Volume 14, issue 2 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25, 1 issue

Volume 24, 9 issues

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1472-2739 (online)
ISSN 1472-2747 (print)
Author Index
To Appear
 
Other MSP Journals
Displacing Lagrangian toric fibers by extended probes

Miguel Abreu, Matthew Strom Borman and Dusa McDuff

Algebraic & Geometric Topology 14 (2014) 687–752
Bibliography
1 M Abreu, L Macarini, Remarks on Lagrangian intersections in toric manifolds, Trans. Amer. Math. Soc. 365 (2013) 3851 MR3042606
2 P Biran, O Cornea, Rigidity and uniruling for Lagrangian submanifolds, Geom. Topol. 13 (2009) 2881 MR2546618
3 P Biran, M Entov, L Polterovich, Calabi quasimorphisms for the symplectic ball, Commun. Contemp. Math. 6 (2004) 793 MR2100764
4 M S Borman, Quasi-states, quasi-morphisms, and the moment map, Int. Math. Res. Not. 2013 (2013) 2497 MR3065086
5 D M J Calderbank, M A Singer, Einstein metrics and complex singularities, Invent. Math. 156 (2004) 405 MR2052611
6 Y Chekanov, F Schlenk, Notes on monotone Lagrangian twist tori, Electron. Res. Announc. Math. Sci. 17 (2010) 104 MR2735030
7 C H Cho, Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus, Int. Math. Res. Not. 2004 (2004) 1803 MR2057871
8 C H Cho, Non-displaceable Lagrangian submanifolds and Floer cohomology with non-unitary line bundle, J. Geom. Phys. 58 (2008) 1465 MR2463805
9 C H Cho, Y G Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006) 773 MR2282365
10 C H Cho, M Poddar, Holomorphic orbidiscs and Lagrangian Floer cohomology of compact toric orbifolds arXiv:1206.3994
11 T Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1988) 315 MR984900
12 M Entov, L Polterovich, Quasi-states and symplectic intersections, Comment. Math. Helv. 81 (2006) 75 MR2208798
13 M Entov, L Polterovich, Rigid subsets of symplectic manifolds, Compos. Math. 145 (2009) 773 MR2507748
14 K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds: Survey arXiv:1011.4044
15 K Fukaya, Y G Oh, H Ohta, K Ono, Spectral invariants with bulk quasimorphisms and Lagrangian Floer theory arXiv:1105.5123
16 K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J. 151 (2010) 23 MR2573826
17 K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian Floer theory on compact toric manifolds II: Bulk deformations, Selecta Math. 17 (2011) 609 MR2827178
18 Y Karshon, E Lerman, Non-compact symplectic toric manifolds arXiv:0907.2891
19 E Lerman, E Meinrenken, S Tolman, C Woodward, Nonabelian convexity by symplectic cuts, Topology 37 (1998) 245 MR1489203
20 E Lerman, S Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997) 4201 MR1401525
21 D McDuff, Displacing Lagrangian toric fibers via probes, from: "Low-dimensional and symplectic topology" (editor M Usher), Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 131 MR2768658
22 D McDuff, S Tolman, Polytopes with mass linear functions, I, Int. Math. Res. Not. 2010 (2010) 1506 MR2628835
23 P Orlik, F Raymond, Actions of the torus on $4$–manifolds, I, Trans. Amer. Math. Soc. 152 (1970) 531 MR0268911
24 G Wilson, C T Woodward, Quasimap Floer cohomology for varying symplectic quotients, Canad. J. Math. 65 (2013) 467 MR3028569
25 C T Woodward, Gauged Floer theory of toric moment fibers, Geom. Funct. Anal. 21 (2011) 680 MR2810861