Volume 14, issue 2 (2014)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 24
Issue 2, 595–1223
Issue 1, 1–594

Volume 23, 9 issues

Volume 22, 8 issues

Volume 21, 7 issues

Volume 20, 7 issues

Volume 19, 7 issues

Volume 18, 7 issues

Volume 17, 6 issues

Volume 16, 6 issues

Volume 15, 6 issues

Volume 14, 6 issues

Volume 13, 6 issues

Volume 12, 4 issues

Volume 11, 5 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 4 issues

Volume 7, 4 issues

Volume 6, 5 issues

Volume 5, 4 issues

Volume 4, 2 issues

Volume 3, 2 issues

Volume 2, 2 issues

Volume 1, 2 issues

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1472-2739
ISSN (print): 1472-2747
Author Index
To Appear
 
Other MSP Journals
Twisted equivariant $K\!$–theory and $K\!$–homology of $\mathrm{Sl}_3{\mathbb{Z}}$

Noé Bárcenas and Mario Velásquez

Algebraic & Geometric Topology 14 (2014) 823–852
Bibliography
1 A Adem, Y Ruan, Twisted orbifold $K\!$–theory, Comm. Math. Phys. 237 (2003) 533 MR1993337
2 M Atiyah, G Segal, Twisted $K\!$–theory, Ukraïns. Mat. Visn. 1 (2004) 287 MR2172633
3 M Atiyah, G Segal, Twisted $K\!$–theory and cohomology, from: "Inspired by S S Chern" (editor P A Griffiths), Nankai Tracts Math. 11, World Sci. Publ. (2006) 5 MR2307274
4 N Barcenas, J Espinoza, M Joachim, B Uribe, Classification of twists in equivariant $K\!$–theory for proper and discrete group actions arXiv:1202.1880
5 N Barcenas, J Espinoza, B Uribe, M Velasquez, Segal's spectral sequence in twisted equivariant $K$ theory for proper actions arXiv:1307.1003
6 P Baum, A Connes, N Higson, Classifying space for proper actions and $K\!$–theory of group $C^\ast$–algebras, from: "$C^\ast$–algebras: 1943–1993" (editor R S Doran), Contemp. Math. 167, Amer. Math. Soc. (1994) 240 MR1292018
7 J Chabert, S Echterhoff, Twisted equivariant $KK$–theory and the Baum–Connes conjecture for group extensions, $K\!$–Theory 23 (2001) 157 MR1857079
8 J F Davis, W Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K\!$– and $L\!$–theory, $K\!$–Theory 15 (1998) 201 MR1659969
9 P Donovan, M Karoubi, Graded Brauer groups and $K\!$–theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. (1970) 5 MR0282363
10 C Dwyer, Twisted equivariant $K\!$–theory for proper actions of discrete groups, $K\!$–Theory 38 (2008) 95 MR2366557
11 S Echterhoff, The $K\!$–theory of twisted group algebras, from: "$C^\ast$–algebras and elliptic theory II" (editors D Burghelea, R Melrose, A S Mishchenko, E V Troitsky), Trends Math., Birkhäuser (2008) 67 MR2408136
12 S Echterhoff, H Emerson, H J Kim, $KK$–theoretic duality for proper twisted actions, Math. Ann. 340 (2008) 839 MR2372740
13 P N Hoffman, J F Humphreys, Projective representations of the symmetric groups: $Q$–functions and shifted tableaux, Oxford Math. Monogr., The Clarendon Press (1992) MR1205350
14 G Karpilovsky, Group representations, Vol. 3, North-Holland Mathematics Studies 180, North-Holland (1994) MR1280715
15 G Mislin, A Valette, Proper group actions and the Baum–Connes conjecture, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser (2003) MR2027168
16 R Sánchez-García, Bredon homology and equivariant $K\!$–homology of $\mathrm{SL}(3,\mathbb{Z})$, J. Pure Appl. Algebra 212 (2008) 1046 MR2387584
17 I Schur, Über die darstellungen der symmetrischen und der alternierenden gruppen durch gebrochene lineare substitutionen, J. Reine Angew. Math. 139 (1911) 155
18 C Soulé, The cohomology of $\mathrm{SL}_{3}(\mathbb{Z})$, Topology 17 (1978) 1 MR0470141