of G0 is proper, the
kernel is finite.

Let K be the kernel. The set fixed by K is closed and convex. For any point q fixed by
the kernel, as g � q is fixed by gKg�1 DK , then G0 � q is fixed by K . If the action of
G0 is cocompact, then G0 � q has boundary @X 0 , and thus so is the set fixed by K .

Remark If we further assume that the space of directions at any point of X 0 is compact
(for instance, when X 0 is geodesically complete), then it was proved by Fujiwara,
Nagano and Shioya [7] that the fixed point set on @TX 0 of any parabolic isometry,
possibly with positive translation length, has Tits radius � �=2. So in this case the
assumption on parabolic isometries in (2) of the previous lemma is not needed.

Corollary 5.3 Let X be a geodesically complete CAT.0/ space such that @X is
homeomorphic to the join of two Cantor sets. Then for a group G< Isom.X / containing
Z2 and acting geometrically on X, either G or a subgroup of it of index 2 is isomorphic
to a subgroup of Homeo.C1/�Homeo.C2/.

Proof This follows from Theorem 5.1 and Lemma 5.2.
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We can still show this without the geodesic completeness assumption.

Theorem 5.4 Let X be a CAT.0/ space such that @X is homeomorphic to the join of
two Cantor sets. Then for a group G < Isom.X / containing Z2 and acting geometri-
cally on X, a finite quotient of either G or a subgroup of G of index 2 is isomorphic
to a subgroup in Homeo.C1/�Homeo.C2/.

Proof Assume G stabilizes each of C1 and C2 as in the proof of Theorem 5.1.
Each g 2 G acts on @X as a homeomorphism, so it acts on Ci � @X also as a
homeomorphism.

Suppose xg acts trivially on C1 and C2 , that is, g is in the kernel of G!Homeo.C1/�

Homeo.C2/. Then for any point x 2 @X outside C1[C2 , the arc on which x lies is a
Tits geodesic segment of length �=2 in @TX. Since xg acts on @TX by isometry and
both endpoints of this Tits geodesic segment are fixed by xg , so xg fixes the whole arc,
thus xg �xD x . Hence xg acts trivially on @X. One can check that @TX has radius larger
than �=2, so by Lemma 5.2 G! Homeo.@X / has finite kernel. Hence the result.

In the case when X is geodesically complete, actually we can prove a stronger result,
expressed in the last statement of Theorem 1.2. Observe that Xi is a Gromov hyperbolic
space by the flat plane theorem, which states that a proper cocompact CAT.0/ space
Y is hyperbolic if and only if it does not contain a subspace isometric to E2 . Recall
that a cocompact space is defined as a space Y which has a compact subset whose
images under the action by Isom.Y / cover Y . The (projected) action of G on Xi is
cocompact, even though the image in Isom.Xi/ may not be discrete. As @Xi does not
contain S1 , the result follows.

We will show Xi is quasi-isometric to a tree. This is equivalent to having the bottleneck
property by a theorem of Manning, which he proved with an explicit construction:

Theorem 5.5 (Manning [9, Theorem 4.6]) Let Y be a geodesic metric space. The
following are equivalent:

(1) Y is quasi-isometric to some simplicial tree �.

(2) (Bottleneck property) There is some � > 0 so that for all x;y 2 Y there is a
midpoint mDm.x;y/ with d.x;m/D d.y;m/D 1

2
d.x;y/ and the property

that any path from x to y must pass within less than � of the point m.

Pick a base point p in Xi . There exists some r > 0 such that G �B.p; r/ covers Xi .

Lemma 5.6 There exists R> 0 such that for any x;y in the same connected compo-
nent of Xi nB.p;R/, the geodesic segment Œx;y� does not intersect B.p; r/.
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Proof Suppose on the contrary that for Rn increasing to infinity, we can find xn;yn

in the same connected component of Xi nB.p;Rn/ and Œxn;yn� intersects B.p; r/.
Since xXi is compact in the cone topology, passing to a subsequence we have xn! xx ,
yn! xy for some xx; xy 2 @Xi . By Bridson–Haefliger [3, Lemma II.9.22], there is a
geodesic line from xx to xy intersecting B.p; r/. In particular, xx ¤ xy .

