Volume 14, issue 2 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 23
Issue 9, 3909–4400
Issue 8, 3417–3908
Issue 7, 2925–3415
Issue 6, 2415–2924
Issue 5, 1935–2414
Issue 4, 1463–1934
Issue 3, 963–1462
Issue 2, 509–962
Issue 1, 1–508

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Twisted equivariant $K\!$–theory and $K\!$–homology of $\mathrm{Sl}_3{\mathbb{Z}}$

Noé Bárcenas and Mario Velásquez

Algebraic & Geometric Topology 14 (2014) 823–852
Bibliography
1 A Adem, Y Ruan, Twisted orbifold $K\!$–theory, Comm. Math. Phys. 237 (2003) 533 MR1993337
2 M Atiyah, G Segal, Twisted $K\!$–theory, Ukraïns. Mat. Visn. 1 (2004) 287 MR2172633
3 M Atiyah, G Segal, Twisted $K\!$–theory and cohomology, from: "Inspired by S S Chern" (editor P A Griffiths), Nankai Tracts Math. 11, World Sci. Publ. (2006) 5 MR2307274
4 N Barcenas, J Espinoza, M Joachim, B Uribe, Classification of twists in equivariant $K\!$–theory for proper and discrete group actions arXiv:1202.1880
5 N Barcenas, J Espinoza, B Uribe, M Velasquez, Segal's spectral sequence in twisted equivariant $K$ theory for proper actions arXiv:1307.1003
6 P Baum, A Connes, N Higson, Classifying space for proper actions and $K\!$–theory of group $C^\ast$–algebras, from: "$C^\ast$–algebras: 1943–1993" (editor R S Doran), Contemp. Math. 167, Amer. Math. Soc. (1994) 240 MR1292018
7 J Chabert, S Echterhoff, Twisted equivariant $KK$–theory and the Baum–Connes conjecture for group extensions, $K\!$–Theory 23 (2001) 157 MR1857079
8 J F Davis, W Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K\!$– and $L\!$–theory, $K\!$–Theory 15 (1998) 201 MR1659969
9 P Donovan, M Karoubi, Graded Brauer groups and $K\!$–theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. (1970) 5 MR0282363
10 C Dwyer, Twisted equivariant $K\!$–theory for proper actions of discrete groups, $K\!$–Theory 38 (2008) 95 MR2366557
11 S Echterhoff, The $K\!$–theory of twisted group algebras, from: "$C^\ast$–algebras and elliptic theory II" (editors D Burghelea, R Melrose, A S Mishchenko, E V Troitsky), Trends Math., Birkhäuser (2008) 67 MR2408136
12 S Echterhoff, H Emerson, H J Kim, $KK$–theoretic duality for proper twisted actions, Math. Ann. 340 (2008) 839 MR2372740
13 P N Hoffman, J F Humphreys, Projective representations of the symmetric groups: $Q$–functions and shifted tableaux, Oxford Math. Monogr., The Clarendon Press (1992) MR1205350
14 G Karpilovsky, Group representations, Vol. 3, North-Holland Mathematics Studies 180, North-Holland (1994) MR1280715
15 G Mislin, A Valette, Proper group actions and the Baum–Connes conjecture, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser (2003) MR2027168
16 R Sánchez-García, Bredon homology and equivariant $K\!$–homology of $\mathrm{SL}(3,\mathbb{Z})$, J. Pure Appl. Algebra 212 (2008) 1046 MR2387584
17 I Schur, Über die darstellungen der symmetrischen und der alternierenden gruppen durch gebrochene lineare substitutionen, J. Reine Angew. Math. 139 (1911) 155
18 C Soulé, The cohomology of $\mathrm{SL}_{3}(\mathbb{Z})$, Topology 17 (1978) 1 MR0470141