Since different connected components in the boundary of a hyperbolic space correspond
to different ends of the space (see Bridson–Haefliger [3, Exercise III.H.3.8]), and @Xi is
a Cantor set, so xx and xy are in different ends of Xi , which are separated by B.p;Rn/

for Rn large enough. But then xn , yn will be in different connected components of
Xi nB.p;Rn/, contradicting the assumption. Hence the result.

Lemma 5.7 Xi has the bottleneck property.

Proof For any x;y 2Xi , we may translate by some g 2G so that the midpoint m of
Œx;y� is in B.p; r/. We may assume that d.x;y/>2.RCr/, then x;y 2XinB.p;R/.
By Lemma 5.6, x;y are in different connected components of Xi nB.p;R/, hence
any path connecting x to y must intersect B.p;R/, so some point on this path is at a
distance at most RC r from m. Thus the bottleneck property is satisfied.

Lemma 5.8 Xi is quasi-isometric to a bounded valence tree with no terminal vertex.

Proof First we describe briefly Manning’s construction in his proof of Theorem 5.5.
Let R0 D 20�. Start with a single point ? in Y . Call the vertex set containing this
point V0 , and let �0 be a tree with only one vertex and no edge, and ˇ0 W �0! Y

be the map sending the vertex to ?. Then for each k � 1, Let Nk�1 be the open
R–neighborhood of Vk�1 . Let Ck be the set consists of path components of Y nNk�1 .
For each C 2 Ck pick some point v at C \ xNk . There is a unique path component
in Ck�1 containing C, corresponding to a terminal vertex w 2 Vk�1 . Connect v to
w by a geodesic segment. Let Vk be the union of Vk�1 and the set of new points
from each of the path components in Ck . Add new vertices and edges to the tree �k�1

accordingly to get the tree �k . Extend ˇk�1 to ˇk by mapping new vertices of �k to
corresponding new vertices in Vk , and new edges to corresponding geodesic segments.
The tree � D

S
k�0 �k , and ˇ W �! Y is defined to be ˇk on �k .

Apply the construction above to Xi . Since Xi is geodesically complete, each terminal
vertex in Vk�1 will be connected by at least one vertex in Vk nVk�1 , and similarly so
for terminal vertices of �k�1 . So the tree � has no terminal vertex.

Manning proved that the length of each geodesic segment added in the construction is
bounded above by R0C 6�. Consider w 2 Vk�1 with corresponding path component
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Cw 2 Ck�1 . Every path component C 2 Ck such that C � Cw gives a new segment
joining w . Together with geodesic completeness of Xi , this implies that such C will
contain at least one path component of Xi nB.w;R0C6�/, and every path component
of Xi nB.w;R0C6�/ is contained in at most one such C. (Geodesic completeness is
used to ensure that no such C will disappear when passing to Xi nB.w;R0C 6�/.)
Thus the number of new vertices in Vk joining w is bounded by the number of path
components of Xi nB.w;R0C 6�/. Call the vertex in � corresponding to w as pw .
Since no more new segments will join w in subsequent steps, the degree of pw in �
equals one plus the number of new vertices in Vk joining w . Translate Xi by some g

so that g �w 2B.p; r/. The number of path components in Xi nB.w;R0C6�/ equals
that in Xi nB.g �w;R0C 6�/, which is at most the number of path components in
Xi nB.p; rCR0C6�/, as B.g �w;R0C6�/�B.p; rCR0C6�/. Hence we obtain
a universal bound of the degree of pw in �, which means � has bounded valence.

A tree of bounded valence with no terminal vertex is quasi-isometric to the trivalent
tree. Such tree is called a bounded valence bushy tree. Therefore we have shown the
following:

Theorem 5.9 If Xi is a proper cocompact and geodesically complete CAT.0/ space
whose boundary @Xi is homeomorphic to a Cantor set, then Xi is quasi-isometric to a
bounded valence bushy tree.

Now each of X1 , X2 is quasi-isometric to a bushy tree, thus X is quasi-isometric
to the product of two bounded valence bushy trees, and so is G. Therefore we can
apply a theorem by Ahlin [1, Theorem 1] on quasi-isometric rigidity of lattices in
products of trees to show that a finite index subgroup of G is a lattice in Isom.T1�T2/

where Ti is a bounded valence bushy tree quasi-isometric to Xi , i D 1; 2. Notice that
Isom.T1/� Isom.T2/ is isomorphic to a subgroup of Isom.T1 �T2/ of index 1 or 2
(which can be proved similarly as Lemma 2.1), we finally proved the last statement of
Theorem 1.2.
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